
CS 43: Computer Networks

HTTP
September 10, 2018

Announcements

• Sigma-Xi Poster Session in the Eldridge Commons
– Thursday, Sept 13, from 3:00 to 5:00

– Friday, Sept 14, from 11:30 to 2:00

• Clicker participation counts from today onwards.

• Readings are mandatory
– Reading quizzes from next class (points based on

participation not correctness)

Slide 3

Last class

• End-to-end argument
• Five-layer protocol stack
– Protocols at each layer

• Example HTTP Request

Slide 4

Today

• HTTP
– GET vs. POST
– response messages
– Persistence vs. Non-persistence

• HTTP Performance and Cookies
• Server-side Socket Programming

Slide 5

Last class: Five-Layer Internet Model

Application: the application (e.g., the Web, Email)

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1’s and 0’s/bits across a medium
(copper, the air, fiber)

Slide 6

Last class: HTTP Overview

1. User types in a URL.
2. Browser establishes connection with server.
3. Browser requests the corresponding data.
4. Server responds with the requested data.
5. Browser renders the response, fetches other

objects, and closes the connection.

It’s a document retrieval system, where documents
point to (link to) each other, forming a “web”.

Slide 7

Last class: Example
$ telnet demo.cs.swarthmore.edu 80
Trying 130.58.68.26...
Connected to demo.cs.swarthmore.edu.
Escape character is '^]'.
GET / HTTP/1.1
Host: demo.cs.swarthmore.edu

<html><head><title>Demo Server</title></head>
<body>
.....
</body>
</html>

Slide 8

Response
headers

Response
body
(This is what
you should be
saving in lab 1.)

HTTP request message
• two types of HTTP messages: request, response
• HTTP request message: ASCII (human-readable format)

request line
(GET, POST,
HEAD, etc. commands)

header
lines

carriage return,
line feed

GET /index.html HTTP/1.1\r\n
Host: web.cs.swarthmore.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

carriage return character
line-feed character

Slide 9

Why do we have these \r\n (CRLF) things
all over the place?

A. They’re generated when the user hits ‘enter’.
B. They signal the end of a field or section.
C. They’re important for some other reason.
D. They’re an unnecessary protocol artifact.

GET /index.html HTTP/1.1\r\n
Host: web.cs.swarthmore.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

Slide 10

Why do we have these \r\n (CRLF) things
all over the place?

A. They’re generated when the user hits ‘enter’.
B. They signal the end of a field or section.
C. They’re important for some other reason.
D. They’re an unnecessary protocol artifact.

GET /index.html HTTP/1.1\r\n
Host: web.cs.swarthmore.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

Slide 11

How else might we delineate messages?

A. There’s not much else we can do.

B. Force all messages to be the same size.

C. Send the message size prior to the message.

D. Some other way (discuss).

Slide 12

HTTP is all text…

• Makes the protocol simple
– Easy to delineate message (\r\n)

– (Relatively) human-readable

– No worries about encoding or formatting data

– Variable length data

• Not the most efficient
– Many protocols use binary fields

• Sending “12345678” as a string is 8 bytes

• As an integer, 12345678 needs only 4 bytes

– The headers may come in any order

– Requires string parsing / processing
Lecture 3 - Slide 13

HTTP/1.0 (1996):
• GET:

– Requests page.
• POST:

– Uploads user response to
a form.

• HEAD:
– asks server to leave

requested object out of
response

HTTP/1.1 (1997 & 1999):
• GET, POST, HEAD
• PUT

– uploads file in entity body
to path specified in URL
field

• DELETE
– deletes file specified in

the URL field
• TRACE, OPTIONS,

CONNECT, PATCH
• Persistent connections

Request Method Types (“verbs”)

Lecture 4 - Slide 14

Uploading form input

GET (in-URL) method:
• uses GET method
• input is uploaded in URL field of request line:

POST method:
• web page often includes form input
• input is uploaded to server in request entity body

www.somesite.com/animalsearch?monkeys&banana

Lecture 4 - Slide 15

GET vs. POST

GET can be used for idempotent requests

• Idempotence: an operation can be applied multiple times
without changing the result (the final state is the same)

Lecture 4 - Slide 16

GET vs. POST

I. Incrementing a variable
II. Assigning a value to a

variable

III. Allocating Memory
IV. Compiling a program

A. None of them
B. One of them
C. Two of them

D. Three of them
E. All of them

Q: How many of the following operations are idempotent?

Lecture 4 - Slide 17

GET can be used for idempotent requests

• Idempotence: an operation can be applied multiple times
without changing the result (the final state is the same)

GET vs. POST

I. Incrementing a variable
II. Assigning a value to a

variable

III. Allocating Memory
IV. Compiling a program

A. None of them
B. One of them
C. Two of them

D. Three of them
E. All of them

Q: How many of the following operations are idempotent?

Lecture 4 - Slide 18

GET can be used for idempotent requests

• Idempotence: an operation can be applied multiple times
without changing the result (the final state is the same)

GET vs. POST

GET can be used for
idempotent requests.

• Idempotence: an
operation can be
applied multiple
times without
changing the result
(the final state is the
same)

Lecture 4 - Slide 19

POST should be when:
• A request changes the state of the server

or DB
• Sending a request twice would be

harmful: (Some) browsers warn about
sending multiple post requests

• Users are inputting non-ASCII characters
• Input may be very large

– You want to hide how the form
works/user input

When might you use GET vs. POST?

GET POST
A. Forum post Search terms, Pizza order
B. Search terms, Pizza order Forum post
C. Search terms Forum post, Pizza order
D. Forum post, Search terms, Pizza Order
E. Forum post, Search terms, Pizza Order

Lecture 4 - Slide 20

When might you use GET vs. POST?

GET POST
A. Forum post Search terms, Pizza order
B. Search terms, Pizza order Forum post
C. Search terms Forum post, Pizza order
D. Forum post, Search terms, Pizza Order
E. Forum post, Search terms, Pizza Order

Lecture 4 - Slide 21

HTTP response message

Lecture 4 - Slide 22

status line
(protocol
status code
status phrase)

header
lines

data, e.g., requested HTML file: may not be text!

HTTP/1.1 200 OK\r\n

Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n

Server: Apache/2.0.52 (CentOS)\r\n

Last-Modified: Tue, 30 Oct 2007 17:00:02 GMT\r\n

ETag: "17dc6-a5c-bf716880"\r\n

Accept-Ranges: bytes\r\n

Content-Length: 2652\r\n

Keep-Alive: timeout=10, max=100\r\n

Connection: Keep-Alive\r\n

Content-Type: text/html; charset=ISO-8859-1\r\n

\r\n

data data data data data ...

HTTP response status codes

Lecture 4 - Slide 23

200 OK

• Request succeeded, requested object later in this msg

301 Moved Permanently

• Requested object moved, new location specified later in this msg
(Location:)

400 Bad Request

– Request msg not understood by server

403 Forbidden

– You don’t have permission to read the object

404 Not Found

– Requested document not found on this server

505 HTTP Version Not Supported

Status code appears in first line of server-to-client response message.

HTTP response status codes

420 Enhance Your Calm (twitter)
– Slow down, you’re being rate limited

451 Unavailable for Legal Reasons
– Censorship?

418 I’m a Teapot
– Response from a teapot requested to brew a beverage

(announced Apr 1)

Lecture 4 - Slide 24

Status code appears in first line of server-to-client response message.
Many others! Search “list of HTTP status codes”

HTTP State

Lecture 4 - Slide 25

Does the HTTP protocol, allow for a server to keep
track of every client?

A. Yes, it’s required to
B. No, it would not scale
C. That’s against privacy rules!
D. Something else

State(less)

(XKCD #869, “Server Attention Span”)

Lecture 4 - Slide 26

State(less)

• Original web: simple document retrieval
• Server is not required to keep state between

connections
– often it might want to though

• Client is not required to identify itself
– server might refuse to talk otherwise though

Lecture 4 - Slide 27

User-server state: cookies

Many web sites use cookies

Four components:

1) cookie header line of HTTP response message

2) cookie header line in next HTTP request message

3) cookie file kept on user’s host, managed by user’s
browser

4) back-end database at Web site

Lecture 4 - Slide 28

Cookies: keeping �state� (cont.)

client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734 usual http request msg Amazon server
creates ID

1678 for user create
entryusual http response

set-cookie: 1678
ebay 8734
amazon 1678

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734
amazon 1678

backend
database

Lecture 4 - Slide 29

Cookies (continued)

What cookies can be used for:
• authorization
• shopping carts
• recommendations
• user session state (Web e-mail)
How to keep �state�:
• protocol endpoints: maintain state at sender/receiver

over multiple transactions
• cookies: http messages carry state

Lecture 4 - Slide 30

Cookies and Privacy

Cookies permit sites to learn a lot about you

• You may supply name and e-mail to sites (and more!)
• Third-party cookies (from ad networks, etc) can follow you

across multiple sites.
– Ever visit a website, and the next day ALL your ads are

from them?
• You could turn them off

– But good luck doing anything on the internet!

Lecture 4 - Slide 31

HTTP connections

Non-persistent HTTP
• at most one object sent

over TCP connection
– connection then closed

• downloading multiple
objects requires multiple
connections

Persistent HTTP
• multiple objects can be

sent over single TCP
connection between
client, server

object: image, script, stylesheet, etc.

Lecture 4 - Slide 32

Non-persistent HTTP
suppose user enters URL:

1a. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on port
80

1b. HTTP server at host
www.someSchool.edu waiting for
TCP connection at port 80.
�accepts� connection, notifying
client

time

(contains text,
references to 10

jpeg images)
www.someSchool.edu/someDepartment/home.html

Lecture 4 - Slide 33

Non-persistent HTTP
suppose user enters URL:

1a. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on port
80

2. HTTP client sends HTTP request
message (containing URL) into TCP
connection socket. Message
indicates that client wants object
someDepartment/home.index

1b. HTTP server at host
www.someSchool.edu waiting for
TCP connection at port 80.
�accepts� connection, notifying
client

3. HTTP server receives request
message, forms response message
containing requested object, and
sends message into its socket

time

(contains text,
references to 10

jpeg images)
www.someSchool.edu/someDepartment/home.html

Lecture 4 - Slide 34

Non-persistent HTTP (cont.)

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

6. Steps 1-5 repeated for each of 10
jpeg objects

4. HTTP server closes TCP connection.

time

Lecture 4 - Slide 35

Pseudocode Example

non-persistent HTTP

for object on web page:
connect to server
request object
receive object
close connection

persistent HTTP

connect to server
for object on web page:

request object
receive object

close connection

Lecture 4 - Slide 36

Round Trip Time

Round Trip Time (RTT):
• time for a small packet to

travel from client to server
and response to come back.

• Connection establishment
(via TCP) requires one RTT.

RTT

time time

Lecture 4 - Slide 37

Non-Persistent HTTP Connections can download
a website with several objects in…

A. One RTT + (File transfer time per object)

B. (One RTT + File transfer time) per object

C. Two RTTs

D. Two RTTs + (File transfer time per object)

E. (Two RTTS + File transfer time) per object

RTT

time time

Non-persistent HTTP: response time

Round Trip Time (RTT): time for a small
packet to travel from client to server
and back

HTTP response time:

• 1-RTT to initiate TCP connection

• 1-RTT for HTTP request + first few
bytes of HTTP response to return

• file transmission time

• non-persistent HTTP response time =

2-RTT+ file transmission time
For each object

RTT

time to
transmit
file

initiate TCP
connection

request
file

RTT

file
received

time time

Client Server

Lecture 4 - Slide 39

file
received

Persistent Connection

time to
transmit
file

RTT
request
file

RTT

time time Lecture 4 - Slide 40

Persistent HTTP

Lecture 4 - Slide 41

Non-persistent HTTP issues:
• requires 2 RTTs per object
• OS overhead for each TCP

connection
• browsers often open

parallel TCP connections to
fetch referenced objects

Persistent HTTP:
• server leaves connection open

after sending response
• subsequent HTTP messages

between same client/server
sent over open connection

• client sends requests as soon as
it encounters a referenced
object

• as little as one RTT for all the
referenced objects

