
CS 43: Computer Networks

Transport Layer & Reliable Data Transfer
October 24, 2019

Announcements

• Final Exam on Dec 17th 2 – 5 PM

• Lab 4 Deadline extended to Thursday

• Lab 5 Partnerships: extended to 5 labs with the same
lab partner.

• Discussion questions with answers after class.

Slide 3

Reading Quiz

Slide 4

Slide 8

Transport Layer

Slide 9

Today

• Unreliable, unordered service: UDP
• Principles of reliability
• Class of protocols: Automatic Repeat Requests

Moving down a layer!

Application Layer

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1’s and 0’s/bits across a medium
(copper, the air, fiber)

Slide 10

Transport Layer perspective

Transport: executing within the OS kernel

Network: ours to command!

Slide 11

Application is the
boss

Transport Layer Header

Application: HTTP

Transport: TCP

Network: IP data

Link: Ethernet data

data

Slide 12

Assigning ports to socket ID

Transport Layer: Runs on end systems

Slide 13

HTTP,
DNS..

TCP

IP

Ethernet
interface

HTTP,
DNS...

TCP

IP

Ethernet
interface

host host

IP

Ethernet
interface

SONET
interface

router

IP

Ethernet
interface

SONET
interface

router

Logical communication
between processes

Last Class: Multiplexing/De-Multiplexing

App

Transport

App

TransportTransport

Network Layer

App App

• The network is a shared resource.
– It does NOT care about your applications, sockets, etc.

• Senders mark segments, in header, with identifier (port)

(Simultaneous transmission of two or more signals/messages over a single channel.)

Slide 14

How many of these services might we provide
at the transport layer? Which?

• Reliable transfers
• Error detection
• Error correction
• Bandwidth guarantees
• Latency guarantees

• Encryption
• Message ordering
• Link sharing fairness

A. 4 or fewer
B. 5
C. 6

D. 7
E. All 8

Lecture 15 - Slide 15

How many of these services might we provide
at the transport layer? Which?

• Reliable transfers (T)
• Error detection (U, T)
• Error correction (T)
• Bandwidth guarantees
• Latency guarantees

• Encryption
• Message ordering (T)
• Link sharing fairness (T)

A. 4 or fewer
B. 5
C. 6

D. 7
E. All 8

Critical question: Can it be done at the end host?

Lecture 15 - Slide 16

TCP sounds great! UDP…meh. Why do we
need it?

A. It has good performance characteristics.

B. Sometimes all we need is error detection.

C. We still need to distinguish between sockets.

D. It basically just fills a gap in our layering model.

Lecture 15 - Slide 17

TCP sounds great! UDP…meh. Why do we
need it?

A. It has good performance characteristics.

B. Sometimes all we need is error detection.

C. We still need to distinguish between sockets.

D. It basically just fills a gap in our layering model.

Lecture 15 - Slide 18

UDP – User Datagram Protocol

• Unreliable, unordered service
• Adds:
– end points identified by ports
– multiplexing
– checksum (error detection)

Slide 19

UDP: User Datagram Protocol [RFC 768]

• �No frills,� �Bare bones� Internet transport
protocol
– RFC 768 (1980)
– Length of the document?

Slide 20

UDP: User Datagram Protocol [RFC 768]

• �Best effort� service,
• UDP segments may be:
– Lost
– Delivered out of order (same as underlying network layer)

Slide 21

¯_(�)_/¯

How many of the following steps does UDP
implement? (which ones?)

1. exchange an initiate handshake (connection setup)
2. break up packet into segments at the source and number

them
3. place segments in order at the destination
4. error-checking with checksum

Slide 22

How many of the following steps does UDP
implement? (which ones?)

1. exchange an initiate handshake (connection setup)
2. break up packet into segments at the source and number

them
3. place segments in order at the destination
4. error-checking with checksum

Slide 23

UDP Segment

SrcPort DstPort

ChecksumLength

Data

0 16 31

Slide 24

32 bits

source port # dest port #

application
data
(variable length)

Urg data pointer

FSRPAUhead
len

not
used

checksum

receive window

sequence number

acknowledgement number

options (variable length)

Lecture 15 - Slide 25

32 bits

TCP Segment!

UDP Segment

SrcPort DstPort

ChecksumLength

Data

0 16 31

Slide 26

32 bits

UDP Checksum

• Goal: Detect transmission errors (e.g. flipped bits)
– Router memory errors

– Driver bugs

– Electromagnetic interference

Lecture 15 - Slide 27

• Treat the entire segment as 16-bit integer values
• Add them all together (sum)
• Put the 1’s complement in the checksum header field

Slide 28

UDP Checksum at the Sender

• In bitwise compliment, all of the bits in a binary
number are flipped.

• So 1111000011110000 -> 0000111100001111

Slide 29

One’s Compliment

example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

sum
checksum

wraparound

Note: when adding numbers, a carryout from the most
significant bit needs to be added to the result

1

Slide 30

Checksum example

• Add all the received data together as 16-bit integers

• Add that to the checksum

• If result is not 1111 1111 1111 1111, there are errors!

Slide 31

Receiver

If our checksum addition yields all ones,
are we guaranteed to be error-free?

A. Yes

B. No

Slide 32

If our checksum addition yields all ones,
are we guaranteed to be error-free?

A. Yes

B. No: we could have two bit flips that cancel each
other out.

Slide 33

UDP Applications

• Latency sensitive
– Quick request/response (DNS)
– Network management (SNMP, TFTP)
– Voice/video chat

• Error correction unnecessary (periodic msgs)

• Communicating with lots of others

Lecture 15 - Slide 34

A. Sorry, you’re out of luck.

B. Write your own transport protocol.

C. Add in the features you want at the application
layer.

What if you want something more reliable than
UDP, but faster/not as full featured as TCP?

Lecture 15 - Slide 35

Write your own transport protocol:
i. more control: OS controls scheduling, prioritization
ii. reusability: all application layer protocols can use it

– great if you own a datacenter (e.g. Google) and
you can run your own environment.

What if you want something more reliable than
UDP, but faster/not as full featured as TCP?

Lecture 15 - Slide 36

Add in the features you want at the application layer.

i. easier than modifying the OS.
ii. write into your application custom features on top of

UDP that are specific to your application
iii. don’t overburden the transport layer

Irrespective of which layer we choose, adopting something
new is always hard on the Internet!

What if you want something more reliable than
UDP, but faster/not as full featured as TCP?

Lecture 15 - Slide 37

TCP: send() Blocking

• Recall: With TCP, send() blocks if buffer full.

Lecture 15 - Slide 38

With TCP, send() blocks if buffer full.

• Does UDP need to block? Should it?

A. Yes, if buffers are full, it should.
B. It doesn’t need to, but it might be useful.
C. No, it does not need to and shouldn’t do so.

Slide 39

UDP sendto() blocking

With TCP, send() blocks if buffer full.

• Does UDP need to block? Should it?

A. Yes, if buffers are full, it should.
B. It doesn’t need to, but it might be useful.
C. No, it does not need to and shouldn’t do so.

Slide 40

UDP sendto() blocking

Transport Layer:
• Provides a logical communication between processes/ applications
• packets are called segments at the transport layer
• Transport layer protocol: responsible for adding port numbers (mux/demux segments)

UDP:
• No “frills” protocol
• No state maintained about the packet
• Checksum (1’s complement) over IP + UDP + payload.

– can only correct for 1 bit errors.
• adds port numbers over unreliable network (best effort)
• applications:

– latency sensitive applications: real-time audio, video
– communicating with a lot of end-hosts (like DNS)

• UDP Sockets:
– do not need to be implemented as blocking system calls for correctness since the only guarantee

UDP makes is best-effort delivery.
– however send/recv can be implemented as blocking system calls depending on the application

Slide 41

Summary

Today

• Principles of reliability
– The Two Generals Problem

• Automatic Repeat Requests
– Stop and Wait
– Timeouts and Losses
– Pipelined Transmission

Slide 42

The Two Generals Problem

• Two army divisions (blue) surround enemy (red)
– Each division led by a general
– Both must agree when to simultaneously attack
– If either side attacks alone, defeat

• Generals can only communicate via messengers
– Messengers may get captured (unreliable channel)

Slide 43

A B

The Two Generals Problem

• How to coordinate?
– Send messenger: “Attack at dawn”
– What if messenger doesn’t make it?

Slide 44

A B

The Two Generals Problem

• How to be sure messenger made it?
– Send acknowledgment: “I delivered message”

Slide 45

A B

In the “two generals problem”, can the
two armies reliably coordinate their
attack? (using what we just discussed)

• A. Yes (explain how)

• B. No (explain why not)

Slide 46

The Two Generals Problem

• Result
– Can’t create perfect channel out of faulty one
– Can only increase probability of success

Slide 47

A B

Give up? No way!

As humans, we like to face
difficult problems.
• We can’t control oceans, but

we can build canals
• We can’t fly, but we’ve

landed on the moon
• We just need engineering!

Slide 48
What can possibly go wrong....

Engineering

• Concerns
– Message corruption
– Message duplication
– Message loss
– Message reordering
– Performance

• Our toolbox
– Checksums
– Timeouts
– Acks & Nacks
– Sequence numbering
– Pipelining

Slide 49

Engineering

• Concerns
– Message corruption

– Message duplication

– Message loss

– Message reordering

– Performance

• Our toolbox
– Checksums

– Timeouts

– Acks & Nacks

– Sequence numbering

– Pipelining

We use these to build Automatic Repeat Request (ARQ) protocols.

(We’ll briefly talk about alternatives at the end.)
Slide 50

Automatic Repeat Request (ARQ)

• Intuitively, ARQ protocols act like you would when
using a cell phone with bad reception.

– Receiver: Message garbled? Ask to repeat.

– Sender: Didn’t hear a response? Speak again.

• Refer to book for building state machines.

– We’ll look at TCP’s states soon

Slide 51

ARQ Broad Classifications

1. Stop-and-wait

Slide 52

Stop and Wait

Time

Sender Receiver

Slide 53

We have:
• a sender
• a receiver
• time: represented by

downwards arrow

Stop and Wait

Response

Time

Sender Receiver

Data

…

Slide 54

Sender sends data and waits till
they get the response message
from the receiver.

Buffer data, and don’t send till response received

Stop and Wait

Response

Response

Time

Sender Receiver

Data

Data

…

Slide 55

• Up next: concrete
problems and mechanisms
to solve them.

• These mechanisms will
build upon each other

• Questions?

Corruption?

ACK/NACK

Time

Sender Receiver

Data

…

Slide 56

• Error detection mechanism:
checksum
– Data good – receiver sends

back ACK
– Data corrupt – receiver sends

back NACK

Could we do this with just ACKs or just
NACKs?

ACK/NACK

Time

Sender Receiver

Data

…

Slide 57

Error detection mechanism:
checksum
• Data good – receiver sends back

ACK
• Data corrupt – receiver sends

back NACK

A. No, we need them both.
B. Yes, we could do without one

of them, but we’d need some
other mechanism.

C. Yes, we could get by without
one of them.

Could we do this with just ACKs or just
NACKs?

ACK/NACK

Time

Sender Receiver

Data

…

Slide 58

• With only ACK, we could get
by with a timeout.

• With only NACK, we couldn’t
advance (no good).

A. No, we need them both.
B. Yes, we could do without one

of them, but we’d need some
other mechanism.

C. Yes, we could get by without
one of them.

Timeouts and Losses

Slide 59

ACK

Time

Sender Receiver

Data

Ti
m

eo
ut

• Sender starts a clock. If no
response, retry.

Timeouts and Losses

Slide 60

ACK

Time

Sender Receiver

Data

Ti
m

eo
ut ACK

Time

Sender Receiver

Data

Ti
m

eo
ut

• Sender starts a clock. If no
response, retry.

Corr-
uption?
Send no
response

Timeouts and Losses

Slide 61

ACK

Time

Sender Receiver

Data

Ti
m

eo
ut

Time

Sender Receiver

Data

Ti
m

eo
ut

ACK

Data

Ti
m

eo
ut

• Sender starts a clock. If no
response, retry.

• Probably not a great idea for
handling corruption, but it
works.

Corr-
uption?
Send no
response

Timeouts and Losses

Slide 62

ACK

Time

Sender Receiver

Data

Ti
m

eo
ut

• Timeouts help us handle
message losses too!

Timeouts and Losses

Slide 63

ACK

Time

Sender Receiver

Data

Ti
m

eo
ut

ACK

Data

Ti
m

eo
ut

Time

Sender Receiver

Data

Ti
m

eo
ut

• Timeouts help us handle
message losses too!

Adding timeouts might create new problems
for us to worry about. How many?
Examples?

Slide 64

ACK

Time

Sender Receiver

Data
Ti

m
eo

ut

A. No new problems (why not?)
B. One new problem (which is..)
C. Two new problems (which are..)
D. More than two new problems (which are..)

Adding timeouts might create new problems
for us to worry about. How many?
Examples?

Slide 65

ACK

Time

Sender Receiver

Data
Ti

m
eo

ut

A. No new problems (why not?)
B. One new problem (which is..)
C. Two new problems (which are..)
D. More than two new problems (which are..)

Ti
m

eo
ut

ACK

Time

Sender Receiver

Data

Ti
m

eo
ut

ACK

Data

Sequence Numbering

Sender
• Add a monotonically

increasing label to each msg

Receiver
• Ignore messages with

numbers we’ve seen before

• When pipelining (a few
slides from now)
– Detect gaps in the sequence

(e.g., 1,2,4,5)

123

Sender Receiver
Slide 66

What is our link utilization with a stop-and-wait
protocol?

A. < 0.1 %
B. ≈ 0.1 %
C. ≈ 1 %
D. 1-10 %
E. > 10 %

Slide 67

System parameters:
Link rate: 8 Mbps (one megabyte per second)
RTT: 100 milliseconds
Segment size: 1024 bytes

What is our link utilization with a stop-and-wait
protocol?

A. < 0.1 %

B. ≈ 0.1 %

C. ≈ 1 %

D. 1-10 %

E. > 10 % Big Problem: Performance
is determined by RTT, not
channel capacity!

Slide 68

System parameters:
Link rate: 8 Mbps (one megabyte per second)
RTT: 100 milliseconds
Segment size: 1024 bytes

Pipelined Transmission

Slide 69

Keep multiple segments “in flight”
– Allows sender to make efficient use of the link
– Sequence numbers ensure receiver can distinguish

segments
– We’ll talk about “how many” next time (windowing).

Data-3

Time

Sender Receiver
Data-0Data-1Data-2

Ack-0

Ack-2

Ack-3

Ack-1

Pipelined Transmission

Slide 70

Data-3
Ack-1

Time

Sender Receiver
Data-0Data-1Data-2

Ack-0

Now what?

Keep multiple segments “in flight”
– Allows sender to make efficient use of the link
– Sequence numbers ensure receiver can distinguish

segments
– We’ll talk about “how many” next time (windowing).

Data-3

Time

Sender Receiver
Data-0Data-1Data-2

Ack-0

Ack-2

Ack-3

Ack-1

What should the sender do here?

Slide 71

Ack-1

Time

Sender Receiver
Data-0Data-1Data-2

Ack-0Data-3

Now what?

What information does the
sender need to make that
decision?

What is required by either
party to keep track?

A. Start sending all data again from 0.
B. Start sending all data again from 2.
C. Resend just 2, then continue with 4 afterwards.

