
CS 43: Computer Networks

Transport Layer & Reliable Data Transfer
October 29, 2019

Reading Quiz

Slide 2

Slide 6

Transport Layer

Slide 7

Today

• Principles of reliability
• Automatic Repeat Requests

Transport Layer perspective

Transport: executing within the OS kernel

Network: ours to command!

Slide 8

Application is the
boss

Transport Layer Header

Application: HTTP

Transport: TCP

Network: IP data

Link: Ethernet data

data

Slide 9

Assigning ports to socket ID

Transport Layer: Runs on end systems

Slide 10

HTTP,
DNS..

TCP

IP

Ethernet
interface

HTTP,
DNS...

TCP

IP

Ethernet
interface

host host

IP

Ethernet
interface

SONET
interface

router

IP

Ethernet
interface

SONET
interface

router

Logical communication
between processes

Last Class

• Principles of reliability
– The Two Generals Problem

Slide 11

Today

• Automatic Repeat Requests
– Stop and Wait
– Go-Back-N
– Selective Repeat

Slide 12

The Two Generals Problem

• How to be sure messenger made it?
– Send acknowledgment: “I delivered message”

Slide 13

A B

In the “two generals problem”, can the
two armies reliably coordinate their
attack? (using what we just discussed)

• A.
• B. No: Can’t create perfect channel out of faulty one
– Can only increase probability of success

Slide 14

The Two Generals Problem

• Result
– Can’t create perfect channel out of faulty one
– Can only increase probability of success

Slide 15

A B

Engineering

• Concerns
– Message corruption
– Message duplication
– Message loss
– Message reordering
– Performance

• Our toolbox
– Checksums
– Timeouts
– Acks & Nacks
– Sequence numbering
– Pipelining

We use these to build Automatic Repeat Request (ARQ) protocols.

Slide 16

Automatic Repeat Request (ARQ)

• Similar to using a cell phone with bad reception.
– Receiver: Message garbled? Ask to repeat.

– Sender: Didn’t hear a response? Speak again.

Slide 17

ARQ Broad Classifications

1. Stop-and-wait

Slide 18

Stop and Wait

Time

Sender Receiver

Slide 19

We have:
• a sender
• a receiver
• time: represented by

downwards arrow

Stop and Wait

Response

Time

Sender Receiver

Data

…

Slide 20

Sender sends data and waits till
they get the response message
from the receiver.

Stop and Wait

Response

Response

Time

Sender Receiver

Data

Data

…

Slide 21

Buffer data, and don’t send till response received

Sender sends data and waits till
they get the response message
from the receiver.

Corruption?

ACK/NACK

Time

Sender Receiver

Data

…

Slide 22

• Error detection mechanism:
checksum
– Data good – receiver sends

back ACK
– Data corrupt – receiver sends

back NACK

Could we do this with just ACKs or just
NACKs?

ACK/NACK

Time

Sender Receiver

Data

…

Slide 23

Error detection mechanism:
checksum
• Data good – receiver sends back

ACK
• Data corrupt – receiver sends

back NACK

A. No, we need them both.
B. Yes, we could do without one

of them, but we’d need some
other mechanism.

C. Yes, we could get by without
one of them.

Could we do this with just ACKs or just
NACKs?

ACK/NACK

Time

Sender Receiver

Data

…

Slide 24

• With only ACK, we could get
by with a timeout.

• With only NACK, we couldn’t
advance (no good).

A. No, we need them both.
B. Yes, we could do without one

of them, but we’d need some
other mechanism.

C. Yes, we could get by without
one of them.

Timeouts and Losses

Slide 25

ACK

Time

Sender Receiver

Data

Ti
m

eo
ut

• Sender starts a clock. If no
response, retry.

Timeouts and Losses

Slide 26

ACK

Time

Sender Receiver

Data

Ti
m

eo
ut ACK

Time

Sender Receiver

Data

Ti
m

eo
ut

• Sender starts a clock. If no
response, retry.

Corr-
uption?
Send no
response

Timeouts and Losses

Slide 27

ACK

Time

Sender Receiver

Data

Ti
m

eo
ut

Time

Sender Receiver

Data

Ti
m

eo
ut

ACK

Data

Ti
m

eo
ut

• Sender starts a clock. If no
response, retry.

• Probably not a great idea for
handling corruption, but it
works.

Corr-
uption?
Send no
response

Timeouts and Losses

Slide 28

ACK

Time

Sender Receiver

Data

Ti
m

eo
ut

• Timeouts help us handle
message losses too!

Timeouts and Losses

Slide 29

ACK

Time

Sender Receiver

Data

Ti
m

eo
ut

ACK

Data

Ti
m

eo
ut

Time

Sender Receiver

Data

Ti
m

eo
ut

• Timeouts help us handle
message losses too!

Adding timeouts might create new problems
for us to worry about. How many?
Examples?

Slide 30

ACK

Time

Sender Receiver

Data
Ti

m
eo

ut

A. No new problems (why not?)
B. One new problem (which is..)
C. Two new problems (which are..)
D. More than two new problems (which are..)

Adding timeouts might create new problems
for us to worry about. How many?
Examples?

Slide 31

ACK

Time

Sender Receiver

Data
Ti

m
eo

ut

A. No new problems (why not?)
B. One new problem (which is..)
C. Two new problems (which are..)
D. More than two new problems (which are..)

Ti
m

eo
ut

ACK

Time

Sender Receiver

Data

Ti
m

eo
ut

ACK

Data

Adding timeouts might create new problems
for us to worry about. How many?
Examples?

Slide 32

ACK

Time

Sender Receiver

Data
Ti

m
eo

ut

A. No new problems (why not?)
B. One new problem (which is..)
C. Two new problems (which are..)
D. More than two new problems (which are..)

Ti
m

eo
ut

ACK

Time

Sender Receiver

Data

Ti
m

eo
ut

ACK

Data

Adding timeouts might create new problems
for us to worry about. How many? Examples?

Slide 33

Two new problems:
1. If the data gets through but the ACK gets lost:
– the sender’s timeout will expire, since the ACK never made it

across, and the sender resends a copy.
– The receiver cannot distinguish between a repeat packet or a

new packet.
2. If we decide to use a timeout – choosing how long we

decide to set this timeout value is difficult!
– really long? very slow retransmits.
– really short? a lot of unnecessary duplicates sent that if we

had waited longer we would have gotten an ACK for.
– Choosing this timeout value has a lot of performance

implications.

Sequence Numbering

Sender
• Add a monotonically

increasing label to each msg

Receiver
• Ignore messages with

numbers we’ve seen before

• When pipelining (a few
slides from now)
– Detect gaps in the sequence

(e.g., 1,2,4,5)

123

Sender Receiver
Slide 34

What is our link utilization with a stop-and-wait
protocol?

A. < 0.1 %
B. ≈ 0.1 %
C. ≈ 1 %
D. 1-10 %
E. > 10 %

Slide 35

System parameters:
Link rate: 8 Mbps (one megabyte per second)
RTT: 100 milliseconds
Segment size: 1024 bytes = 1kB

What is our link utilization with a stop-and-wait
protocol?

A. < 0.1 %
B. ≈ 0.1 %
C. ≈ 1 %
D. 1-10 %
E. > 10 %

Big Problem: Performance is determined by
RTT, not channel capacity! Slide 36

Link Utilization:
= Protocol Sending Rate/Link Rate

Protocol Sending Rate in seconds:
= 1 segment (1kB) in 1 RTT
= 1 segment in 100ms or 0.1 seconds
= 10 segments in 1 second
Link Rate = 1 megabyte = 1000kB
Link Utilization:
= 10 kBps /1000 kBps (1 megabyte = 1000kB)
= 1%

Pipelined Transmission

Slide 37

Keep multiple segments “in flight”
– Allows sender to make efficient use of the link
– Sequence numbers ensure receiver can distinguish

segments
– We’ll talk about “how many” next time (windowing).

Data-3

Time

Sender Receiver
Data-0Data-1Data-2

Ack-0

Ack-2

Ack-3

Ack-1

Pipelined Transmission

Slide 38

Data-3
Ack-1

Time

Sender Receiver
Data-0Data-1Data-2

Ack-0

Now what?

Keep multiple segments “in flight”
– Allows sender to make efficient use of the link
– Sequence numbers ensure receiver can distinguish

segments
– We’ll talk about “how many” next time (windowing).

Data-3

Time

Sender Receiver
Data-0Data-1Data-2

Ack-0

Ack-2

Ack-3

Ack-1

What should the sender do here?

Slide 39

Ack-1

Time

Sender Receiver
Data-0Data-1Data-2

Ack-0Data-3

Now what?

What information does the
sender need to make that
decision?

What is required by either
party to keep track?

A. Start sending all data again from 0.
B. Start sending all data again from 2.
C. Resend just 2, then continue with 4 afterwards.

What should the sender do here?

Slide 40

Ack-1

Time

Sender Receiver
Data-0Data-1Data-2

Ack-0Data-3

Now what?

What information does the
sender need to make that
decision?

What is required by either
party to keep track?

A. Start sending all data again from 0.
B. Start sending all data again from 2 (GBN)
C. Resend just 2, then continue with 4 afterwards

(Selective Repeat)

ARQ Broad Classifications

1. Stop-and-wait

2. Go-back-N

Slide 41

Go-Back-N

Slide 42

Time

Sender Receiver
Data-0

…

Data-1Data-2

• Retransmit from point of loss
– Segments between loss

event and retransmission are
ignored

– “Go-back-N” if a timeout
event occurs

Go-Back-N

Slide 43

Time

Sender Receiver
Data-0

…

Data-1Data-2 Ack-0

• Retransmit from point of loss
– Segments between loss

event and retransmission are
ignored

– “Go-back-N” if a timeout
event occurs

Go-Back-N

Slide 44

Time

Sender Receiver
Data-0

…

Data-1Data-2 Ack-0

Data-3

Go-Back-N

Slide 45

Ack-1
Time

Sender Receiver
Data-0

…

Data-1Data-2 Ack-0

Data-3Data-4

Go-Back-N

Slide 46

Ack-1
Time

Sender Receiver
Data-0

…

Data-1Data-2 Ack-0

Ack-1

Data-3Data-4

Go-Back-N

Slide 47

Ack-1
Time

Sender Receiver
Data-0

…

Data-1Data-2 Ack-0

Ack-1
Ack-1

Data-3Data-4

Go-Back-N

Slide 48

Ack-1
Time

Sender Receiver
Data-0

…

Data-1Data-2 Ack-0

Ack-1
Ack-1

Data-3Data-4

Ti
m

eo
ut

Go-Back-N

Slide 49

Ack-1
Time

Sender Receiver
Data-0

…

Data-1Data-2 Ack-0

Ack-1
Ack-1

Data-3Data-4

Data-2Data-3Data-4

Ti
m

eo
ut

Go-Back-N

Slide 50

Ack-1
Time

Sender Receiver
Data-0

…

Data-1Data-2 Ack-0

Ack-1
Ack-1

Data-3Data-4

Data-2Data-3Data-4

Ti
m

eo
ut

• Retransmit from point of loss
– Segments between loss

event and retransmission are
ignored

– “Go-back-N” if a timeout
event occurs

• Fast retransmit
– Don’t wait for timeout if we

get N duplicate ACKs

Go-Back-N

Slide 51

Ack-1
Time

Sender Receiver
Data-0

…

Data-1Data-2 Ack-0

Ack-1
Ack-1

Data-3Data-4

Data-2Data-3Data-4

Ti
m

eo
ut

• Retransmit from point of loss
– Segments between loss

event and retransmission are
ignored

– “Go-back-N” if a timeout
event occurs

• Fast retransmit
– Don’t wait for timeout if we

get N duplicate ACKs

ARQ Broad Classifications

1. Stop-and-wait

2. Go-back-N

3. Selective repeat
• a.k.a selective reject, selective acknowledgement

Slide 52

Selective Repeat

Slide 53

Time

Sender Receiver
Data-0

…

Data-1Data-2

• Receiver ACKs each segment
individually (not cumulative)

• Sender only resends those not
ACKed

• Requires extra buffering and
state on the receiver

Selective Repeat

Slide 54

Ack-1
Time

Sender Receiver
Data-0

…

Data-1Data-2 Ack-0

Selective Repeat

Slide 55

Ack-1
Time

Sender Receiver
Data-0

…

Data-1Data-2 Ack-0

Data-3Data-4

Selective Repeat

Slide 56

Ack-1
Time

Sender Receiver
Data-0

…

Data-1Data-2 Ack-0

Ack-3
Ack-4

Data-3Data-4

Selective Repeat

Slide 57

Ack-1
Time

Sender Receiver
Data-0

…

Data-1Data-2 Ack-0

Ack-3
Ack-4

Data-3Data-4

Data-5Data-6

Selective Repeat

Slide 58

Ack-1
Time

Sender Receiver

Data-0

…

Data-1
Data-2

Ack-0

Ack-3

Ack-4

Data-3Data-4

Data-5Data-6Data-2

Ti
m

eo
ut

• Receiver ACKs each segment
individually (not cumulative)

• Sender only resends those not
ACKed

• Requires extra buffering and
state on the receiver

ARQ Alternatives

• Can’t afford the RTT’s or timeouts?
• When?
– Broadcasting, with lots of receivers
– Very lossy or long-delay channels (e.g., space)

• Use redundancy – send more data
– Simple form: send the same message N times
– More efficient: use “erasure coding”
– For example, encode your data in 10 pieces such that the

receiver can piece it together with any subset of size 8.

Slide 59

Summary

ARQ Protocol format:
• Message garbled? Ask to repeat. Didn’t hear a

response? Speak again.
Reliability at the transport layer:
• Can’t create perfect channel out of faulty one, we can

only increase probability of success
Stop-and-wait:
• ACKs/NACKs: help with message corruption
• ACKs/Timeouts: help with message corruption + loss
• Stop and wait link utilization depends completely on RTT

and not channel capacity

Slide 60

Summary (2)

Pipelining: Keep multiple segments “in flight”

– Allows sender to make efficient use of the link

– Sequence numbers ensure receiver can distinguish

segments

• Go-Back-N:

– Retransmit from point of loss

– ACK cumulatively

– Fast retransmit

• Selective repeat:

– ACKs each segment individually

– Retransmit lost packet

– extra buffering, state at Receiver

Slide 61

