
CS 43: Computer Networks

04: Sockets, Concurrency and Non-blocking I/O
Sep 12, 2019

Reading Quiz

Slide 2

Last class

• HTTP
– GET vs. POST
– response messages

• Cookies
• HTTP Performance
– Persistence vs. Non-persistence

Slide 6

Today

• Under-the-hood look at system calls
– Data buffering and blocking

• Inter-process communication
• Processes, threads and blocking

Slide 7

Client-Server communication

• Client:
– initiates communication
– must know the address and port of the server
– active socket

• Server:
– passively waits for and responds to clients
– passive socket

Slide 8

What is a socket?

An abstraction through which an application may send
and receive data, in the same way as a open-file handle
allows an application to read and write data to stable
storage.

Slide 9

TCP Socket Procedures: Client Client
create a new communication endpoint

actively attempt to establish a connection

receive some data over a connection

send some data over a connection

release the connection

socket()

connect()

send()

recv()

close()
Slide 10

TCP Socket Procedures: Server
socket()

bind()

listen()

accept()

recv()

send()

close()

Server
create a new communication endpoint

attach a local address to a socket

announce willingness to accept connections

block caller until a connection request arrives

receive some data over a connection

send some data over a connection

release the connection
Slide 11

TCP socket connection
socket()

bind()

listen()

accept()

recv()

send()

close()

socket()

connect()

send()

recv()

close()

Server

Client

Slide 12

If the client sends a
GET request to the
server using send() but
forgets to send the last
/r/n which of the
following can happen?

socket()

bind()

listen()

accept()

recv()

send()

close()

socket()

connect()

send()

recv()

close()

Server Client

A. Server, Client both recv()
B. Server send()s,

Client recv()s
C. Server recv()s,

Client send()s
D. Some other combination

Slide 13

What happens when we call send and
receive?

Slide 14

Recall: Inter-process communication

But first, let’s go over inter-process communication within
one machine

Slide 15

Recall Inter-process Communication (IPC)

• Processes must communicate to cooperate

• Must have two mechanisms:

– Data transfer

– Synchronization

• On a single machine:

– Threads (shared memory)

– Message passing

Slide 16

Message Passing (local)

• Operating system mechanism for IPC
– send (destination, message_buffer)

– receive (source, message_buffer)

• Data transfer: in to and out of kernel message buffers
• Synchronization: ?

send (to, buf) receive (from, buf)
Kernel

Process-1 Process-2

Process
memory

Slide 17

Where is the synchronization in message
passing Inter-process Communication?

A. The OS adds synchronization.

B. Synchronization is determined by the order of sends
and receives.

C. The communicating processes exchange
synchronization messages (lock/unlock).

D. There is no synchronization mechanism.

Slide 18

Interprocess Communication
(non-local)

• Processes must communicate to cooperate

• Must have two mechanisms:
– Data transfer
– Synchronization

• Across a network:
– Threads (shared memory) NOT AN OPTION!
– Message passing

Slide 19

Message Passing (network)

• Same synchronization
• Data transfer

– Copy to/from OS socket buffer
– Extra step across network: hidden from applications

Slide 20

Descriptor Table

OS stores a table, per
process, of descriptors

Kernel

For each Process

Slide 21

Descriptors

Slide 22

Descriptor Table

OS stores a table, per
process, of descriptors

0
1
2…

stdin stdout stderr

For each Process

Kernel

http://www.learnlinux.org.za/courses/b
uild/shell-scripting/ch01s04.html

Slide 23

socket()

• socket() returns a
socket descriptor

• Indexes into table

0

1

2

7

…

stdin stdout stderr

int sock = socket(AF_INET,
SOCK_STREAM, 0);

7

For each Process

Kernel
Slide 24

socket()

OS stores details of the
socket, connection, and
pointers to buffers

0

1

2

7

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

stdin stdout stderr

int sock = socket(AF_INET,
SOCK_STREAM, 0);

7

For each Process

Kernel
Slide 25

socket()

0

1

2

7

stdin stdout stderr

int sock = socket(AF_INET,
SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

OS stores details of the
socket, connection, and
pointers to buffers

Buffer:
Temporary
data storage
location

For each Process

Kernel
Slide 26

Socket Buffers

7

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

…

Application buffer / storage space:

For each Process

Kernel
Slide 27

Socket Buffers

7

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

…

Application buffer / storage space:

Internet

For each Process

Kernel
Slide 28

Socket Buffers

7

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

…

Application buffer / storage space:

recv(): Move
data from
socket buffer
to process

Internet

For each Process

Kernel
Slide 29

Socket Buffers

7

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

…

Application buffer / storage space:

send(): Move
data from
process to
socket buffer

Internet

For each Process

Kernel
Slide 30

Socket Buffers

7

int sock = socket(AF_INET, SOCK_STREAM, 0);

…

Family: AF_INET, Type: SOCK_STREAM
Local address: NULL, Local port: NULL
Send buffer , Receive buffer

7

…

Application buffer / storage space:

Challenge: Your
process does
NOT know what
is stored here!

Free space? Is data here?

For each Process

Kernel
Slide 31

recv()

Kernel

0

1

2

7

int sock = socket(AF_INET, SOCK_STREAM, 0);

(assume we issued a connect() here…)

int recv_val = recv(sock, r_buf, 200, 0);

…

Family: AF_INET, Type: SOCK_STREAM

Local address: …, Local port: …

Send buffer , Receive buffer

Is data here?

r_buf (size 200)

For each Process

Slide 32

What should we do if the receive socket buffer is
empty? If it has 100 bytes?

int sock = socket(AF_INET, SOCK_STREAM, 0);
(assume we connect()ed here…)

int recv_val = recv(sock, r_buf, 200, 0);

Socket buffer
(receive) Empty

100 bytes

r_buf (size 200)

For each Process

Kernel

Two Scenarios:

Slide 33

What should we do if the receive socket buffer is
empty? If it has 100 bytes?

Empty 100 Bytes
A Block Block
B Block Copy 100 bytes
C Copy 0 bytes Block
D Copy 0 bytes Copy 100 bytes
E Something else

Socket buffer
(receive) Empty

Two Scenarios:

100 bytes

r_buf (size 200)int sock = socket(AF_INET, SOCK_STREAM, 0);
(assume we connect()ed here…)

int recv_val = recv(sock, r_buf, 200, 0);

For each Process

Kernel
Slide 34

What should we do if the send socket buffer is full?
If it has 100 bytes?

Socket buffer
(send)

Full

s_buf (size 200)

100 bytes

int sock = socket(AF_INET, SOCK_STREAM, 0);
(assume we connect()ed here…)

int recv_val = recv(sock, r_buf, 200, 0);

For each Process

Kernel

Two Scenarios:

Slide 35

What should we do if the send socket buffer is full?
If it has 100 bytes?

Full 100 Bytes
A Return 0 Copy 100 bytes
B Block Copy 100 bytes
C Return 0 Block
D Block Block
E Something else

Socket buffer
(send)

Full

100 bytes

s_buf (size 200)int sock = socket(AF_INET, SOCK_STREAM, 0);
(assume we connect()ed here…)

int recv_val = recv(sock, r_buf, 200, 0);

For each Process

Kernel

Two Scenarios:

Slide 36

Blocking Implications

send()
• Do not assume that you will recv() all of the bytes

that you ask for.
• Do not assume that you are done receiving.
• Always receive in a loop!*

recv()
• Do not assume that you will send() all of the data you

ask the kernel to copy.
• Keep track of where you are in the data you want to

send.
• Always send in a loop!*

* Unless you’re dealing with a single byte, which is rare.
Slide 37

ALWAYS check send() return value!

• When send() return value is less than the data size,
you are responsible for sending the rest.

Data sent: 0
Data to send: 130

send(sock, data, 130, 0);

Data:

Slide 38

ALWAYS check send() return value!

• When send() return value is less than the data size,
you are responsible for sending the rest.

60

Data:

Data:Data sent: 0
Data to send: 130
send(sock, data, 130, 0);

Data sent: 60
Data to send: 130

Slide 39

ALWAYS check send() return value!

• When send() return value is less than the data size,

you are responsible for sending the rest.

Data sent: 0

Data to send: 130

send(sock, data, 130, 0);60

Data:

Data:

Data sent: 60

Data to send: 130

// Copy the 70 bytes starting from offset 60.

send(sock, data + 60, 130 - 60, 0);

Slide 40

• When send() return value is less than the data size,
you are responsible for sending the rest.

?

Repeat until all bytes are sent. (data_sent == data_to_send)…

60

ALWAYS check send() return value!

Data:

Data:Data sent: 0
Data to send: 130
send(sock, data, 130, 0);

Data sent: 60
Data to send: 130
// Copy the 70 bytes starting from offset 60.
send(sock, data + 60, 130 - 60, 0);

Slide 41

send()
• Blocks when socket buffer

for sending is full

• Returns less than requested
size when buffer cannot
hold full size

recv()
• Blocks when socket buffer

for receiving is empty

• Returns less than requested
size when buffer has less
than full size

Always check the return value!

Blocking Summary

Slide 42

send()
• Blocks when socket buffer

for sending is full

• Returns less than requested
size when buffer cannot
hold full size

recv()
• Blocks when socket buffer

for receiving is empty

• Returns less than requested
size when buffer has less
than full size

Always check the return value!

Blocking Summary

Slide 43

• Think you’re the only one talking to that server?

Server

Concurrency

Slide 44

• Think you’re the only one talking to that server?

Web Server
recv()
request

Without Concurrency

Slide 45

• Think you’re the only one talking to that server?

Web Server

recv() request

Client taking its
time…

Server Process
Blocked!

Ready to send, but
server still blocked on

first client.

If only we could handle these
connections separately…

Without Concurrency

Slide 46

Web Server

Server fork()s

Child process
recv()s

Web
Server

Web
Server

Services the
new client
request

Server fork()s

Multiple processes

Slide 47

Processes/Threads vs. Parent
(More details in an OS class…)

Spawned Process
• Inherits descriptor table
• Does not share memory

– New memory address
space

• Scheduled independently
– Separate execution

context
– Can block independently

Spawned Thread
• Shares descriptor table
• Shares memory

– Uses parent’s address
space

• Scheduled independently
– Separate execution

context
– Can block independently

Slide 48

Processes/Threads vs. Parent
(More details in an OS class…)

Spawned Process
• Inherits descriptor table
• Does not share memory

– New memory address
space

• Scheduled independently
– Separate execution

context
– Can block independently

Spawned Thread
• Shares descriptor table
• Shares memory

– Uses parent’s address
space

• Scheduled independently
– Separate execution

context
– Can block independently

Often, we don’t need the extra isolation of a separate address
space. Faster to skip creating it and share with parent –

threading. Slide 49

• Global variables and static objects are shared
– Stored in the static data segment, accessible by any

thread

• Dynamic objects and other heap objects are shared
– Allocated from heap with malloc/free or new/delete

• Local variables are not shared
– Refer to data on the stack
– Each thread has its own stack
– Never pass/share/store a pointer to a local variable on

another thread’s stack

Threads & Sharing

Slide 50

• Several benefits
– Modularizes code: one piece accepts connections,

another services them
– Each can be scheduled on a separate CPU
– Blocking I/O can be overlapped

Both processes and threads:

Slide 51

A. Modular code/separation of concerns.

B. Multiple CPU/core parallelism.

C. I/O overlapping.

D. Some other benefit.

Which benefit is most critical?

Slide 52

• Several benefits
– Modularizes code: one piece accepts connections,

another services them

– Each can be scheduled on a separate CPU

– Blocking I/O can be overlapped

• Still not maximum efficiency…
– Creating/destroying threads still takes time
– Requires memory to store thread execution state

– Lots of context switching overhead

Both processes and threads

Slide 53

• One operation: add a flag to send/recv
• Permanently, for socket: fcntl() – “file control”
– Allows setting options on file/socket descriptors

int sock, result, flags = 0;
sock = socket(AF_INET, SOCK_STREAM, 0);
result = fcntl(sock, F_SETFL, flags|O_NONBLOCK)

check result – 0 on success

Non-blocking I/O

Slide 54

• With O_NONBLOCK set on a socket
– No operations will block!

• On recv(), if socket buffer is empty:
– returns -1, errno is EAGAIN or EWOULDBLOCK

• On send(), if socket buffer is full:
– returns -1, errno is EAGAIN or EWOULDBLOCK

Non-blocking I/O

Slide 55

Will this work?

server_socket = socket(), bind(), listen() //non-blocking

connections = []

while (1)

new_connection = accept(server_socket)

if new_connection != -1,

add it to connections

for connection in connections:

recv(connection, …) // Try to receive

send(connection, …) // Try to send, if needed

Slide 56

A. Yes, this will work.
B. No, this will execute too slowly.
C. No, this will use too many

resources.
D. No, this will still block.

Will this work?

server_socket = socket(), bind(), listen() //non-blocking

connections = []

while (1)

new_connection = accept(server_socket)

if new_connection != -1,

add it to connections

for connection in connections:

recv(connection, …) // Try to receive

send(connection, …) // Try to send, if needed

Slide 57

• Rather than checking over and over, let the OS tell us
when data can be read/written

• Create set of file/socket descriptors we want to read
and write

• Tell system to block until at least one of those is
ready for us to use. The OS worries about selecting
which one(s).

Event-based concurrency: select()

Slide 58

• Rather than checking over and over, let the OS tell us
when data can be read/written

• Tell system to block until at least one of those is
ready for us to use. The OS worries about selecting
which one(s).

• Only one process/thread (or one per core)
– No time wasted on context switching

– No memory overhead for many processes/threads

Event-based concurrency

Slide 59

Next class

• Network and Distributed Systems
• Client-Server Architecture
• Peer-to-Peer Architecture

Slide 60

