CS 43: Computer Networks

10: DHTs and CDNs
October 3, 2019

SWARTHMORE COLLEGE

Where we are

Application: (So far: HTTP, Email, DNS)
Today: P2P systems, Overlay Networks

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1’s and 0’s/bits across a medium
(copper, the air, fiber)

BitTyrant

 Piatek et al. 2007

— Implements the “come in last strategy”
— Essentially, an unfair unchoker

— Faster than stock BitTorrent (For the Tyrant user)

Slide 11

Hierarchical P2P Networks

e FastTrack network (Kazaa, Grokster, Morpheus, Gnutella++)

)’\\\4

W.j_/

Skype: P2P VolP

e P2P client supporting VolP, video, and
text based conversation, buddy lists, etc.

— Overlay P2P network consisting of ordinary and Super
Nodes (SN)

* Each user registers with a central server
— User information propagated in a decentralized fashion

Slide 12

o0 wp

Do the benefits of hierarchical P2P networks
out-weight the cons?

Pros: Scalability
Pros: Limits flooding
Cons: No guarantees of performance

. Cons: Failure?

Slide 13

Overlay Network (P2P)

* A network made up of “virtual” or logical links

e Virtual links map to one or more physical links

= 2&* =
; ;* Slide 14

Overlay Network (P2P)

* A network made up of “virtual” or logical links

e Virtual links map to one or more physical links

W\
1w
al

"
4
N
™
.

;» ;* Slide 15

In our P2P examples with no central server,
how would we maintain a mapping of content

to nodes?

* Flooding each node and querying
* Maintaining an entire list at each node

 Some other system that scales

Slide 16

In our P2P examples with no central server,
how would we maintain a mapping of content

to nodes?

* Flooding each node and querying
* Maintaining an entire list at each node

 Some other system that scales (hint: where have we
seen this before?)

Slide 17

Getting rid of that server...

e Distribute the tracker information using a Distributed
Hash Table (DHT)

e ADHT s alookup structure
— Maps keys to an arbitrary value.
— Works a lot like, well...a hash table.

Slide 18

Recall: Hash Function

* Mapping of any data to an integer

— E.g., md5sum, shal, etc.
— md5: 04c3416cadd85971a129dd1de86¢ceed9

* With a good (cryptographic) hash function:
— Hash values very likely to be unique
— Near-impossible to find collisions (hashes spread out)

Slide 19

Recall: Hash table

N buckets

Key-value pair is assigned bucket i
— i = HASH(key) %N

Easy to look up value based on key

Multiple key-value pairs assigned to each bucket

Slide 20

Distributed Hash Table (DHT)

e DHT: a distributed P2P database

e Distribute the (k, v) pairs across the peers
— key: ss number; value: human name
— key: file name; value: BT tracker peer(s)

e Same interface as standard HT: (key, value) pairs

— get(key) — send key to DHT, get back value
— put(key, value) — modify stored value at the given key

Slide 21

Challenges

 How do we assign (key, value) pairs to nodes?
* How do we find them again quickly?
* What happens if nodes join/leave?

 Basic idea:
— Convert each key to an integer via hash
— Assign integer to each peer via hash
— Store (key, value) pair at the peer closest to the key

Circular DHT Overlay

1

15

12

10
3

 Simplest form: each peer only aware of immediate
successor and predecessor.

Slide 23

Circular DHT Overlay

W 1

15

12

10

 Simplest form: each peer only aware of immediate
successor and predecessor.

Slide 24

Circular DHT Overlay

1

15

12

10
3

« Example: Node 1 wants key “Led Zeppelin IV”
— Hash the key

Slide 25

Circular DHT Overlay

1

15

12

10
3

« Example: Node 1 wants key “Led Zeppelin IV”
— Hash the key (suppose it gives us 6)

Slide 26

Circular DHT Overlay

1

15

12

10
3

« Example: Node 1 wants key “Led Zeppelin IV”
— Hash the key (suppose it gives us 6)

Slide 27

Circular DHT Overlay

1

15

12

10
3

« Example: Node 1 wants key “Led Zeppelin IV”
— Hash the key (suppose it gives us 6)

Slide 28

Circular DHT Overlay

1

15

12

10
3

« Example: Node 1 wants key “Led Zeppelin IV”
— Hash the key (suppose it gives us 6)

Slide 29

Circular DHT Overlay

1
3

15

If anybody

has it, it's my
12 SUCCESSOT.
10
8

« Example: Node 1 wants key “Led Zeppelin IV”
— Hash the key (suppose it gives us 6)

Slide 30

Circular DHT Overlay

1

15

12

10
8 Checks key

« Example: Node 1 wants key “Led Zeppelin IV”
— Hash the key (suppose it gives us 6)

Slide 31

Circular DHT Overlay

« Example: Node 1 wants key “Led Zeppelin IV”
— Hash the key (suppose it gives us 6)

Slide 32

Given N nodes, what is the complexity
(number of messages) of finding a value
when each peer knows its successor?

Can we do better?
A. O(logn) |How?

B. O(n)
C. O(n?)

D. 0O(2")

Slide 33

Reducing Message Count

15

12

10
3

* Store successors thatare 1, 2,4, 8, ..., N/2 away.
* Can jump up to half way across the ring at once.
* Cut the search space in half - lookups take O(log N) messages.

Slide 34

More DHT Info

ow do nodes join/leave?
ow does cryptographic hashing work?
ow much state does each node store?

Slide 35

More DHT Info

How do nodes join/leave?
How does cryptographic hashing work?

How much state does each node store?

Chord: A Scalable Peer-to-Peer Lookup Service for
Internet Applications

Dynamo: Amazon’s Highly Available Key-value Store

High-Performance Content Distribution

* Problem:
You have a service that supplies lots of data. You
want good performance for all users!

(often “lots of data” means media files)

Slide 37

What is a CDN?

e Content Delivery/Distribution Network

— At least 70% of the world’s bits are delivered by a
CDN!

Slide 38

What is a CDN?

* Primary Goals
— Create replicas of content throughout the Internet
— Ensure that replicas are always available

— Directly clients to replicas that will give good
performance

Slide 39

Where do we cache content in a CDN?

A. Client
B. Server
C. Internet Service Provider (ISP)

Clients

Slide 40

Caching

* Why caching works?
— Locality of reference:

* Users tend to request the same object in succession

* Some objects are popular: requested by many users

Clients ==

Slide 41

High-Performance Content Distribution

 CDNs applied to all sorts of traffic.

— You pay for service (e.g., Akamai), they’ll host your
content very “close” to many users.

Slide 42

CDN Challenges

* How do we direct the user to a nearby replica
instead of the centralized source?

* How do we determine which replica is the best to
send them to?

Slide 43

Key Components of a CDN

Distributed servers

— Usually located inside of other ISPs

— Often located in IXPs (coming up next)
High-speed network connecting them
Clients (eyeballs)

— Can be located anywhere in the world
— They want fast Web performance
Glue

— Something that binds clients to “nearby” replica
servers

Examples of CDNs

Akamai
— 147K+ servers, 1200+ networks, 650+ cities, 92 countries
Limelight

— Well provisioned delivery centers, interconnected via a
private fiber-optic connected to 700+ access networks

Edgecast

— 30+ PoPs, 5 continents, 2000+ direct connections
Others

— Google, Facebook, AWS, AT&T, Level3, Brokers

Finding the CDN

 Three main options:
— Application redirect (e.g., HTTP)
— “Anycast” routing
— DNS resolution (most popular in practice)

e Example: CNN + Akamai

Slide 46

CNN + Akamai

www.cnn.com

Request: cnn.com/article
Response: HTML with link
to cache.cnn.com

Content servers: serve content

Slide 47

CNN + Akamai

www.cnn.com

Request: cnn.com/article
Response: HTML with link
to cache.cnn.com media

/ij DN%

com DNS servers org DNS servers edu DNS servers

cnn.com pbs.org swarthmore.edu
DNS servers DNS servers DNS servers

Content servers: serve content >lide 48

Slide 49

CNN + Akamai

www.cnn.com

Request: cnn.com/article
Response: HTML with link
to cache.cnn.com media

Retrieve media file.

v

com DNS servers org DNS servers edu DNS servers

cnn.com pbs.org swarthmore.edu
DNS servers DNS servers DNS servers

N\

akamai.net DNS servers

l Akamai’s DNS response directs
user to selected server.

Content servers: serve content

CNN + Akamai

www.cnn.com

Request: cnn.com/article
Response: HTML with link
to cache.cnn.com media

Retrieve media file.

v

/ij DN%

Slide 50

com DNS servers org DNS servers edu DNS servers

cnn.com pbs.org swarthmore.edu
DNS servers DNS servers DNS servers

N\

akamai.net DNS serverso NGO

l Akamai’s DNS response directs

user to selected server.

Content servers: serve content

How to
choose?

Which metric is most important when
choosing a server? (CDN or otherwise)

A. RTT latency

B. Data transfer rate / throughput

C. Hardware ownership This is the CDN

operator’s secret sauce!

D. Geographic location

E. Some other metic(s) (such as?)

Slide 51

How well does caching work?

* Very well, up to a point
— Large overlap in requested objects

— Objects with one access place upper bound on hit
ratio

— Dynamic objects not cacheable*
 Example: Wikipedia

— About 400 servers, 100 are HTTP Caches

— 85% Hit ratio for text, 98% for media

Slide 52

Content in today’s Internet

* Most flows are HTTP
— Web is at least 52% of traffic
— Median object size is 2.7K, average is 85K (as of 2007)

* |s the Internet designed for this common case?
— Why?

Slide 53

Popping up: HTTP performance

* For Web pages
— RTT matters most
— Where should the server go?

e Forvideo
— Available bandwidth matters most

— Where should the server go?

* |s there one location that is best for everyone?

Slide 54

* Impact on user experience
— Users navigating away from pages
— Video startup delay

Why speed matters

4x increase in
abandonment

with 10s increase in

delay

% of Views abandoned

=]
Te]

40

30

20

10

|

20 30
Startup Delay(secs)

I
40

Slide 55

50

Streaming Media

e Straightforward approach: simple GET

* Challenges:
— Dynamic network characteristics
— Varying user device capabilities
— User mobility

Slide 56

HTTP Performance

 What matters for performance?

 Depends on type of request
— Lots of small requests (objects in a page)
— Some big requests (large download or video)

Slide 57

Dynamic Adaptive Streaming over HT TP
(DASH)

e Encode several versions of the same media file
— low / medium / high / ultra quality

e Break each file into chunks

* Create a “manifest” to map file versions to chunks /
video time offset

Slide 58

Dynamic Adaptive Streaming over HTTP
(DASH)

* Client requests manifest file, chooses version
 Requests new chunks as it plays existing ones

e Can switch between versions at any time!

Slide 59

Summary
* Decentralized lookup: DHTs

* CDNs: locating “good” replica for content servers

 DASH: streaming despite dynamic conditions

