
CS 43: Computer Networks

15: Transmission Control Protocol
October 31, 2019

Reading Quiz

Slide 2

Last class

• Automatic Repeat Request (ARQ) Protocols
– Stop-and-Wait Protocol: send data, wait for response

– ACKs/NACKs, Timeouts, Sequence Numbering

• Automatic Repeat Requests
– Go-Back-N protocols

– Selective Repeat

Slide 8

What is our link utilization with a stop-and-wait
protocol?

A. < 0.1 %
B. ≈ 0.1 %
C. ≈ 1 %
D. 1-10 %
E. > 10 %

Slide 9

System parameters:
Link rate: 8 Mbps (one megabyte per second)
RTT: 100 milliseconds
Segment size: 1024 bytes = 1kB

Big Problem: Performance is determined
by RTT, not channel capacity!

Go-Back-N

Ack-1
Time

Sender Receiver
Data-0

…

Data-1Data-2
Ack-0

Ack-1

Ack-1

Data-3Data-4

Data-2Data-3Data-4

Ti
m

eo
ut

• Retransmit from point of loss
– Segments between loss

event and retransmission are
ignored

– “Go-back-N” if a timeout
event occurs

• Fast retransmit
– Don’t wait for timeout if we

get N duplicate ACKs

Slide 10

Selective Repeat

Ack-1
Time

Sender Receiver
Data-0

…

Data-1Data-2
Ack-0

Ack-3

Ack-4

Data-3Data-4

Data-5Data-6Data-2

Ti
m

eo
ut

• Receiver ACKs each segment
individually (not cumulative)

• Sender only resends those not
ACKed

• Requires extra buffering and
state on the receiver

Slide 11

ARQ Alternatives

• Can’t afford the RTT’s or timeouts?
• When?
– Broadcasting, with lots of receivers
– Very lossy or long-delay channels (e.g., space)

• Use redundancy – send more data
– Simple form: send the same message N times
– More efficient: use “erasure coding”
– For example, encode your data in 10 pieces such that the

receiver can piece it together with any subset of size 8.

Slide 12

Transmission Control Protocol

• Break message into packets (TCP segments)
• Should be delivered reliably & in-order

GET
http://www.google.com
HTTP/1.1
Host: www.google.com
…

GET htt1p://www2google.c3

Slide 13

http://www.yahoo.com/

TCP: Stream abstraction

Slide 14

TCP Overview

• Point-to-point, full duplex
– One pair of hosts
– Messages in both

directions
• Reliable, in-order byte

stream
– No discrete message

• Connection-oriented
– Handshaking (exchange

of control messages)
before data transmitted

• Pipelined
– Many segments in flight

• Flow control
– Don’t send too fast for

the receiver
• Congestion control
– Don’t send too fast for

the network

Slide 15

Options

Transmission Control Protocol
Reliable, in-order, bi-directional byte streams
– Port numbers for demultiplexing
– Flow control
– Congestion control, approximate fairness

Sequence Number
Acknowledgement Number

Urgent PointerChecksum

Destination PortSource Port
0 16 314

Receive WindowFlagsHLen

Slide 16

Transmission Control Protocol

• Important TCP flags (1 bit each)
– ACK – acknowledge received data
– SYN – synchronization, used for connection setup
– FIN – finish, used to tear down connection

0 16 314

Receive WindowNot Used|U|A|P|R|S|FHLen
FLAGS

Slide 17

Practical Reliability Questions

• What does connection establishment look like?
• How do we choose sequence numbers?
• How do the sender and receiver keep track of

outstanding pipelined segments?
• How should we choose timeout values?
• How many segments should be pipelined?

Slide 18

Practical Reliability Questions

• What does connection establishment look like?
• How should we choose timeout values?
• How do the sender and receiver keep track of

outstanding pipelined segments?
• How do we choose sequence numbers?
• How many segments should be pipelined?

Slide 19

A connection…

1. Requires stored state at two hosts.
2. Requires stored state within the network.
3. Establishes a path between two hosts.

A. 1
B. 1 & 3
C. 1, 2 & 3
D. 2
E. 2 & 3

Slide 20

A connection…

1. Requires stored state at two hosts.
2. Requires stored state within the network.
3. Establishes a path between two hosts.

A. 1
B. 1 & 3
C. 1, 2 & 3
D. 2
E. 2 & 3

Slide 21

Connections

• In TCP, hosts must establish a connection prior to
communicating.

• Exchange initial protocol state.
– sequence #s to use.
– maximum segment size
– Initial window sizes, etc. (several parameters)

Slide 22

Three Way Handshake

• Each side:
– Notifies the other of starting sequence number
– ACKs the other side’s starting sequence number

Client
Active participant

Server
Passive participant

SYN <SeqC>

SYN/ACK <SeqS, SeqC+1>

ACK <SeqS+1>
+data

SYN_SENT LISTEN

SYN_RCVD

ESTABLISHED

ESTABLISHED

Slide 23

Three Way Handshake
Client

Active participant
Server

Passive participant
SYN <SeqC>

SYN/ACK <SeqS, SeqC+1>

ACK <SeqS+1>
+data

SYN_SENT LISTEN

SYN_RCVD

ESTABLISHED

ESTABLISHED

bind(),
listen()

accept()connect()

accept() returns

connect() returns
eventually, send()

Both sides agree on connection.

Slide 24

Piggybacking
Client Server

Request

Response

ACK
Request

Without
Piggybacking

…

Client Server

With
Piggybacking

…

Slide 25

ACK

Response
ACK

Request

Response + ACK

Response + ACK

Request + ACK

Initiator/Receiver

26

• Assumed distinct “sender” and “receiver” roles
• In reality, usually both sides of a connection send

some data
• request/response is a common pattern

Initiator
Active participant

Receiver
Passive participant

Connection Teardown

• Orderly release by sender and receiver when done
– Delivers all pending data and “hangs up”

• Cleans up state in sender and receiver

• Each side may terminate independently

Slide 27

TCP Connection Teardown

Initiator
Active participant

Receiver
Passive participant

FIN

ACK

ACK

ESTABLISHED
connection

ESTABLISHED
connection

CLOSE_WAIT
passive_close

CLOSED

close() returns

Both sides agree on closing the connection.

Slide 28

FIN

FIN_WAIT_1
active_close

FIN_WAIT_2

TIME_WAIT

CLOSED

LAST_ACK
close()

close()

close() returns

TCP Connection Teardown

Initiator
Active participant

Receiver
Passive participant

FIN

ACK

ACK

ESTABLISHED
connection

ESTABLISHED
connection

CLOSE_WAIT
passive_close

CLOSED

close() returns

Both sides agree on closing the connection.

Slide 29

FIN

FIN_WAIT_1
active_close

FIN_WAIT_2

TIME_WAIT

CLOSED

LAST_ACK close()

close()

close() returns

Why does one side need to wait before
transitioning to CLOSED state?

A. Random protocol
artifact there is no
reason for it to wait.

B. There is a reason for
it to wait the reason is
…

Slide 30

The TIME_WAIT State

• We wait 2*MSL (maximum segment lifetime) before
completing the close. The MSL is arbitrary (usually 60 sec)

• ACK might have been lost and so FIN will be resent
– Could interfere with a subsequent connection

• This is why we used SO_REUSEADDR socket option in lab 2
– Says to skip this waiting step and immediately abort the connection

Slide 31

Practical Reliability Questions

• What does connection establishment look like?
• How do we choose sequence numbers?
• How should we choose timeout values?
• How do the sender and receiver keep track of

outstanding pipelined segments?
• How many segments should be pipelined?

Slide 32

How should we choose the initial sequence
number?

A. Start from zero

B. Start from one

C. Start from a random number

D. Start from some other value (such as…?)

What can go wrong with
sequence numbers?
-How they’re chosen?
-In the course of using them?

Slide 33

Sequencing

• Initial sequence numbers (ISN) chosen at random

– Does not start at 0 or 1 (anymore).

– Helps to prevent against forgery attacks.

• TCP sequences bytes rather than segments
– Example: if we’re sending 1500-byte segments

• Randomly choose ISN (suppose we picked 1150)

• First segment (sized 1500) would use number 1150

• Next would use 2650

Slide 34

Sequence Prediction Attack (1996)

Target Server

Trusted Client

Attacker (From: Forged IP of Trusted Client)SYN

SYN ACK

(From: Forged IP of Trusted Client)
ACK (Guess the ISN of server)

Evil commands

Slide 35

Practical Reliability Questions

• What does connection establishment look like?
• How do we choose sequence numbers?
• How should we choose timeout values?
• How do the sender and receiver keep track of

outstanding pipelined segments?
• How many segments should be pipelined?

Slide 36

Setting Timeout Values

• Problem: time-out is linked to round trip time

37

Initial Send

ACK

Retry

Ti
m

eo
ut Initial Send

ACK
Retry

Ti
m

eo
utTimeout is

too short

What about if
timeout is too

long?

Timeouts

• How long should we wait before timing out and
retransmitting a segment?

• Too short: needless retransmissions
• Too long: slow reaction to losses

• Should be (a little bit) longer than the RTT

Slide 38

Estimating RTT

• Problem: RTT changes over time
– Routers buffer packets in queues
– Queue lengths vary
– Receiver may have varying load

• Sender takes measurements
– Use statistics to decide future timeouts for sends
– Estimate RTT and variance

• Apply “smoothing” to account for changes

Slide 39

Round Trip Time Estimation:
Exponentially Weighted Moving Average (EWMA)

EstimatedRTT = (1 – a) * EstimatedRTT + a * SampleRTT
– a is usually 1/8.

In words current estimate is a blend of:
• 7/8 of the previous estimate
• 1/8 of the new sample.

DevRTT = (1 – B) * DevRTT + B * | SampleRTT – EstimatedRTT |
• B is usually 1/4

40

Data

ACKSample

RTT Sample Ambiguity: Sender’s Perspective

41

Network

Packet 1

ACK

Packet 1Timeout and resend

Sample RTT?

crickets
Initial Send

RTT Sample Ambiguity

Ignore samples for retransmitted segments

42

Initial Send

ACK
Retry

Ti
m

eo
ut

Sample?

Initial Send

ACK

Retry

Ti
m

eo
ut

Sample?

Estimating RTT

• For each segment that did not require a retransmit (ACK
heard without a timeout)
– Consider the time between segment sent and ACK

received to be a sample of the current RTT
– Use that, along with previous history, to update the

current RTT estimate

• Exponentially Weighted Moving Average (EWMA)

Slide 43

Example RTT Estimation

• Suppose EstimateRTT = 64, Dev = 8
• Latest sample: 120

New estimate = 7/8 * 64 + 1/8 * 120 = 56 + 15= 71
New dev = 3/4 * 8 + 1/4 * | 120 - 71 | = 6 + 12 = 18

• Another sample: 400
New estimate = 7/8 * 71 + 1/8 * 400 = 62 + 50 = 112
New dev = 3/4 * 18 + 1/4 * | 400 - 112 | = 13 + 72 = 85

Slide 44

Example RTT Estimation (Smoothing)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

RT
T

(m
ill

is
ec

on
ds

)

SampleRTT Estimated RTT

Slide 45

TCP Timeout Value

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT �safety margin�

Slide 46

Practical Reliability Questions

• What does connection establishment look like?
• How do we choose sequence numbers?
• How should we choose timeout values?
• How do the sender and receiver keep track of

outstanding pipelined segments?
• How many segments should be pipelined?

Slide 47

Windowing (Sliding Window)

• At the sender:
– What’s been ACKed
– What’s still outstanding
– What to send next

• At the receiver:
– Go-back-N

• Highest sequence number received so far.

– (Selective repeat)
• Which sequence numbers received so far.
• Buffered data.

Slide 48

Go-back-N

• At the sender:

• At the receiver:
– Keep track of largest sequence number seen.
– If it receives ANYTHING, sends back ACK for largest

sequence number seen so far. (Cumulative ACK)

Slide 49

Cumulative ACKs

Ack-3000

Time

Sender Receiver
Data-0Data-1500Data-3000

Ack-1500

Data 4500Data-6000

Ti
m

eo
ut

• An ACK for sequence number
N implies that all data prior to
N has been received.

Slide 50

Ack-4500

Data-7500

Cumulative ACKs

Ack-3000

Time

Sender Receiver
Data-0Data-1500Data-3000

Ack-1500

Data 4500Data-6000

Ti
m

eo
ut

Slide 51

Ack-4500

Data-7500

Time

Sender Receiver
Data-0

Data-1500

Data-3000
?

What should we do with an out-of-order
segment at the receiver?

A. Drop it.

B. Save it and ACK it.

C. Save it, don’t ACK it.

D. Something else (explain).

Slide 52

Time

Sender Receiver
Data-0

Data-1500

Data-3000
?

Selective Repeat

Slide 53

If you were building a transport protocol,
which would you use?

A. Go-back-N

B. Selective repeat

C. Something else (explain)

Slide 54

TCP Summary

• Point-to-point, full duplex
– One pair of hosts
– Messages in both

directions
• Reliable, in-order byte

stream
– No discrete message

• Connection-oriented
– Handshaking (exchange

of control messages)
before data transmitted

• Pipelined
– Many segments in flight

• Flow control
– Don’t send too fast for

the receiver
• Congestion control
– Don’t send too fast for

the network

Slide 55

