
CS 43: Computer Networks

04: HTTP: Methods, Cookies and
Performance

September 17, 2020

Last class

• End-to-end argument
• Five-layer protocol stack
– Protocols at each layer

• Example HTTP Request

Slide 2

Today

• HTTP
– GET vs. POST
– response messages
– Persistence vs. Non-persistence

• HTTP Performance and Cookies
• Server-side Socket Programming

Slide 3

Last class: Five-Layer Internet Model

Application: the application (e.g., the Web, Email)

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1’s and 0’s/bits across a medium
(copper, the air, fiber)

Slide 4

HTTP request message
request line
(GET, POST,
HEAD, etc. commands)

optional
header

lines

carriage return,
line feed

GET /index.html HTTP/1.1\r\n
Host: web.cs.swarthmore.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

carriage return character
line-feed character

Slide 5

HTTP/1.0 (1996):
• GET:

– Requests page.

• POST:
– Uploads user response to

a form.

• HEAD:
– asks server to leave

requested object out of
response

HTTP/1.1 (1997 & 1999):
• GET, POST, HEAD
• PUT

– uploads file in entity body
to path specified in URL
field

• DELETE
– deletes file specified in

the URL field
• TRACE, OPTIONS,

CONNECT, PATCH
• Persistent connections

Request Method Types (“verbs”)

Slide 6

Uploading form input

GET (in-URL) method:
• uses GET method
• input is uploaded in URL field of request line:

POST method:
• web page often includes form input
• input is uploaded to server in request entity body

www.somesite.com/animalsearch?monkeys&banana

Slide 7

GET vs. POST

GET can be used for idempotent requests

• Idempotence: an operation can be applied multiple times
without changing the result (the final state is the same)

Slide 8

GET vs. POST

I. Incrementing a variable
II. Assigning a value to a

variable

III. Allocating Memory
IV. Compiling a program

A. None of them
B. One of them
C. Two of them

D. Three of them
E. All of them

Q: How many of the following operations are idempotent?

GET can be used for idempotent requests

• Idempotence: an operation can be applied multiple times
without changing the result (the final state is the same)

Slide 9

GET vs. POST

I. Incrementing a variable
II. Assigning a value to a

variable

III. Allocating Memory
IV. Compiling a program

A. None of them
B. One of them
C. Two of them

D. Three of them
E. All of them

Q: How many of the following operations are idempotent?

GET can be used for idempotent requests

• Idempotence: an operation can be applied multiple times
without changing the result (the final state is the same)

Slide 10

GET vs. POST

GET can be used for idempotent requests.

• Idempotence: an operation can be applied multiple times without
changing the result (the final state is the same)

Slide 11

GET vs. POST

POST should be when:
• A request changes the state of the server or DB
• Sending a request twice would be harmful: (Some) browsers warn

about sending multiple post requests
• Users are inputting non-ASCII characters
• Input may be very large

– You want to hide how the form works/user input

Slide 12

When might you use GET vs. POST?

GET POST

A. Forum post Search terms, Pizza order

B. Search terms, Pizza order Forum post

C. Search terms Forum post, Pizza order

D. Forum post, Search terms, Pizza Order

E. Forum post, Search terms, Pizza Order

Slide 13

When might you use GET vs. POST?

GET POST

A. Forum post Search terms, Pizza order

B. Search terms, Pizza order Forum post

C. Search terms Forum post, Pizza order

D. Forum post, Search terms, Pizza Order

E. Forum post, Search terms, Pizza Order

Slide 14

State(less)

(XKCD #869, “Server Attention Span”)

Slide 15

HTTP State

Does the HTTP protocol, allow for a server to keep
track of every client?

A. Yes, it’s required to
B. No, it would not scale
C. That’s against privacy rules!
D. Something else

Slide 16

State(less)

• Original web: simple document retrieval
• Maintain State? Server is not required to keep state

between connections
...often it might want to though

• Authentication: Client is not required to identify itself
– server might refuse to talk otherwise though

Slide 17

User-server state: cookies
What cookies can be used for:
• authorization
• shopping carts
• recommendations
• user session state (Web e-mail)
How to keep “state”:
• protocol endpoints: maintain state at sender/receiver

over multiple transactions
• cookies: http messages carry state

Slide 18

Cookies: keeping “state” (cont.)

client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734 usual http request msg Amazon server
creates ID

1678 for user create
entryusual http response

set-cookie: 1678
ebay 8734
amazon 1678

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734
amazon 1678

backend
database

Slide 19

User-server state: cookies

Many web sites use cookies

Four components:

1) cookie header line of HTTP response message

2) cookie header line in next HTTP request message

3) cookie file kept on user’s host, managed by user’s
browser

4) back-end database at Web site

Slide 20

Cookies and Privacy

Cookies permit sites to learn a lot about you
supply name and e-mail to sites (and more!)
third-party cookies (ad networks) follow you across multiple sites.

Slide 21

Cookies and Privacy
Cookies permit sites to learn a lot about you
You could turn them off ...but good luck doing anything on the
internet!

Slide 22

HTTP connections

Non-persistent HTTP
• at most one object sent

over TCP connection
– connection then closed

• downloading multiple
objects requires multiple
connections

Persistent HTTP
• multiple objects can be

sent over single TCP
connection between
client, server

object: image, script, stylesheet, etc.

Slide 23

Non-persistent HTTP
suppose user enters URL: contains references to 10 jpeg images

1a. HTTP client initiates TCP
connection to HTTP server 1b. HTTP server “accepts” connection,

notifying client

Slide 24

2. HTTP client sends HTTP
request message: URL 3. HTTP server:

- receives request
- forms response message containing

requested index.html
- sends message5. HTTP client receives response:

- index.html
- finds 10 referenced jpeg objects 4. HTTP server closes TCP connection.

time 6. Steps 1-5 repeated for each of 10
jpeg objects

Pseudocode Example

non-persistent HTTP

for object on web page:
connect to server
request object
receive object
close connection

persistent HTTP

connect to server
for object on web page:

request object
receive object

close connection

Slide 25

Round Trip Time

Round Trip Time (RTT):
• time for a small packet to

travel from client to server
and response to come back.

• Connection establishment
(via TCP) requires one RTT.

RTT

time time

Slide 26

HTTP 1.x vs HTTP 2.0

Courtesy: HTTP/2 101 Chrome Dev Summit 2015

Learn more: https://http2.github.io/

• SPDY: protocol to speed up the
web: Basis for HTTP 2.0

• Request pipelining
• Compress header metadata

Slide 27

Non-Persistent HTTP Connections can download
a website with several objects in…

A. One RTT + (File transfer time per object)

B. (One RTT + File transfer time) per object

C. Two RTTs

D. Two RTTs + (File transfer time per object)

E. (Two RTTS + File transfer time) per object

RTT

time time

Slide 28

Non-persistent HTTP: response time

Round Trip Time (RTT): time for a small
packet to travel from client to server
and back

HTTP response time:
• 1-RTT to initiate TCP connection
• 1-RTT for HTTP request + first few

bytes of HTTP response to return
• file transmission time
• non-persistent HTTP response time =

2-RTT+ file transmission time
For each object

RTT

time to
transmit
file

initiate TCP
connection

request
file

RTT

file
received

time time

Client Server

Slide 29

file
received

Persistent Connection

time to
transmit
file

RTT

request
file

RTT

time time Slide 30

Persistent HTTP

Non-persistent HTTP issues:
• requires 2 RTTs per object
• OS overhead for each TCP

connection
• browsers often open

parallel TCP connections to
fetch referenced objects

Persistent HTTP:
• server leaves connection open

after sending response
• subsequent HTTP messages

between same client/server
sent over open connection

• client sends requests as soon as
it encounters a referenced
object

• as little as one RTT for all the
referenced objects

Slide 31

• Think you’re the only one talking to that server?

Server

Concurrency

Slide 32

• Think you’re the only one talking to that server?

Web Server
recv()
request

Without Concurrency

Slide 33

• Think you’re the only one talking to that server?

Web Server

recv() request

Client taking its
time…

Server Process
Blocked!

Ready to send, but
server still blocked on

first client.

If only we could handle these
connections separately…

Without Concurrency

Slide 34

Web Server

Server fork()s

Child process
recv()s

Web
Server

Web
Server

Services the
new client
request

Server fork()s

Multiple processes

Slide 35

Concurrent Web-servers with multiple
threads/processes

• Threads (shared memory)

Slide 36

send (to, buf) receive (from, buf)
Kernel

Process-1 Process-2

Process memory

• Message Passing (locally)

Thread 1 PC1

SP1

Thread 2

PC2

SP2

Process 1

Text

Data

OS

Heap

Stack 2
Stack 1 OS

Stack

Text
Data
Heap

OS

Stack

Text
Data
Heap

Two Separate Processes

Processes/Threads vs. Parent
(More details in an OS class…)

Spawned Process
• Inherits descriptor table
• Does not share memory
– New memory address

space
• Scheduled independently
– Separate execution

context
– Can block independently

Spawned Thread
• Shares descriptor table
• Shares memory
– Uses parent’s address

space
• Scheduled independently
– Separate execution

context
– Can block independently

Slide 37

Processes/Threads vs. Parent
(More details in an OS class…)

Spawned Process
• Inherits descriptor table
• Does not share memory
– New memory address

space
• Scheduled independently

Spawned Thread
• Shares descriptor table
• Shares memory
– Uses parent’s address

space
• Scheduled independently

Often, we don’t need the extra isolation of a separate address
space. Faster to skip creating it and share with parent –

threading.

Slide 38

A. Modular code/separation of concerns.

B. Multiple CPU/core parallelism.

C. I/O overlapping.

D. Some other benefit.

Which benefit is most critical?

Slide 39

Several benefits
– Modularizes code: one piece accepts connections,

another services them
– Each can be scheduled on a separate CPU
– Blocking I/O can be overlapped

Both processes and threads:

Slide 40

Still not maximum efficiency…
• Creating/destroying threads takes time

• Requires memory to store thread execution state
• Lots of context switching overhead

Both processes and threads

Slide 41

P1
P2
P3

time

CPU: Time
Single core

Text

Data

Stack

Process 1

Text
Data

Stack

Process 2

Text

Data

Stack

Process N

…

KernelSystem
Calls write

read
fork

System
Management Scheduling

Context
Switching

OS OS

Heap
Heap

OS

Heap

Context Switching

• Blocking: synchronous programming

– wait for I/O to complete before proceeding

– control does not return to the program

• Non-blocking: asynchronous programming

– control returns immediately to the program

– perform other tasks while I/O is being completed.

– notified upon I/O completion

Event-based concurrency

Slide 42

One operation: add a flag to send/recv
• Permanently, for socket: fcntl() – “file control”
– Allows setting options on file/socket descriptors

int sock, result, flags = 0;

sock = socket(AF_INET, SOCK_STREAM, 0);
result = fcntl(sock, F_SETFL, flags|O_NONBLOCK)

always check the result!

Non-blocking I/O

Slide 43

• With O_NONBLOCK set on a socket
– No operations will block!

• On recv(), if socket buffer is empty:
– returns -1

• On send(), if socket buffer is full:
– returns -1

Non-blocking I/O

Slide 44

So... keep checking send and recv until they return something – waste of CPU cycles?

Will this work?

server_socket = socket(), bind(), listen() //non-blocking

connections = []
while (1)
new_connection = accept(server_socket)

if new_connection != -1,
add it to connections

for connection in connections:

recv(connection, …) // Try to receive
send(connection, …) // Try to send, if needed

Slide 45

A. Yes, this will work efficiently.
B. Yes but this will execute too

slowly.

C. Yes but this will use too many
resources.

D. No, this will still block.

Will this work?

server_socket = socket(), bind(), listen() //non-blocking

connections = []
while (1)
new_connection = accept(server_socket)

if new_connection != -1,
add it to connections

for connection in connections:

recv(connection, …) // Try to receive
send(connection, …) // Try to send, if needed

Slide 46

Rather than checking over and over, let the OS tell us when
data can be read/written

Event-based concurrency: select()

Slide 47

client_sockets[10];
FD_SET(client_sockets) //ask OS to watch all client sockets and select those that are
select(client_sockets) are ready to recv() or send() data
for every client in client_socket:

FD_ISSET(client, read) //return true if this client socket has any data to be received
FD_ISSET(client, write) //return true if this client socket has any data to be sent

ü OS worries about selecting which sockets (s) are ready.
ü Process blocks if no socket is read to send or receive data.

• Create set of file/socket descriptors we want to send and recv
• Tell the O.S to block the process until at least one of those is

ready for us to use.
• The OS worries about selecting which one(s).

Event-based concurrency: select()

Slide 48

• Only one process/thread (or one per core)!

– No time wasted on context switching

– No memory overhead for many processes/threads

Event-based concurrency: advantages

Slide 49

