
CS 43: Computer Networks

11: CDNs and Transport Layer
October 8, 2019

Reading Quiz

Slide 3

Overlay Network

• A network made up of “virtual” or logical links

• Virtual links map to one or more physical links

Slide 7

High-Performance Content Distribution

• Problem:
You have a service that supplies lots of data. You
want good performance for all users!

(often “lots of data” means media files)

Lecture 13 - Slide 8

Key Components of a CDN

• Distributed servers
– Usually located inside of other ISPs
– Often located in IXPs (coming up next)

• High-speed network connecting them
• Clients (eyeballs)
– Can be located anywhere in the world
– They want fast web performance

• Glue
– Something that binds clients to “nearby” replica

servers

9

CDN Challenges
– How do we direct the user to a nearby replica instead

of the centralized source?
– How do we determine which replica is the best to

send them to?
– Ensure that replicas are always available?

Server

Clients

Backbone ISP

ISP-1 ISP-2

Challenge: Finding the CDN

• Three main options:
– Application redirect (e.g., HTTP)
– “Anycast” routing
– DNS resolution (most popular in practice)

• Example: CNN + Akamai

Lecture 13 - Slide 11

CNN + Akamai

www.cnn.com

Request: cnn.com/article
Response: HTML with link
to cache.cnn.com media

Content servers: serve media.

Lecture 13 - Slide 12

CNN + Akamai

www.cnn.com

Request: cnn.com/article
Response: HTML with link
to cache.cnn.com media

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

swarthmore.edu
DNS servers

cnn.com
DNS servers

pbs.org
DNS servers

Content servers: serve media.

Lecture 13 - Slide 13

CNN + Akamai

www.cnn.com

Request: cnn.com/article
Response: HTML with link
to cache.cnn.com media

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

swarthmore.edu
DNS servers

cnn.com
DNS servers

pbs.org
DNS servers

akamai.net DNS servers…

Content servers: serve media.

Akamai’s DNS response directs
user to selected server.

Retrieve media file.

Lecture 13 - Slide 14

CNN + Akamai

www.cnn.com

Request: cnn.com/article
Response: HTML with link
to cache.cnn.com media

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

swarthmore.edu
DNS servers

cnn.com
DNS servers

pbs.org
DNS servers

akamai.net DNS servers…

Content servers: serve media.

Akamai’s DNS response directs
user to selected server.

Retrieve media file.

How to
choose?

Lecture 13 - Slide 15

Which metric is most important when
choosing a server? (CDN or otherwise)

A. RTT latency

B. Data transfer rate / throughput

C. Hardware ownership

D. Geographic location

E. Some other metic(s) (such as?)

This is the CDN
operator’s secret sauce!

Slide 16

Content in today’s Internet

• Most flows are HTTP

– Web is at least 52% of traffic

– Median object size is 2.7K, average is 85K (as of 2007)

• Is the Internet designed for this common case?

– Why?

Slide 17

Why speed matters

• Impact on user experience
– Users navigating away from pages
– Video startup delay

• 4x increase in
abandonment
with 10s increase in
delay

Slide 18

Streaming Media

• Straightforward approach: simple GET

• Challenges:
– Dynamic network characteristics
– Varying user device capabilities
– User mobility

Slide 19

Dynamic Adaptive Streaming over HTTP
(DASH)

• Encode several versions of the same media file
– low / medium / high / ultra quality

• Break each file into chunks

• Create a “manifest” to map file versions to chunks /
video time offset

Slide 20

Dynamic Adaptive Streaming over HTTP
(DASH)

• Client requests manifest file, chooses version

• Requests new chunks as it plays existing ones

• Can switch between versions at any time!

Slide 21

Summary

• Peer-to-peer architectures for:
– High performance: BitTorrent
– Decentralized lookup: DHTs

• CDNs: locating “good” replica for media server

• DASH: streaming despite dynamic conditions

Slide 22

Application Layer

Does whatever an application does!

Slide 23

Chrome Thunderbird SkypeDNS

Slide 24

Transport Layer

Moving down a layer!

Application Layer

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1’s and 0’s/bits across a medium
(copper, the air, fiber)

Slide 25

Recall: Addressing and Encapsulation

Application: HTTP

Transport: TCP

Network: IP data

Link: Ethernet data

data

Slide 26

Human-readable strings: www.example.com

Assigning ports to socket ID

IP addresses (IPv4, IPv6)

(Network dependent) Ethernet:
48-bit MAC address

Message Encapsulation

• Higher layer within lower layer

• Each layer has different concerns, provides abstract
services to those above

Application

Transport: TCP

Network: IP data

Link: Ethernet data

data

Slide 27

Transport Layer perspective

Transport: executing within the OS kernel

Network: ours to command!

Slide 28

Application is the
boss

Transport Layer perspective

Transport: executing within the OS kernel

What commands can we send to the network layer?

Slide 29

Looked at
Application Layer

What services does the network layer provide
to the transport layer?

Slide 30

Transport: executing within the OS kernel

What commands can we send to the
network layer?

Looked at Application Layer

A. Find paths through the
network

B. Reliable transfer, with
guaranteed delivery rates

C. Best-effort delivery

send_to_host (data, host) : logical communication between end-hosts

✔ Find paths through the network

✔ Best-effort delivery!

Slide 31

Network Layer API

Source Destination

reliable data transfer

guaranteed delivery (or rate!)

Provides logical communication
between processes.

send_data_to_application (data,
port, socket)

application
transport
network
data link
physical

logical end-end transport
application
transport
network
data link
physical

Slide 32

Transport Layer API

Transport Layer: Runs on end systems

Slide 33

HTTP,
DNS..

TCP

IP

Ethernet
interface

HTTP,
DNS...

TCP

IP

Ethernet
interface

host host

IP

Ethernet
interface

SONET
interface

router

IP

Ethernet
interface

SONET
interface

router

Logical communication
between processes

How many of these services might we provide
at the transport layer? Which?

• Reliable transfers
• Error detection
• Error correction
• Bandwidth guarantees
• Latency guarantees

• Encryption
• Message ordering
• Link sharing fairness

A. 4 or fewer
B. 5
C. 6

D. 7
E. All 8

Lecture 15 - Slide 34

How many of these services might we provide
at the transport layer? Which?

• Reliable transfers (T)
• Error detection (U, T)
• Error correction (T)
• Bandwidth guarantees
• Latency guarantees

• Encryption
• Message ordering (T)
• Link sharing fairness (T)

A. 4 or fewer
B. 5
C. 6

D. 7
E. All 8

Critical question: Can it be done at the end host?

Lecture 15 - Slide 35

TCP sounds great! UDP…meh. Why do we
need it?

A. It has good performance characteristics.

B. Sometimes all we need is error detection.

C. We still need to distinguish between sockets.

D. It basically just fills a gap in our layering model.

Lecture 15 - Slide 36

• Nothing comes for free

• Data given by application

• Apply header
– Keeps transport state
– Attached by sender
– Decoded by receiver

Payload Data

Payload DataTCP/
UDP

Lecture 15 - Slide 37

Adding Features

• Establishing state (making a connection)
– Recall HTTP 1.0 vs. HTTP 1.1
– Extra communication round trip

• Delays due to loss / reordering.

• Playing fair might cost you!

Lecture 15 - Slide 38

TCP Overhead

Socket Abstraction

Slide 39

Socket Abstraction

40

socket socket
User process User process

Operating
System

Operating
SystemInternet

Applications communicate using �sockets�
Stream socket: reliable stream of bytes
Message socket: unreliable message delivery

Socket Abstraction

41

socket socket
User process User process

Operating
System

Operating
SystemInternet

Applications communicate using �sockets�/mailboxes
Different mail-delivery service choices:
TCP, UDP, ICMP, SCTP

App

TCP

IP

Ethernet
interface

App

TCP

IP

Ethernet
interface

IP IP

Ethernet
interface

Ethernet
interface

SONET
interface

SONET
interface

host host

router router

Addressing Applications using Ports

Lecture 15 - Slide 42

Multiplexing

Lecture 15 - Slide 43

App

Transport

App

TransportTransport

Network Layer

App App

(Simultaneous transmission of two or more signals/messages over a single channel.)

Multiplexing

App

Transport

App

TransportTransport

Network Layer

App App

• The network is a shared resource.
– It does NOT care about your applications, sockets, etc.

• Senders mark segments, in header, with identifier (port)

(Simultaneous transmission of two or more signals/messages over a single channel.)

Lecture 15 - Slide 44

Multiplexing

App

Transport

App

TransportTransport

Network Layer

App App

• The network is a shared resource.
– It does NOT care about your applications, sockets, etc.

• Senders mark segments, in header, with identifier (port)

(Simultaneous transmission of two or more signals/messages over a single channel.)

Lecture 15 - Slide 45

De-multiplexing

App

Transport

App

TransportTransport

Network Layer

App App

• The network is a shared resource.
– It does NOT care about your applications, sockets, etc.

• Receivers check header, deliver data to correct socket.

(Simultaneous transmission of two or more signals/messages over a single channel.)

Lecture 15 - Slide 46

De-multiplexing

App

Transport

App

TransportTransport

Network Layer

App App

• The network is a shared resource.
– It does NOT care about your applications, sockets, etc.

• Receivers check header, deliver data to correct socket.

(Simultaneous transmission of two or more signals/messages over a single channel.)

Lecture 15 - Slide 47

De-multiplexing

App

Transport

App

TransportTransport

Network Layer

App App

• The network is a shared resource.

– It does NOT care about your applications, sockets, etc.

• Receivers check header, deliver data to correct socket.

(Simultaneous transmission of two or more signals/messages over a single channel.)

?

Lecture 15 - Slide 48

De-multiplexing

App

Transport

App

TransportTransport

Network Layer

App App

• The network is a shared resource.

– It does NOT care about your applications, sockets, etc.

• Receivers check header, deliver data to correct socket.

(Simultaneous transmission of two or more signals/messages over a single channel.)

?

Lecture 15 - Slide 49

Two Main Transport Layers

• User Datagram Protocol (UDP)
– Unreliable, unordered delivery

• Transmission Control Protocol (TCP)
– Reliable in-order delivery

50

UDP – User Datagram Protocol

• Unreliable, unordered service
• Adds:
– multiplexing,
– checksum (error detection)

UDP: User Datagram Protocol [RFC 768]

• �No frills,� �Bare bones� Internet transport protocol
– RFC 768 (1980)
– Length of the document?

Lecture 15 - Slide 52

UDP: User Datagram Protocol [RFC 768]

• �Best effort� service,
• UDP segments may be:

– Lost
– Delivered out of order (same as underlying network layer)

Lecture 15 - Slide 53

¯_(�)_/¯

How many of the following steps does UDP
implement? (which ones?)

1. exchange an initiate handshake (connection setup)
2. break up packet into segments at the source and number

them
3. place segments in order at the destination
4. error-checking with checksum

Lecture 15 - Slide 54

A. 1
B. 2
C. 3
D. 4

UDP Segment

SrcPort DstPort

ChecksumLength

Data

0 16 31

source port # dest port #

application
data
(variable length)

Urg data pointer
FSRPAUhead

len
not
used

checksum
receive window

sequence number

acknowledgement number

options (variable length)

Lecture 15 - Slide 56

32 bits

TCP Segment!

UDP Checksum

• Goal: Detect transmission errors (e.g. flipped bits)
– Router memory errors
– Driver bugs
– Electromagnetic interference

Lecture 15 - Slide 57

UDP Checksum

RFC: “Checksum is the 16-bit one's complement of the
one's complement sum of a pseudo header of information
from the IP header, the UDP header, and the data, padded
with zero octets at the end (if necessary) to make a
multiple of two octets.”

Lecture 15 - Slide 58

• Treat the entire segment as 16-bit integer values
• Add them all together (sum)
• Put the 1’s complement in the checksum header field

Lecture 15 - Slide 59

UDP Checksum at the Sender

• In bitwise compliment, all of the bits in a binary
number are flipped.

• So 1111000011110000 -> 0000111100001111

Lecture 15 - Slide 60

One’s Compliment

example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

sum
checksum

wraparound

Note: when adding numbers, a carryout from the most
significant bit needs to be added to the result

1

Lecture 15 - Slide 61

Checksum example

• Add all the received data together as 16-bit integers

• Add that to the checksum

• If result is not 1111 1111 1111 1111, there are errors!

Lecture 15 - Slide 62

Receiver

If our checksum addition yields all ones,
are we guaranteed to be error-free?

A. Yes

B. No

Lecture 15 - Slide 63

• Latency sensitive
– Quick request/response (DNS)
– Network management (SNMP, TFTP)
– Voice/video chat

• Error correction unnecessary (periodic msgs)

• Communicating with lots of others

Lecture 15 - Slide 64

UDP Applications

A. Sorry, you’re out of luck.

B. Write your own transport protocol.

C. Add in the features you want at the application
layer.

What if you want something more reliable than
UDP, but faster/not as full featured as TCP?

Lecture 15 - Slide 65

With TCP, send() blocks if buffer full.

Lecture 15 - Slide 66

Recall: TCP send() blocking

With TCP, send() blocks if buffer full.

• Does UDP need to block? Should it?

A. Yes, if buffers are full, it should.
B. It doesn’t need to, but it might be useful.
C. No, it does not need to and shouldn’t do so.

Lecture 15 - Slide 67

UDP sendto() blocking

• UDP: No frills transport protocol.

• Simple, 8-byte header with ports, len, cksum

• Checksum protects against most bit flips

Lecture 15 - Slide 68

Summary

