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Reading Quiz
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Last class

• Inter-process communication using message passing
• How send and recv buffers work 
• Concurrency
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Today

• Concurrency
• Application-layer communication paradigms:
– Client-Server
– Peer-to-peer architecture

• Distributed network applications: Sources of 
complexity
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Thread-based vs. Event-based Concurrency
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Five-Layer Internet Model 

Application: the application (e.g., the Web, Email)

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1’s and 0’s/bits across a medium 
(copper, the air, fiber)
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Where we are

Application: the application (e.g., the Web, Email)

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1’s and 0’s/bits across a medium 
(copper, the air, fiber)
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Client-Server communication
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Inter-process Communication (IPC): Network
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send()
• Blocks when socket buffer 

for sending is full

• Returns less than requested 
size when buffer cannot 
hold full size

recv()
• Blocks when socket buffer 

for receiving is empty

• Returns less than requested 
size when buffer has less 
than full size

Always check the return value!

Blocking Summary
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• Think you’re the only one talking to that server?

Server

Concurrency
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Web Server

Server fork()s

Child process 
recv()s

Web 
Server

Web 
Server

Services the 
new client 
request

Server fork()s

Concurrent Webserver. 
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Concurrent Web-servers with multiple 
threads/processes

• Threads (shared memory)
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• Message Passing (locally) 
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A. Modular code/separation of concerns.

B. Multiple CPU/core parallelism.

C. I/O overlapping.

D. Some other benefit.

Which benefit is most critical?
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How would you use threads to achieve faster 
performance in the following programs? 
(answer in the worksheet)

• A program that displays the squares of numbers 1 to 10 (in any order). 

• A program that serves data to multiple clients. 

• A program that reads data from files and sends them over the network. 

• Program that reads files from the disk and prints the output. 
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• Blocking: synchronous programming 

– wait for I/O to complete before proceeding

– control does not return to the program

• Non-blocking: asynchronous programming

– control returns immediately to the program 

– perform other tasks while I/O is being completed. 

– notified upon I/O completion

Event-based concurrency
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One operation: add a flag to send/recv
• Permanently, for socket: fcntl() – “file control”
– Allows setting options on file/socket descriptors

int sock, result, flags = 0;

sock = socket(AF_INET, SOCK_STREAM, 0);
result = fcntl(sock, F_SETFL, flags|O_NONBLOCK)

always check the result! 

Non-blocking I/O
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Will this work?

server_socket = socket(), bind(), listen() //non-blocking

connections = []

while (1)

new_connection = accept(server_socket)

if new_connection != -1, 

add it to connections

//end if

for connection in connections:

recv(connection, …)  // Try to receive

send(connection, …) // Try to send, if needed

//end for

//end of while
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A. Yes, this will work.
B. No, this will execute too slowly.
C. No, this will use too many 

resources.
D. No, this will still block.

Will this work?

server_socket = socket(), bind(), listen() //non-blocking

connections = []
while (1)
new_connection = accept(server_socket)

if new_connection != -1, 
add it to connections

for connection in connections:

recv(connection, …)  // Try to receive
send(connection, …) // Try to send, if needed
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• Rather than checking over and over, let the OS tell us 
when data can be read/written

• Create set of file/socket descriptors we want to read 
and write

• Tell system to block until at least one of those is 
ready for us to use.  The OS worries about selecting 
which one(s).

Event-based concurrency: select()
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• Only one process/thread (or one per core)
– No time wasted on context switching

– No memory overhead for many processes/threads

Event-based concurrency
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How would you design a real-world 
concurrent server? (Explain)

A. Event-based for serving clients.
B. Thread-based for serving clients.
C. Combination: thread-based for some tasks and 

event-based for others (how would you divide 
tasks)?
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Distributed Network Applications
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• Cooperating processes in a computer network
• Varying degrees of integration
– Loose: email, web browsing
– Medium: chat, Skype, remote execution, remote file 

systems
– Tight: process migration, distributed file systems

What is a distributed application?

Computer

Network

`processes

messages

Computer
Computer

Computer

Computer
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Designating roles to an endpoint

Peer-to-peer architecture
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Client Server
(always on)

Internet Peer Peer

Client-server architecture 



Client-server architecture

server: 
• always-on host
• permanent IP address
• data centers for scaling
clients:
• communicate with server
• may be intermittently 

connected
• may have dynamic IP addresses
• do not communicate directly 

with each other

client/server
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• no always-on server
• A peer talks directly with another 

peer
– Symmetric responsibility (unlike 

client/server)
• peers request service from other 

peers, provide service in return to 
other peers
– self scalability – new peers bring 

new service capacity, as well as 
new service demands

• peers are intermittently connected 
and change IP addresses
– complex management

peer-peer

Peer-to-Peer
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In a peer-to-peer architecture, are there clients 
and servers?

A. Yes

B. No
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Distributed Systems: Advantages

• Speed: parallelism, less contention
• Reliability: redundancy, fault tolerance
• Scalability: incremental growth, economy of scale
• Geographic distribution: low latency, reliability

Network

`processes

messages

Computer
Computer

Computer

Computer

Computer
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Distributed Systems: Disadvantages

• Fundamental problems of decentralized control
– State uncertainty: no shared memory or clock
– Action uncertainty: mutually conflicting decisions

• Distributed algorithms are complex

Network

`processes

messages

Computer
Computer

Computer

Computer
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If one machine can process requests at a 
rate of X per second, how quickly can 
two machines process requests?

A. Slower than one machine (<X)
B. The same speed (X)
C. Faster than one machine, but not double (X-2X)
D. Twice as fast (2X)
E. More than twice as fast(>2X)
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On a single system…

• You have a number of components
– CPU
– Memory
– Disk
– Power supply

• If any of these go wrong, you’re (usually) toast.
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On multiple systems…

• New classes of failures (partial failures).
– A link might fail

– One (of many) processes might fail

– The network might be partitioned
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On multiple systems…

• New classes of failures (partial failures).
– A link might fail

– One (of many) processes might fail

– The network might be partitioned

Introduces major complexity! Slide 38



If a process sends a message, can it tell the 
difference between a slow link and a delivery 
failure?
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If a process sends a message, can it tell the 
difference between a slow link and a delivery 
failure?

A. Yes

B. No
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What should we do to handle a partial 
failure?  Under what circumstances, or 
what types of distributed applications?

A. If one process fails or becomes unreachable, switch 
to a spare.

B. Pause or shut down the application until all 
connectivity and processes are available.

C. Allow the application to keep running, even if not 
all processes can communicate.

D. Handle the failure in some other way.
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Desirable Properties

• Consistency
– Nodes agree on the distributed system’s state

• Availability
– The system is able and willing to process requests

• Partition tolerance
– The system is robust to network (dis)connectivity
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The CAP Theorem
• Consistency
– Nodes agree on the distributed system’s state

• Availability
– The system is able and willing to process requests

• Partition tolerance
– The system is robust to network (dis)connectivity

• Choose Two
• “CAP prohibits only a tiny part of the design space: perfect 

availability and consistency in the presence of partitions, 
which are rare.”*

* Brewer, Eric. "CAP twelve years later: How the" rules" have changed." Computer 45.2 
(2012): 23-29. Slide 43



Event Ordering

• It’s very useful if all nodes can agree on the order of 
events in a distributed system

• For example: Two users trying to update a shared file 
across two replicas
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If two events occur (digitally or in the “real 
world”), can we always tell which happened 
first?

A. Yes

B. No
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If two events occur (digitally or in the “real 
world”), can we always tell which happened 
first?

A. Yes

B. No

“Relativity of simultaneity”
• Example: observing car crashes
• Exception: causal relationship
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Event Ordering

• It’s very useful if all nodes can agree on the order of 
events in a distributed system

• For example: Two users trying to update a shared file 
across two replicas

• “Time, Clocks, and the Ordering of Events in a 
Distributed System” by Leslie Lamport (1978)
– Establishes causal orderings
– Cited > 8000 times
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Causal Consistency Example

• Suppose we have the following scenario:
– Sally posts to Facebook, “Billy is missing!”
– (Billy is at a friend’s house, sees message, calls mom)
– Sally posts new message, “False alarm, he’s fine”
– Sally’s friend James posts, “What a relief!”

Slide 48



Causal Consistency Example

• NOT causally consistent:
– Third user, Henry, sees only:
– Sally posts to Facebook, “Billy is missing!”
– Sally’s friend James posts, “What a relief!”
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Causal Consistency Example

• Suppose we have the following scenario:
1. Sally posts to Facebook, “Billy is missing!” (Billy is at a 

friend’s house, sees message, calls mom)
2. Sally posts new message, “False alarm, he’s fine”
3. Sally’s friend James posts, “What a relief!”

• Causally consistent version:
– Because James had seen Sally’s second post (which 

caused his response), Henry must also see it prior to 
seeing James’s.
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Summary

• Client-server vs. peer-to-peer models

• Distributed systems are hard to build!
– Partial failures
– Ordering of events

• Take CS 87 for more details!
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