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Reading Quiz
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Overlay Network

• A network made up of “virtual” or logical links

• Virtual links map to one or more physical links
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High-Performance Content Distribution

• Problem: 
You have a service that supplies lots of data.  You 
want good performance for all users!

(often “lots of data” means media files)
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Key Components of a CDN

• Distributed servers
– Usually located inside of other ISPs
– Often located in IXPs (coming up next)

• High-speed network connecting them
• Clients (eyeballs)
– Can be located anywhere in the world
– They want fast web performance

• Glue
– Something that binds clients to “nearby” replica 

servers
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CDN Challenges
– How do we direct the user to a nearby replica instead 

of the centralized source?
– How do we determine which replica is the best to 

send them to?
– Ensure that replicas are always available?

Server

Clients

Backbone ISP

ISP-1 ISP-2



Challenge: Finding the CDN

• Three main options:
– Application redirect (e.g., HTTP)
– “Anycast” routing
– DNS resolution  (most popular in practice)

• Example: CNN + Akamai
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CNN + Akamai

www.cnn.com

Request: cnn.com/article
Response: HTML with link
to cache.cnn.com media

Content servers: serve media.
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CNN + Akamai

www.cnn.com

Request: cnn.com/article
Response: HTML with link
to cache.cnn.com media

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

swarthmore.edu
DNS servers

cnn.com
DNS servers

pbs.org
DNS servers

Content servers: serve media.
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CNN + Akamai

www.cnn.com

Request: cnn.com/article
Response: HTML with link
to cache.cnn.com media

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

swarthmore.edu
DNS servers

cnn.com
DNS servers

pbs.org
DNS servers

akamai.net DNS servers…

Content servers: serve media.

Akamai’s DNS response directs 
user to selected server.

Retrieve media file.
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CNN + Akamai

www.cnn.com

Request: cnn.com/article
Response: HTML with link
to cache.cnn.com media

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

swarthmore.edu
DNS servers

cnn.com
DNS servers

pbs.org
DNS servers

akamai.net DNS servers…

Content servers: serve media.

Akamai’s DNS response directs 
user to selected server.

Retrieve media file.

How to 
choose?
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Which metric is most important when 
choosing a server? (CDN or otherwise)

A. RTT latency

B. Data transfer rate / throughput

C. Hardware ownership

D. Geographic location

E. Some other metic(s)   (such as?)

This is the CDN 
operator’s secret sauce!
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Content in today’s Internet

• Most flows are HTTP

– Web is at least 52% of traffic

– Median object size is 2.7K, average is 85K (as of 2007)

• Is the Internet designed for this common case?

– Why?
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Why speed matters

• Impact on user experience
– Users navigating away from pages
– Video startup delay

• 4x increase in 
abandonment
with 10s increase in 
delay
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Streaming Media

• Straightforward approach: simple GET

• Challenges:
– Dynamic network characteristics
– Varying user device capabilities
– User mobility
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Dynamic Adaptive Streaming over HTTP 
(DASH)

• Encode several versions of the same media file
– low / medium / high / ultra quality

• Break each file into chunks

• Create a “manifest” to map file versions to chunks / 
video time offset
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Dynamic Adaptive Streaming over HTTP 
(DASH)

• Client requests manifest file, chooses version

• Requests new chunks as it plays existing ones

• Can switch between versions at any time!
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Summary

• Peer-to-peer architectures for:
– High performance: BitTorrent
– Decentralized lookup: DHTs

• CDNs: locating “good” replica for media server

• DASH: streaming despite dynamic conditions

Slide 22



Application Layer 

Does whatever an application does!
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Chrome Thunderbird SkypeDNS
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Transport Layer



Moving down a layer!

Application Layer

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1’s and 0’s/bits across a medium 
(copper, the air, fiber)
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Recall: Addressing and Encapsulation

Application: HTTP

Transport: TCP

Network: IP data

Link: Ethernet data

data

Slide 26

Human-readable strings: www.example.com

Assigning ports to socket ID

IP addresses (IPv4, IPv6)

(Network dependent) Ethernet: 
48-bit MAC address



Message Encapsulation

• Higher layer within lower layer

• Each layer has different concerns, provides abstract 
services to those above

Application

Transport: TCP

Network: IP data

Link: Ethernet data

data
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Transport Layer perspective

Transport: executing within the OS kernel

Network: ours to command!
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Application is the 
boss



Transport Layer perspective

Transport: executing within the OS kernel

What commands can we send to the network layer?
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Looked at 
Application Layer



What services does the network layer provide 
to the transport layer?
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Transport: executing within the OS kernel

What commands can we send to the 
network layer?

Looked at Application Layer

A. Find paths through the 
network

B. Reliable transfer, with 
guaranteed delivery rates

C. Best-effort delivery



send_to_host (data, host) : logical communication between end-hosts

✔ Find paths through the network

✔ Best-effort delivery! 
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Network Layer API

Source Destination

reliable data transfer

guaranteed delivery (or rate!)



Provides logical communication 
between processes.

send_data_to_application (data, 
port, socket)

application
transport
network
data link
physical

logical end-end transport
application
transport
network
data link
physical
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Transport Layer API



Transport Layer: Runs on end systems
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HTTP,
DNS..

TCP

IP

Ethernet
interface

HTTP,
DNS...

TCP

IP

Ethernet
interface

host host

IP

Ethernet
interface

SONET
interface

router

IP

Ethernet
interface

SONET
interface

router

Logical communication 
between processes



How many of these services might we provide 
at the transport layer? Which?

• Reliable transfers
• Error detection
• Error correction
• Bandwidth guarantees
• Latency guarantees

• Encryption
• Message ordering
• Link sharing fairness

A. 4 or fewer
B. 5
C. 6

D. 7
E. All 8
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How many of these services might we provide 
at the transport layer? Which?

• Reliable transfers (T)
• Error detection (U, T)
• Error correction (T)
• Bandwidth guarantees
• Latency guarantees

• Encryption
• Message ordering (T)
• Link sharing fairness (T)

A. 4 or fewer
B. 5
C. 6

D. 7
E. All 8

Critical question: Can it be done at the end host?
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TCP sounds great!  UDP…meh.  Why do we 
need it?

A. It has good performance characteristics.

B. Sometimes all we need is error detection.

C. We still need to distinguish between sockets.

D. It basically just fills a gap in our layering model.
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• Nothing comes for free

• Data given by application

• Apply header
– Keeps transport state
– Attached by sender
– Decoded by receiver

Payload Data

Payload DataTCP/
UDP
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Adding Features



• Establishing state (making a connection)
– Recall HTTP 1.0 vs. HTTP 1.1
– Extra communication round trip

• Delays due to loss / reordering.

• Playing fair might cost you!
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TCP Overhead



Socket Abstraction
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Socket Abstraction

40

socket socket
User process User process

Operating
System

Operating
SystemInternet

Applications communicate using �sockets�
Stream socket: reliable stream of bytes 
Message socket: unreliable message delivery



Socket Abstraction

41

socket socket
User process User process

Operating
System

Operating
SystemInternet

Applications communicate using �sockets�/mailboxes
Different mail-delivery service choices: 
TCP, UDP, ICMP, SCTP



App

TCP

IP

Ethernet
interface

App

TCP

IP

Ethernet
interface

IP IP

Ethernet
interface

Ethernet
interface

SONET
interface

SONET
interface

host host

router router

Addressing Applications using Ports
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Multiplexing
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App

Transport

App

TransportTransport

Network Layer

App App

(Simultaneous transmission of two or more signals/messages over a single channel.) 



Multiplexing

App

Transport

App

TransportTransport

Network Layer

App App

• The network is a shared resource.
– It does NOT care about your applications, sockets, etc.

• Senders mark segments, in header, with identifier (port)

(Simultaneous transmission of two or more signals/messages over a single channel.) 
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Multiplexing

App

Transport

App

TransportTransport

Network Layer

App App

• The network is a shared resource.
– It does NOT care about your applications, sockets, etc.

• Senders mark segments, in header, with identifier (port)

(Simultaneous transmission of two or more signals/messages over a single channel.) 
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De-multiplexing

App

Transport

App

TransportTransport

Network Layer

App App

• The network is a shared resource.
– It does NOT care about your applications, sockets, etc.

• Receivers check header, deliver data to correct socket.

(Simultaneous transmission of two or more signals/messages over a single channel.) 
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De-multiplexing

App

Transport

App

TransportTransport

Network Layer

App App

• The network is a shared resource.
– It does NOT care about your applications, sockets, etc.

• Receivers check header, deliver data to correct socket.

(Simultaneous transmission of two or more signals/messages over a single channel.) 
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De-multiplexing

App

Transport

App

TransportTransport

Network Layer

App App

• The network is a shared resource.

– It does NOT care about your applications, sockets, etc.

• Receivers check header, deliver data to correct socket.

(Simultaneous transmission of two or more signals/messages over a single channel.) 

?
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De-multiplexing

App

Transport

App

TransportTransport

Network Layer

App App

• The network is a shared resource.

– It does NOT care about your applications, sockets, etc.

• Receivers check header, deliver data to correct socket.

(Simultaneous transmission of two or more signals/messages over a single channel.) 

?
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Two Main Transport Layers

• User Datagram Protocol (UDP)
– Unreliable, unordered delivery

• Transmission Control Protocol (TCP)
– Reliable in-order delivery
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UDP – User Datagram Protocol

• Unreliable, unordered service
• Adds:
– multiplexing, 
– checksum (error detection)



UDP: User Datagram Protocol [RFC 768]

• �No frills,� �Bare bones� Internet transport protocol
– RFC 768 (1980)
– Length of the document?
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UDP: User Datagram Protocol [RFC 768]

• �Best effort� service, 
• UDP segments may be:

– Lost
– Delivered out of order (same as underlying network layer)
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¯\_(�)_/¯



How many of the following steps does UDP 
implement? (which ones?)

1. exchange an initiate handshake (connection setup) 
2. break up packet into segments at the source and number 

them
3. place segments in order at the destination
4. error-checking with checksum 
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A. 1 
B. 2
C. 3
D. 4



UDP Segment

SrcPort DstPort

ChecksumLength

Data

0 16 31



source port # dest port #

application
data 
(variable length)

Urg data pointer
FSRPAUhead

len
not
used

checksum
receive window

sequence number

acknowledgement number

options (variable length)
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32 bits

TCP Segment!



UDP Checksum

• Goal: Detect transmission errors (e.g. flipped bits)
– Router memory errors
– Driver bugs
– Electromagnetic interference
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UDP Checksum

RFC: “Checksum is the 16-bit one's complement of the 
one's complement sum of a pseudo header of information 
from the IP header, the UDP header, and the data, padded 
with zero octets at the end (if  necessary) to make a 
multiple of two octets.”
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• Treat the entire segment as 16-bit integer values
• Add them all together (sum)
• Put the 1’s complement in the checksum header field
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UDP Checksum at the Sender



• In bitwise compliment, all of the bits in a binary 
number are flipped.

• So 1111000011110000 -> 0000111100001111
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One’s Compliment



example: add two 16-bit integers

1 1  1  1  0  0  1  1  0  0  1  1  0  0  1  1  0
1 1  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1

1 1  0  1  1  1  0  1  1  1  0  1  1  1  0  1  1

1 1  0  1  1  1  0  1  1  1  0  1  1  1  1  0  0
1 0  1  0  0  0  1  0  0  0  1  0  0  0  0  1  1

sum
checksum

wraparound

Note: when adding numbers, a carryout from the most 
significant bit needs to be added to the result

1
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Checksum example



• Add all the received data together as 16-bit integers

• Add that to the checksum

• If result is not 1111 1111 1111 1111, there are errors!
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Receiver



If our checksum addition yields all ones, 
are we guaranteed to be error-free?

A. Yes

B. No
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• Latency sensitive
– Quick request/response (DNS)
– Network management (SNMP, TFTP)
– Voice/video chat

• Error correction unnecessary (periodic msgs)

• Communicating with lots of others
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UDP Applications



A. Sorry, you’re out of luck.

B. Write your own transport protocol.

C. Add in the features you want at the application 
layer.

What if you want something more reliable than 
UDP, but faster/not as full featured as TCP?
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With TCP, send() blocks if buffer full.
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Recall: TCP send() blocking



With TCP, send() blocks if buffer full.

• Does UDP need to block?  Should it?

A. Yes, if buffers are full, it should.
B. It doesn’t need to, but it might be useful.
C. No, it does not need to and shouldn’t do so.
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UDP sendto() blocking



• UDP: No frills transport protocol.

• Simple, 8-byte header with ports, len, cksum

• Checksum protects against most bit flips
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Summary


