
CS 43: Computer Networks

05:Network Services and Distributed
Systems

September 17, 2019

Reading Quiz

Slide 3

Last class

• Inter-process communication using message passing
• How send and recv buffers work
• Concurrency

Slide 7

Today

• Concurrency
• Application-layer communication paradigms:
– Client-Server
– Peer-to-peer architecture

• Distributed network applications: Sources of
complexity

Slide 8

Thread-based vs. Event-based Concurrency

Slide 9

Five-Layer Internet Model

Application: the application (e.g., the Web, Email)

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1’s and 0’s/bits across a medium
(copper, the air, fiber)

Slide 10

Where we are

Application: the application (e.g., the Web, Email)

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1’s and 0’s/bits across a medium
(copper, the air, fiber)

Slide 11

Client-Server communication

Slide 12

Inter-process Communication (IPC): Network

Slide 13

send()
• Blocks when socket buffer

for sending is full

• Returns less than requested
size when buffer cannot
hold full size

recv()
• Blocks when socket buffer

for receiving is empty

• Returns less than requested
size when buffer has less
than full size

Always check the return value!

Blocking Summary

Slide 14

• Think you’re the only one talking to that server?

Server

Concurrency

Slide 15

Web Server

Server fork()s

Child process
recv()s

Web
Server

Web
Server

Services the
new client
request

Server fork()s

Concurrent Webserver.

Slide 16

Concurrent Web-servers with multiple
threads/processes

• Threads (shared memory)

Slide 17

send (to, buf) receive (from, buf)
Kernel

Process-1 Process-2

Process memory

• Message Passing (locally)

Thread 1 PC1

SP1

Thread 2

PC2

SP2

Process 1

Text

Data

OS

Heap

Stack 2
Stack 1

A. Modular code/separation of concerns.

B. Multiple CPU/core parallelism.

C. I/O overlapping.

D. Some other benefit.

Which benefit is most critical?

Slide 18

How would you use threads to achieve faster
performance in the following programs?
(answer in the worksheet)

• A program that displays the squares of numbers 1 to 10 (in any order).

• A program that serves data to multiple clients.

• A program that reads data from files and sends them over the network.

• Program that reads files from the disk and prints the output.

Slide 19

• Blocking: synchronous programming

– wait for I/O to complete before proceeding

– control does not return to the program

• Non-blocking: asynchronous programming

– control returns immediately to the program

– perform other tasks while I/O is being completed.

– notified upon I/O completion

Event-based concurrency

Slide 20

One operation: add a flag to send/recv
• Permanently, for socket: fcntl() – “file control”
– Allows setting options on file/socket descriptors

int sock, result, flags = 0;

sock = socket(AF_INET, SOCK_STREAM, 0);
result = fcntl(sock, F_SETFL, flags|O_NONBLOCK)

always check the result!

Non-blocking I/O

Slide 21

Will this work?

server_socket = socket(), bind(), listen() //non-blocking

connections = []

while (1)

new_connection = accept(server_socket)

if new_connection != -1,

add it to connections

//end if

for connection in connections:

recv(connection, …) // Try to receive

send(connection, …) // Try to send, if needed

//end for

//end of while
Slide 22

A. Yes, this will work.
B. No, this will execute too slowly.
C. No, this will use too many

resources.
D. No, this will still block.

Will this work?

server_socket = socket(), bind(), listen() //non-blocking

connections = []
while (1)
new_connection = accept(server_socket)

if new_connection != -1,
add it to connections

for connection in connections:

recv(connection, …) // Try to receive
send(connection, …) // Try to send, if needed

Slide 23

• Rather than checking over and over, let the OS tell us
when data can be read/written

• Create set of file/socket descriptors we want to read
and write

• Tell system to block until at least one of those is
ready for us to use. The OS worries about selecting
which one(s).

Event-based concurrency: select()

Slide 24

• Only one process/thread (or one per core)
– No time wasted on context switching

– No memory overhead for many processes/threads

Event-based concurrency

Slide 25

How would you design a real-world
concurrent server? (Explain)

A. Event-based for serving clients.
B. Thread-based for serving clients.
C. Combination: thread-based for some tasks and

event-based for others (how would you divide
tasks)?

Slide 26

Distributed Network Applications

Slide 27

• Cooperating processes in a computer network
• Varying degrees of integration
– Loose: email, web browsing
– Medium: chat, Skype, remote execution, remote file

systems
– Tight: process migration, distributed file systems

What is a distributed application?

Computer

Network

`processes

messages

Computer
Computer

Computer

Computer

Slide 28

Designating roles to an endpoint

Peer-to-peer architecture

Slide 29

Client Server
(always on)

Internet Peer Peer

Client-server architecture

Client-server architecture

server:
• always-on host
• permanent IP address
• data centers for scaling
clients:
• communicate with server
• may be intermittently

connected
• may have dynamic IP addresses
• do not communicate directly

with each other

client/server

Slide 30

• no always-on server
• A peer talks directly with another

peer
– Symmetric responsibility (unlike

client/server)
• peers request service from other

peers, provide service in return to
other peers
– self scalability – new peers bring

new service capacity, as well as
new service demands

• peers are intermittently connected
and change IP addresses
– complex management

peer-peer

Peer-to-Peer

Slide 31

In a peer-to-peer architecture, are there clients
and servers?

A. Yes

B. No

Slide 32

Distributed Systems: Advantages

• Speed: parallelism, less contention
• Reliability: redundancy, fault tolerance
• Scalability: incremental growth, economy of scale
• Geographic distribution: low latency, reliability

Network

`processes

messages

Computer
Computer

Computer

Computer

Computer

Slide 33

Distributed Systems: Disadvantages

• Fundamental problems of decentralized control
– State uncertainty: no shared memory or clock
– Action uncertainty: mutually conflicting decisions

• Distributed algorithms are complex

Network

`processes

messages

Computer
Computer

Computer

Computer

Slide 34

If one machine can process requests at a
rate of X per second, how quickly can
two machines process requests?

A. Slower than one machine (<X)
B. The same speed (X)
C. Faster than one machine, but not double (X-2X)
D. Twice as fast (2X)
E. More than twice as fast(>2X)

Slide 35

On a single system…

• You have a number of components
– CPU
– Memory
– Disk
– Power supply

• If any of these go wrong, you’re (usually) toast.

Slide 36

On multiple systems…

• New classes of failures (partial failures).
– A link might fail

– One (of many) processes might fail

– The network might be partitioned

Slide 37

On multiple systems…

• New classes of failures (partial failures).
– A link might fail

– One (of many) processes might fail

– The network might be partitioned

Introduces major complexity! Slide 38

If a process sends a message, can it tell the
difference between a slow link and a delivery
failure?

Slide 39

If a process sends a message, can it tell the
difference between a slow link and a delivery
failure?

A. Yes

B. No

Slide 40

What should we do to handle a partial
failure? Under what circumstances, or
what types of distributed applications?

A. If one process fails or becomes unreachable, switch
to a spare.

B. Pause or shut down the application until all
connectivity and processes are available.

C. Allow the application to keep running, even if not
all processes can communicate.

D. Handle the failure in some other way.

Slide 41

Desirable Properties

• Consistency
– Nodes agree on the distributed system’s state

• Availability
– The system is able and willing to process requests

• Partition tolerance
– The system is robust to network (dis)connectivity

Slide 42

The CAP Theorem
• Consistency
– Nodes agree on the distributed system’s state

• Availability
– The system is able and willing to process requests

• Partition tolerance
– The system is robust to network (dis)connectivity

• Choose Two
• “CAP prohibits only a tiny part of the design space: perfect

availability and consistency in the presence of partitions,
which are rare.”*

* Brewer, Eric. "CAP twelve years later: How the" rules" have changed." Computer 45.2
(2012): 23-29. Slide 43

Event Ordering

• It’s very useful if all nodes can agree on the order of
events in a distributed system

• For example: Two users trying to update a shared file
across two replicas

Slide 44

If two events occur (digitally or in the “real
world”), can we always tell which happened
first?

A. Yes

B. No

Slide 45

If two events occur (digitally or in the “real
world”), can we always tell which happened
first?

A. Yes

B. No

“Relativity of simultaneity”
• Example: observing car crashes
• Exception: causal relationship

Slide 46

Event Ordering

• It’s very useful if all nodes can agree on the order of
events in a distributed system

• For example: Two users trying to update a shared file
across two replicas

• “Time, Clocks, and the Ordering of Events in a
Distributed System” by Leslie Lamport (1978)
– Establishes causal orderings
– Cited > 8000 times

Slide 47

Causal Consistency Example

• Suppose we have the following scenario:
– Sally posts to Facebook, “Billy is missing!”
– (Billy is at a friend’s house, sees message, calls mom)
– Sally posts new message, “False alarm, he’s fine”
– Sally’s friend James posts, “What a relief!”

Slide 48

Causal Consistency Example

• NOT causally consistent:
– Third user, Henry, sees only:
– Sally posts to Facebook, “Billy is missing!”
– Sally’s friend James posts, “What a relief!”

Slide 49

Causal Consistency Example

• Suppose we have the following scenario:
1. Sally posts to Facebook, “Billy is missing!” (Billy is at a

friend’s house, sees message, calls mom)
2. Sally posts new message, “False alarm, he’s fine”
3. Sally’s friend James posts, “What a relief!”

• Causally consistent version:
– Because James had seen Sally’s second post (which

caused his response), Henry must also see it prior to
seeing James’s.

Slide 50

Summary

• Client-server vs. peer-to-peer models

• Distributed systems are hard to build!
– Partial failures
– Ordering of events

• Take CS 87 for more details!

Slide 51

