
CS 43: Computer Networks

03: HTTP & Sockets
September 15, 2020

Five-Layer Internet Model

Application: the application (e.g., the Web, Email)

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1’s and 0’s/bits across a medium
(copper, the air, fiber)

Slide 2

Creating a network app

write programs that:
• run on (different) end systems
• communicate over network
• e.g., web server s/w

communicates with browser
software

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Slide 3

Creating a network app

no need to write software for
network-core devices!

• network-core devices do not
run user applications

• applications on end systems
– rapid app development,

propagation

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Slide 4

HTTP: HyperText Transfer Protocol

• client: browser that uses

HTTP to request, and
receive Web objects.

• server: Web server that
uses HTTP to respond with
requested object.

PC running
Firefox browser

server
running

Apache Web
server

iPhone running
Safari browser

HTTP requestHTTP response

HTTP request

HTTP response

Slide 5

Client/Server model

What IS A Web Browser?

Slide 6

HTTP and the Web

• web page consists of objects
• object can be: an HTML file (index.html)

Slide 7

demo.cs.swarthmore.edu/index.html

Web objects

• web page consists of objects
• object can be: JPEG image

Slide 8

Web objects

• web page consists of objects
• object can be: audio file

Slide 9Courtesy: New York Times

Web objects

• web page consists of objects
• object can be: video, java applets, etc.

Slide 10

HTTP and the Web

• a web page consists of base HTML-file which
includes several referenced objects

• each object is addressable by a URL, e.g.,

Slide 11

demo.cs.swarthmore.edu/example/pic.html

host name path name

HTTP Overview

1. User types in a URL.
http://some.host.name.tld/directory/name/file.ext

host name path name

Slide 12

HTTP Overview

2. Browser establishes connection with server
using the Sockets API.

Calls socket() // create a socket
Looks up “some.host.name.tld” (DNS: getaddrinfo)
Calls connect() // connect to remote server
Ready to call send() // Can now send HTTP requests

Slide 13

HTTP Overview

3. Browser requests data the user asked for

Slide 14

GET /directory/name/file.ext HTTP/1.0

Host: some.host.name.tld

[other optional fields, for example:]

User-agent: Mozilla/5.0 (Windows NT 6.1; WOW64)

Accept-language: en

Required
fields

HTTP Overview

4. Server responds with the requested data.

Slide 15

HTTP/1.0 200 OK
Content-Type: text/html
Content-Length: 1299
Date: Sun, 01 Sep 2013 21:26:38 GMT
[Blank line]
(Data data data data…)

HTTP Overview

5. Browser renders the response, fetches any
additional objects, and closes the connection.

Slide 16

HTTP Overview

1. User types in a URL.
2. Browser establishes connection with server.
3. Browser requests the corresponding data.
4. Server responds with the requested data.
5. Browser renders the response, fetches other

objects, and closes the connection.

It’s a document retrieval system, where documents
point to (link to) each other, forming a “web”.

Slide 17

HTTP Overview (Lab 1)

1. User types in a URL.
2. Browser establishes connection with server.
3. Browser requests the corresponding data.
4. Server responds with the requested data.
5. Browser renders the response, fetches other

objects, Save the file and close the connection.

It’s a document retrieval system, where documents
point to (link to) each other, forming a “web”.

Slide 18

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:

Opens TCP connection to port 80 (default HTTP server port)
at example server.

Anything typed is sent to server on port 80 at
demo.cs.swarthmore.edu

telnet demo.cs.swarthmore.edu 80

Slide 19

Trying out HTTP (client side) for yourself

2. Type in a GET HTTP request:

GET / HTTP/1.1
Host: demo.cs.swarthmore.edu
(blank line)

(Hit carriage
return twice) This
is a minimal, but complete,
GET request to the HTTP
server.

3. Look at response message sent by HTTP server!
Slide 20

Example
$ telnet demo.cs.swarthmore.edu 80
Trying 130.58.68.26...
Connected to demo.cs.swarthmore.edu.
Escape character is '^]'.
GET / HTTP/1.1
Host: demo.cs.swarthmore.edu

HTTP/1.1 200 OK
Vary: Accept-Encoding
Content-Type: text/html
Accept-Ranges: bytes
ETag: "316912886"
Last-Modified: Wed, 04 Jan 2017 17:47:31 GMT
Content-Length: 1062
Date: Wed, 05 Sep 2018 17:27:34 GMT
Server: lighttpd/1.4.35

Response
headers

Slide 21

Example
$ telnet demo.cs.swarthmore.edu 80
Trying 130.58.68.26...
Connected to demo.cs.swarthmore.edu.
Escape character is '^]'.
GET / HTTP/1.1
Host: demo.cs.swarthmore.edu

<html><head><title>Demo Server</title></head>
<body>
.....
</body>
</html>

Response
headers

Response
body
(This is what
you should be
saving in lab 1.) Slide 22

HTTP request message
• two types of HTTP messages: request, response
• HTTP request message: ASCII (human-readable format)

request line
(GET, POST,
HEAD, etc. commands)

variable #
header

lines

two carriage return,
line feed characters

GET /index.html HTTP/1.0\r\n
Host: web.cs.swarthmore.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

carriage return character
line-feed character

Slide 23

Why do we have these \r\n (CRLF) things
all over the place?

A. They’re generated when the user hits ‘enter’.
B. They signal the end of a field or section.
C. They’re important for some other reason.
D. They’re an unnecessary protocol artifact.

GET /index.html HTTP/1.1\r\n
Host: web.cs.swarthmore.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

Slide 24

Why do we have these \r\n (CRLF) things
all over the place?

A. They’re generated when the user hits ‘enter’.
B. They signal the end of a field or section.
C. They’re important for some other reason.
D. They’re an unnecessary protocol artifact.

GET /index.html HTTP/1.1\r\n
Host: web.cs.swarthmore.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

Slide 25

How else might we delineate messages?

A. There’s not much else we can do.

B. Force all messages to be the same size.

C. Send the message size prior to the message.

D. Some other way (discuss).

Slide 26

HTTP is all text…

• Makes the protocol simple
– Easy to delineate message (\r\n)
– (Relatively) human-readable
– No worries about encoding or formatting data
– Variable length data

• Not the most efficient
– Many protocols use binary fields

• Sending “12345678” as a string is 8 bytes
• As an integer, 12345678 needs only 4 bytes

– The headers may come in any order
– Requires string parsing / processing

Lecture 3 - Slide 27

HTTP response message

Slide 28

status line
(protocol
status code
status phrase)

variable #
header
lines

data, e.g., requested HTML file: may not be text!

HTTP/1.1 200 OK\r\n

Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n

Server: Apache/2.0.52 (CentOS)\r\n

Last-Modified: Tue, 30 Oct 2007 17:00:02 GMT\r\n

ETag: "17dc6-a5c-bf716880"\r\n

Accept-Ranges: bytes\r\n

Content-Length: 2652\r\n

Keep-Alive: timeout=10, max=100\r\n

Connection: Keep-Alive\r\n

Content-Type: text/html; charset=ISO-8859-1\r\n
\r\n

data data data data data ...

two carriage return,
line feed characters

HTTP response status codes

Slide 29

200 OK
• Request succeeded, requested object later in this msg
301 Moved Permanently
• Requested object moved, new location specified later in this msg

(Location:)
400 Bad Request

– Request msg not understood by server
403 Forbidden

– You don’t have permission to read the object
404 Not Found

– Requested document not found on this server
505 HTTP Version Not Supported

Status code appears in first line of server-to-client response message.

HTTP response status codes

420 Enhance Your Calm (twitter)
– Slow down, you’re being rate limited

451 Unavailable for Legal Reasons
– Censorship?

418 I’m a Teapot
– Response from a teapot requested to brew a beverage

(announced Apr 1)

Slide 30

Status code appears in first line of server-to-client response message.
Many others! Search “list of HTTP status codes”

Client-Server communication

• Client:
– initiates communication
– must know the address and port of the server
– active socket

• Server:
– passively waits for and responds to clients
– passive socket

Slide 31

What is a socket?

An abstraction through which an application may send
and receive data,

in the same way as a open-file handle allows an
application to read and write data to storage.

Slide 32

TCP Socket Procedures: Client Client
create a new communication endpoint

actively attempt to establish a connection

receive some data over a connection

send some data over a connection

release the connection

socket()

connect()

send()

recv()

close()
Slide 33

Recall Inter-process Communication (IPC)

• Processes must communicate to cooperate

• Must have two mechanisms:

– Data transfer

– Synchronization

• On a single machine:

– Threads (shared memory)

– Message passing

Slide 34

Message Passing (local)

• Operating system mechanism for IPC
– send (destination, message_buffer)

– receive (source, message_buffer)

• Data transfer: in to and out of kernel message buffers
• Synchronization

send (to, buf) receive (from, buf)
Kernel

Process-1 Process-2

Process
memory

Slide 35

Interprocess Communication
(non-local)

• Processes must communicate to cooperate

• Must have two mechanisms:
– Data transfer
– Synchronization

• Across a network:
– Threads (shared memory) NOT AN OPTION!
– Message passing

Slide 36

Slide 37

Message Passing (network)

• Same synchronization
• Data transfer

– Copy to/from OS socket buffer
– Extra step across network: hidden from applications

• Synchronization?

TCP socket connection

Lecture 5/6 - Slide 38

socket()

bind()

listen()

accept()

recv()

send()

close()

socket()

connect()

send()

recv()

close()

Server

Client

If the client sends a
GET request to the
server using send() but
forgets to send the last
/r/n which of the
following can happen?

socket()

bind()

listen()

accept()

recv()

send()

close()

socket()

connect()

send()

recv()

close()

Server Client

A. Server, Client both recv()
B. Server send()s,

Client recv()s
C. Server recv()s,

Client send()s
D. Some other combination

If the client sends a
GET request to the
server using send() but
forgets to send the last
/r/n which of the
following can happen?

socket()

bind()

listen()

accept()

recv()

send()

close()

socket()

connect()

send()

recv()

close()

Server Client

A. Server, Client both recv()
B. Server send()s,

Client recv()s
C. Server recv()s,

Client send()s
D. Some other combination

If the client sends a
GET request to the
server using send() but
forgets to send the last
/r/n which of the
following can happen?

socket()

bind()

listen()

accept()

recv()

send()

close()

socket()

connect()

send()

recv()

close()

Server Client

Synchronization
locally on one machine:
• relies on synchronization

primitives.
over the network:
• depends on the order of

sends and receives!

Descriptor Table

OS stores a table, per
process, of descriptors

Kernel Slide 42

For each Process

Descriptors

Slide 43

Descriptor Table

OS stores a table, per
process, of descriptors

0

1

2…

Slide 44

stdin stdout stderr

For each Process

Kernel

http://www.learnlinux.org.za/courses/b
uild/shell-scripting/ch01s04.html

socket()

• socket() returns a
socket descriptor

• Indexes into table

0

1

2

7

…

Slide 45

stdin stdout stderr

int sock = socket(AF_INET,
SOCK_STREAM, 0);

7

For each Process

Kernel

socket()

OS stores details of the
socket, connection, and
pointers to buffers

0

1

2

7

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

Slide 46

stdin stdout stderr

int sock = socket(AF_INET,
SOCK_STREAM, 0);

7

For each Process

Kernel

socket()

0

1

2

7

stdin stdout stderr

int sock = socket(AF_INET,
SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

OS stores details of the
socket, connection, and
pointers to buffers

Slide 47

Buffer:
Temporary
data storage
location

For each Process

Kernel

Socket Buffers

7

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

…

Application buffer / storage space:

Slide 48

For each Process

Kernel

Socket Buffers

7

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

…

Application buffer / storage space:

Internet Slide 49

For each Process

Kernel

Socket Buffers

7

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

…

Application buffer / storage space:

recv(): Move
data from
socket buffer
to process

Internet Slide 50

For each Process

Kernel

Socket Buffers

7

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

…

Application buffer / storage space:

send(): Move
data from
process to
socket buffer

Internet Slide 51

For each Process

Kernel

Socket Buffers

7

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

…

Application buffer / storage space:

Challenge: Your
process does
NOT know what
is stored here!

Free space? Is data here?

For each Process

Kernel
Slide 52

What should we do if the receive socket buffer is
empty? If it has 100 bytes?

int sock = socket(AF_INET, SOCK_STREAM, 0);
(assume we connect()ed here…)

int recv_val = recv(sock, r_buf, 200, 0);

Socket buffer
(receive) Empty

100 bytes

r_buf (size 200)

Slide 53

For each Process

Kernel

Two Scenarios:

What should we do if the receive socket buffer is
empty? If it has 100 bytes?

Empty 100 Bytes

A Block Block

B Block Copy 100 bytes

C Copy 0 bytes Block

D Copy 0 bytes Copy 100 bytes

E Something else

Socket buffer
(receive) Empty

Two Scenarios:

100 bytes

Slide 54

r_buf (size 200)int sock = socket(AF_INET, SOCK_STREAM, 0);
(assume we connect()ed here…)

int recv_val = recv(sock, r_buf, 200, 0);

For each Process

Kernel

What should we do if the receive socket buffer is
empty? If it has 100 bytes?

Empty 100 Bytes

A Block Block

B Block Copy 100 bytes

C Copy 0 bytes Block

D Copy 0 bytes Copy 100 bytes

E Something else

Socket buffer
(receive) Empty

Two Scenarios:

100 bytes

Slide 55

r_buf (size 200)int sock = socket(AF_INET, SOCK_STREAM, 0);
(assume we connect()ed here…)

int recv_val = recv(sock, r_buf, 200, 0);

For each Process

Kernel

What should we do if the send socket buffer is full?
If it has 100 bytes?

Socket buffer
(send) Full

s_buf (size 200)

100 bytes

Slide 56

int sock = socket(AF_INET, SOCK_STREAM, 0);
(assume we connect()ed here…)

int send_val = send(sock, r_buf, 200, 0);

For each Process

Kernel

Two Scenarios:

What should we do if the send socket buffer is full?
If it has 100 bytes?

Socket buffer
(send) Full

s_buf (size 200)

100 bytes

Slide 57

int sock = socket(AF_INET, SOCK_STREAM, 0);
(assume we connect()ed here…)

int send_val = send(sock, r_buf, 200, 0);

For each Process

Kernel

Two Scenarios:

Full 100 Bytes

A Return 0 Copy 100 bytes

B Block Copy 100 bytes

C Return 0 Block

D Block Block

E Something else

Blocking Implications

recv()
• Do not assume that you will recv() all of the bytes

that you ask for.
• Do not assume that you are done receiving.
• Always receive in a loop!*

send()
• Do not assume that you will send() all of the data you

ask the kernel to copy.
• Keep track of where you are in the data you want to

send.
• Always send in a loop!*

* Unless you’re dealing with a single byte, which is rare.
Slide 58

ALWAYS check send()/recv() return values!

When recv() returns a non-zero number of bytes always
call recv() again until:
– the server closes the socket,
– or you’ve received all the bytes you expect.

Slide 59

ALWAYS check send()/recv() return values!

When recv() returns a non-zero number of bytes always
call recv() again until:
– In the case of your web client: keep receiving until the

server closes the socket.

Slide 60

ALWAYS check send()/recv() return values!

• E.g.: Let’s assume we have a 200 byte data buffer and we
want to receive data from a server.

Data size to receive = unknown
recv(sock, data, 200, 0); Data:

Slide 61

ALWAYS check send()/recv() return values!

• E.g.: Let’s assume we have a 200 byte data buffer and we
want to receive data from a server.

Data size to receive = unknown
recv(sock, data, 200, 0); Data:

Data received = 50
Remaining buffer size = 150 Data:

Slide 62

ALWAYS check send()/recv() return values!

• E.g.: Let’s assume we have a 200 byte data buffer and we
want to receive data from a server.

Data size to receive = unknown
recv(sock, data, 200, 0); Data:

Data received = 50
Remaining buffer size = 150 Data:

// Receive remaining bytes from offset of 50

Slide 63

ALWAYS check send()/recv() return values!

• E.g.: Let’s assume we have a 200 byte data buffer and we
want to receive data from a server.

Data size to receive = unknown
recv(sock, data, 200, 0); Data:

Data received = 50
Remaining buffer size = 150 Data:

// Receive remaining bytes from offset of 50
recv(sock, data + 50, 200 – 50, 0)
Data received = ?

Slide 64

ALWAYS check send()/recv() return values!

• E.g.: Let’s assume we have a 200 byte data buffer and we
want to receive data from a server.

Data size to receive = unknown
recv(sock, data, 200, 0); Data:

Data received = 50
Remaining buffer size = 150 Data:

Repeat until server closes the socket. (return value = 0)

// Receive remaining bytes from offset of 50
recv(sock, data + 50, 200 – 50, 0)
Data received = ?

Slide 65

ALWAYS check send() and recv()’s return value!

• When send() /recv() return value is less than the data
size, you are responsible for sending/receiving the
rest.

60

Data:

Data:Data sent: 0
Data to send: 130
send(sock, data, 130, 0);

Data sent: 60
Data to send: 130
// what should your next send call look like?
send(...)

Slide 66

ALWAYS check send() return value!

• When send() return value is less than the data size,
you are responsible for sending the rest.

Data sent: 0
Data to send: 130
send(sock, data, 130, 0);60

Slide 67

Data:

Data:

Data sent: 60
Data to send: 130
// Copy the 70 bytes starting from offset 60.
send(sock, data + 60, 130 - 60, 0);

• When send() return value is less than the data size,
you are responsible for sending the rest.

?

Repeat until all bytes are sent. (data_sent == data_to_send)…

60

Slide 68

ALWAYS check send() return value!

Data:

Data:Data sent: 0
Data to send: 130
send(sock, data, 130, 0);

Data sent: 60
Data to send: 130
// Copy the 70 bytes starting from offset 60.
send(sock, data + 60, 130 - 60, 0);

send()
• Blocks when socket buffer

for sending is full

• Returns less than requested
size when buffer cannot
hold full size

recv()
• Blocks when socket buffer

for receiving is empty

• Returns less than requested
size when buffer has less
than full size

Always check the return value!

Blocking Summary

Slide 69

