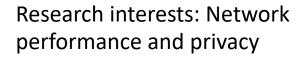
CS 43: Computer Networks

01: Course Administration & Introduction September 3, 2019

Sit toward the front and next to other students!

Today


- What is this course about?
- Course Administration
 - Structure & Grading
 - Academic Honesty
 - How does this class work?
- Introduction
 - What does it take to transmit a packet over the Internet?

What This Class is about

- How networks (focus on the internet) work
- How applications that use networks work:
 HTTP, Email, DNS, etc.
- How to write programs that communicate over networks
- How different protocols, policies, and mechanisms interact to provide an effective communication medium

Instructor: Vasanta Chaganti

Please call me Vasanta or Prof. Chaganti

• measure the performance of network protocols

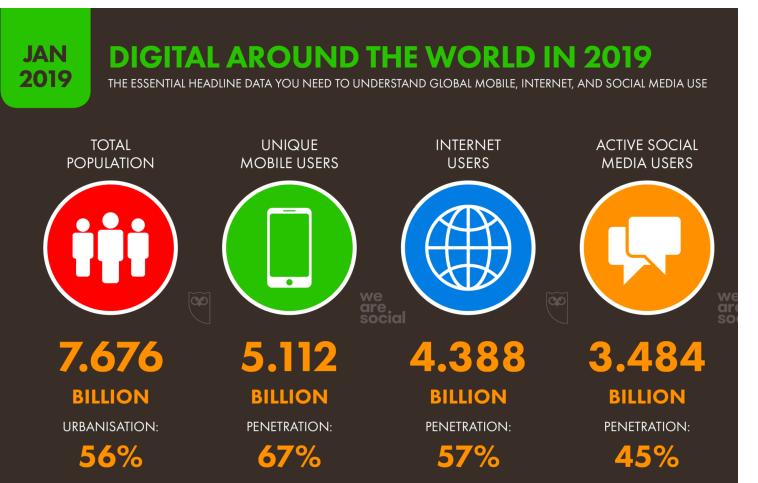
 what does your network data reveal about you?

Office Hours Office: SCI Center 252D

- Mondays: 2.30 4.30 PM
- Fridays: 10 12 PM
- By Appointment

Lab Instruction: Charlie Kazer

Office Hours Office: SCI Center 252B


- Tuesdays: 10.00 12.00 PM
- Thursdays: 4.00 5.30PM
- 10.00 12.00 PW
- By Appointment

Research: data center networks and computer network simulation:

- "predict the behavior of large systems using observations of smaller systems"

The Internet is Exciting!

- Rapid growth and success.
 - <u>1977: 111 machines on Internet</u>
 - 1981: 213
 - 1983: 562
 - 1986: 5000
 - 1989: 10,000
 - 1992: 1,000,000
 - 2001: 150 175 million
 - 2002: > 200 million
 - 2018: ~ 3 billion (>1B are phones/tablets)

https://datareportal.co m/reports/digital-2019-global-digitaloverview

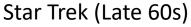
7

SOURCES: POPULATION: UNITED NATIONS; U.S. CENSUS BUREAU. MOBILE; GSMA INTELLIGENCE. INTERNET: INTERNETWORLDSTATS; ITU; WORLD BANK; CIA WORLD FACTBOOK; EUROSTAT; LOCAL GOVERNMENT BODIES AND REGULATORY AUTHORITIES; MIDEASTMEDIA.ORG; REPORTS IN REPUTABLE MEDIA. SOCIAL MEDIA: PLATFORMS' SELF-SERVE ADVERTISING TOOLS; PRESS RELEASES AND INVESTOR EARNINGS ANNOUNCEMENTS; ARAB SOCIAL MEDIA REPORT; TECHRASA; NIKI AGHAEI; ROSE.RU. (ALL LATEST AVAILABLE DATA IN JANUARY 2019).

Nearly 57% of the total global population of 7.6 billion are on the Internet!

The Internet is Exciting!

- Rapid growth and success.
- We're here at the beginning.
- Communication is empowering.



The Internet is Exciting!

- Rapid growth and success.
- We're here at the beginning.
- Communication is empowering.

Video calls

We're here at the beginning..

- Most of the growth happened in our lifetime.
- Still TONS of untapped potential.

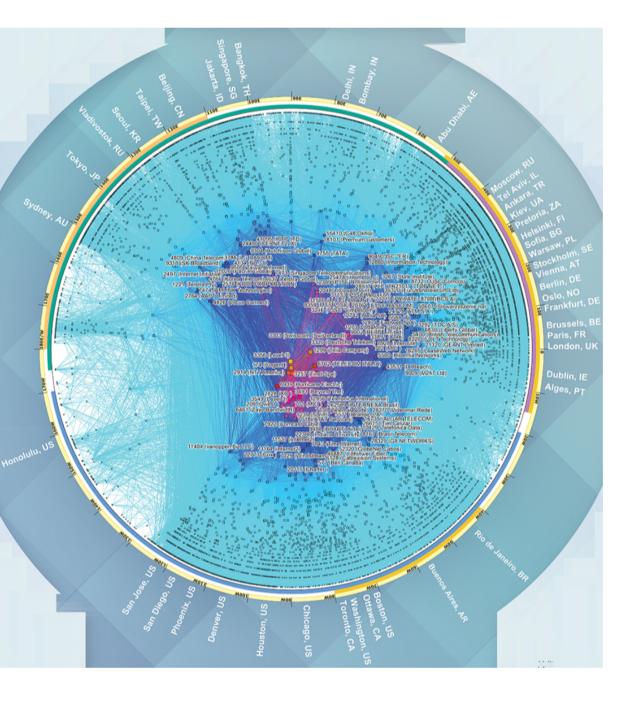
Founded 1998

Founded 2004

We're here at the beginning..

- Most of the growth happened in our lifetime.
- Still TONS of untapped potential.

Tweet-a-watt: monitor energy use



sensorized, bed mattress

Web-enabled toaster + weather forecaster

Internet refrigerator

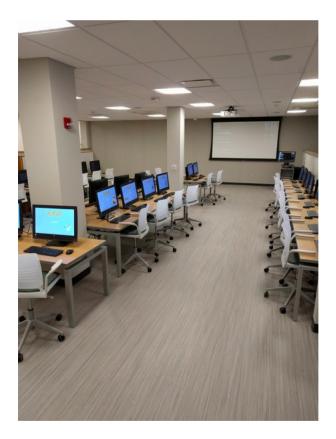
Internet traffic volume across the globe released by Cooperative Association for Internet Data Analysis (CAIDA)

Why should you care?

- To know how the Internet works
 - What may be wrong with your networks
 - When was the last time you went 24 hours without going online?

- Network programmers get respect
 - In high demand, get paid well

Pull back the curtain on the Internet



Dorothy and Toto pulling back the curtain in Wizard of Oz

Resources: Labs

- Github Enterprise: <u>https://github.swarthmore.edu</u>
- Lab sections:
 - Clothier 016 a.k.a
 pokemon lab
 - Wednesday 1:15-2:45PM,Wednesday 3:00-4:30PM

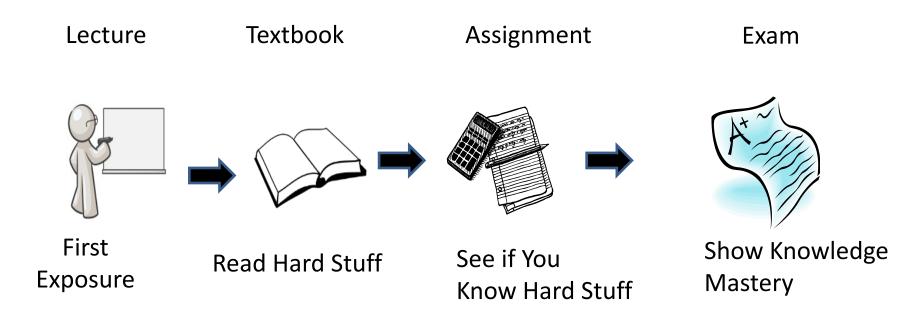
- slides on course website
- piazza: class recordings

Resources: Piazza!

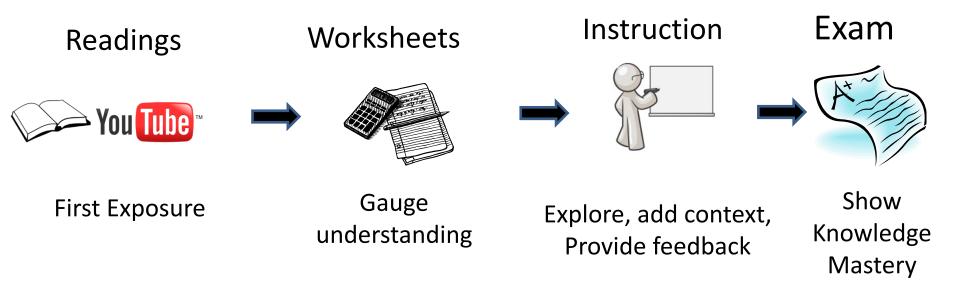
- Piazza Q&A Forum <u>https://piazza.com/swarthmore/fall2019/cs43/home</u>
- All announcements will be on Piazza
 - Weekly in-class worksheets
 - Anonymized Grade Listing
- Use Piazza!
 - Your classmates benefit from your questions
 - Your classmates can answer your questions
 - We will check the forum frequently
 - Post publicly unless you have code in your question.

How does this class work?

This class is designed a bit differently:


- Class will be centered around you
- Requires your participation
- Ever considered why we have lectures?

Traditional Lectures:


traditional model: an expert lectures to a small village

Traditional Lectures

Little opportunity for feedback

Interactive Classes with Peer Instruction

- You do the "easy" part before class
- Class is reserved for interactive, customized experiences
- To learn, <u>YOU must actively work with a problem</u> and construct your own understanding of it

Peer Instruction: In-class discussions

- Based on readings for that day
- Individually think about the questions (1 2 minutes)
- <u>Discuss</u>: Analyze problems with your group
 - (5 10 minutes)
 - Practice analyzing, talking about challenging concepts
 - Reach consensus
 - If you have questions, raise your hand and I'll come over
- <u>Class-wide discussions</u> Led by YOU (students) tell us what you talked about in discussion that everyone should know!

Why Peer Instruction?

- You get a chance to think.
- I get feedback as to what you understand.
- It's more engaging!
- Research shows it promotes more learning than traditional lecture.

Clickers!

- Lets you vote on questions in real time.
- Like pub trivia, except the subject is always systems
 ③

Clicker Registration

https://forms.gle/6zZne3agQGAA4aWu7

If you don't register your clicker, I can't give you credit for quizzes / participation!

Participation scores count from week 2

Locating your Clicker ID

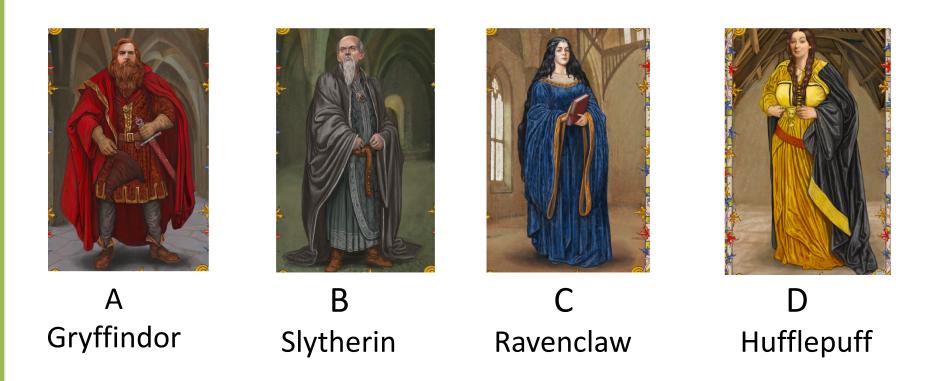
Hexadecimal number: numbers 0-9 and letters A – F

ID is also visible when you turn your clicker on.

iClicker with Hexadecimal ID

Peer Instruction: iClickers

- <u>Some discussion questions will involve iClickers</u>
- 1. <u>Solo vote</u>: Think for yourself and select answer
- 2. <u>Discuss</u>: Analyze problems with your group
- 3. <u>Group vote</u>: Everyone in group votes
- 4. <u>Class wide discussion</u>:
 - Led by YOU (students) tell us what you talked about in discussion that everyone should know!


Example Clicker Question

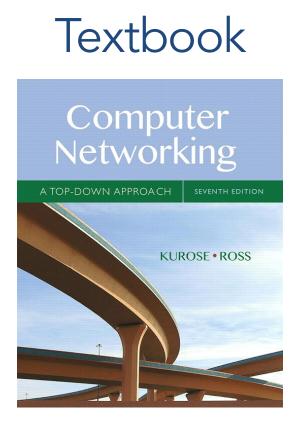
Individual vote (think 1-2 minutes)

- Group discussion / group vote (5 minutes)
 - Room should be LOUD

Class discussion

The best Hogwarts house to be in is..

E: Something else (be prepared to discuss!)


Grading

- 5% Worksheets / Reading Quizzes
- 5% Class participation (clicker questions)
- 25% Midterm Exam
- 30% Final Exam
- 35% Programming Assignments

Grading

- 5% Worksheets / Reading Quizzes
- 5% Class participation (clicker questions)_
- 25% Midterm Exam
- 30% Final Exam
- 35% Programming Assignments

• I will drop your three lowest quizzes/no-shows.

- Computer Networking: A Top-Down Approach (7th Edition)
- You need this book!

Policies

Genie (as William F. Buckley Jr)" There are a few,..provisos, a, a couple of quid pro quos." - in Aladdin

- Lab Lateness
 - 2 days of extra time for the semester (granularity of days)
 - Email AFTER you are done!
 - No Email: Grade whatever is present at the deadline.
 - up to 4 labs with the same partner

Policies: academic dishonesty

- Collaboration
 - You may discuss approaches, not solutions
 - You must submit your own work
 - Exams may include questions on programming
- Cheating
 - We take this very seriously. It can have a negative impact on your course grade, your GPA and your record at <u>Swarthmore and beyond.</u>

– Don't do it!

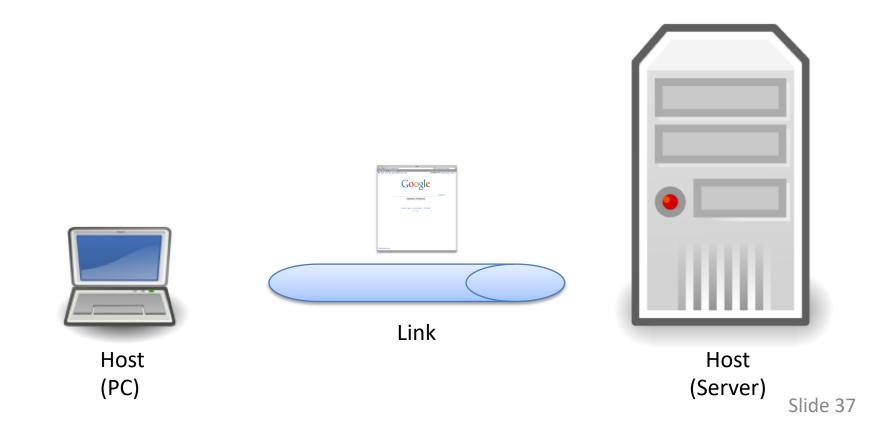
Schedule

- Midterm: Oct 22, In-class.
 - <u>Mark your calendar!</u>
 - Let me know if this is a problem today!
- FINAL TBA
- Labs:
 - Labs are held on Wednesday
 - Prev. Lab due on Tuesdays

Administrative Questions?

• All of this info on class website

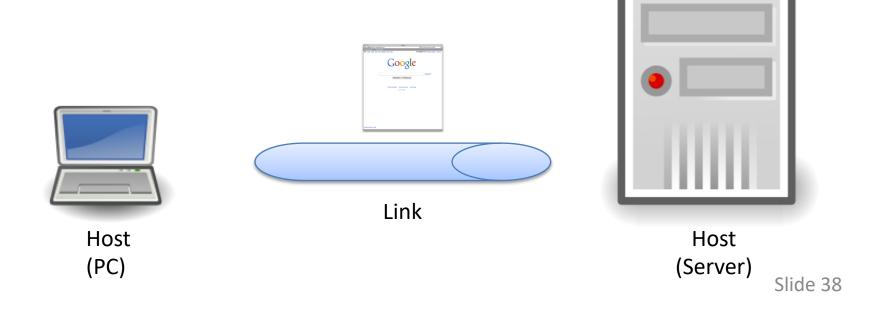
• Feel free to ask on Piazza discussion board


What is the goal of a network?

• Allow devices communicate with one another and coordinate their actions to work together.

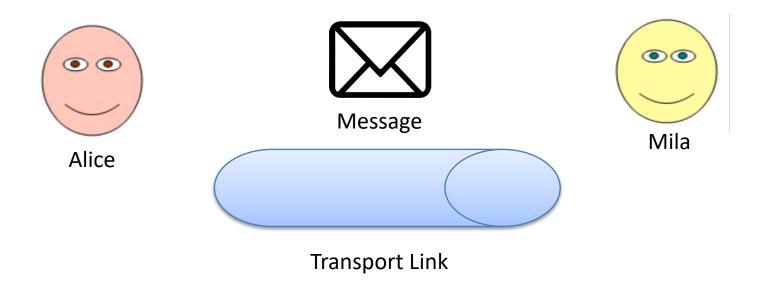
• Piece of cake, right?

A "Simple" Task


Send information from one computer to another

A "Simple" Task

Send information from one computer to another


- hosts: endpoints of a network
- The plumbing is called a link.

A "Simple" Task: Sending a message from host to destination

But first... let's try the postal system, something we are all (still!) familiar with and address a couple of key challenges..

Alice and Mila are Swatties starting out their semester and are roommates. Alice wants to give Mila a reminder to get milk.

Alice and Mila are roommates, Alice wants to give Mila a reminder to get milk. Figure out some key tasks:

1. <u>Structure of the message:</u>

• Construct the message that Alice posts to Mila.

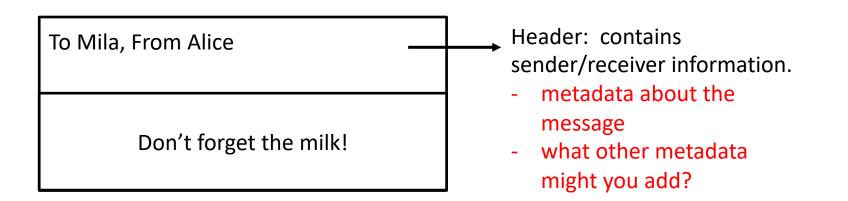
2. Organizing a drop-off point.

• Who chooses the drop-off point?

3. <u>Write a protocol to write a note /post—it to your housemate</u>

Alice and Mila are roommates, Alice wants to give Mila a reminder to get milk.

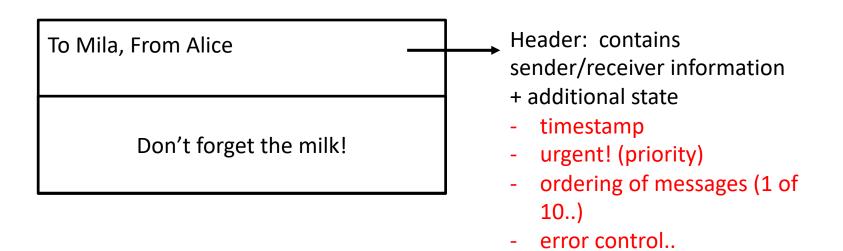
1. <u>Structure of the message: (Alice to Mila)</u>

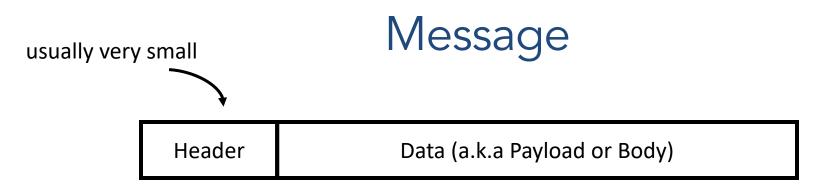

To Mila, From Alice

Don't forget the milk!

Irrespective of the source and destination, the format of the message stays the same.

Alice and Mila are roommates, Alice wants to give Mila a reminder to get milk.


1. <u>Structure of the message: (Alice to Mila)</u>


Irrespective of the source and destination, the format of the message stays the same.

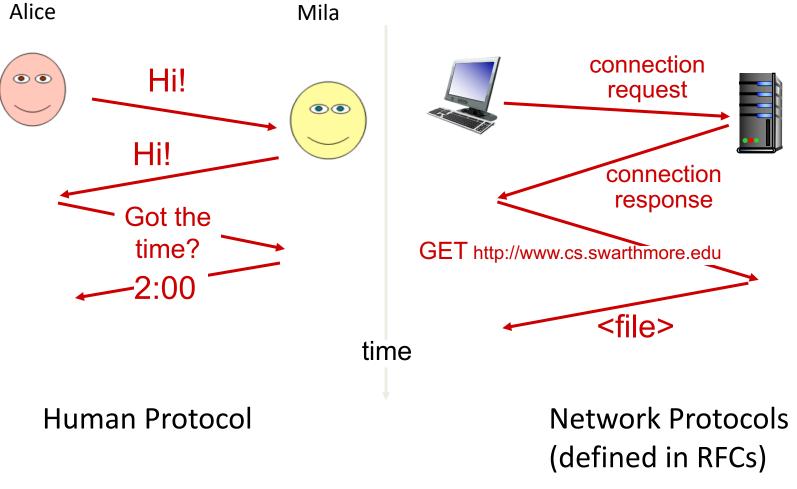
Alice and Mila are roommates, Alice wants to give Mila a reminder to get milk.

1. <u>Structure of the message: (Alice to Mila)</u>

Irrespective of the source and destination, the format of the message stays the same.

- Message: Header + Data
- Data: what sender wants the receiver to know
- Header: information to support protocol
 - Source and destination addresses
 - State of protocol operation
 - Error control (to check integrity of received data)

Alice and Mila are roommates, Alice wants to give Mila a reminder to get milk.


2. Organizing a drop-off point.

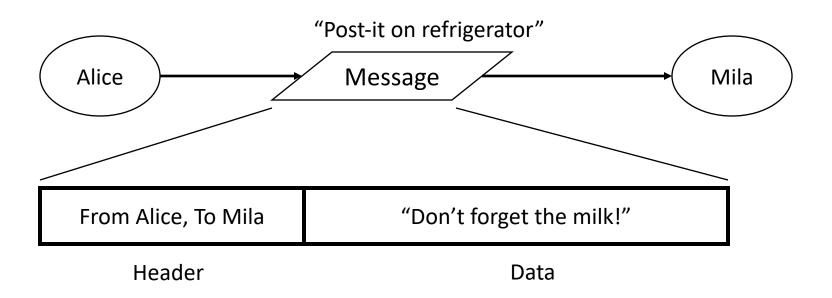
- Who decides?
- Generally by mutual consensus previously agreed upon location.

Everyone agrees to place messages on refrigerator to relay messages to housemates

What is a protocol?

Protocol: message format + transfer procedure

What is a protocol?

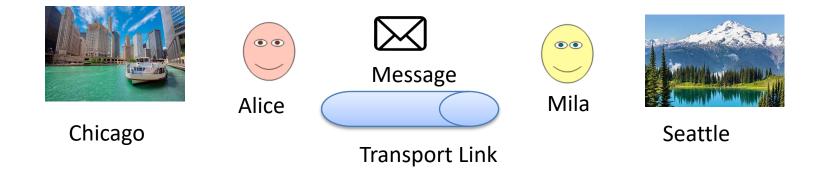

Goal: get message from sender to receiver

Protocol: message format + transfer procedure

- Expectations of operation
 - first you do x, then I do y, then you do z, ...

• Multiparty! so no central control

sender and receiver are separate processes



Write a protocol to write a note /post—it to your housemate

Protocol: message format + transfer procedure

- Message format: (from, to), message contents
- Transfer procedure: post on refrigerator

Alice moves to Chicago and Mila to Seattle for summer internships. Alice would like to send Mila a birthday card.

Alice would like to send Mila a birthday card.

- 1. <u>Construct the message and header. Have the header and message portions</u> <u>changed from the previous scenario?</u>
- 2. List the message format and transfer procedure of the "mail sending protocol" that Alice uses.
 - Who chooses the drop-off point?
 - Is this the only protocol in use?

3. Message transportation and delivery

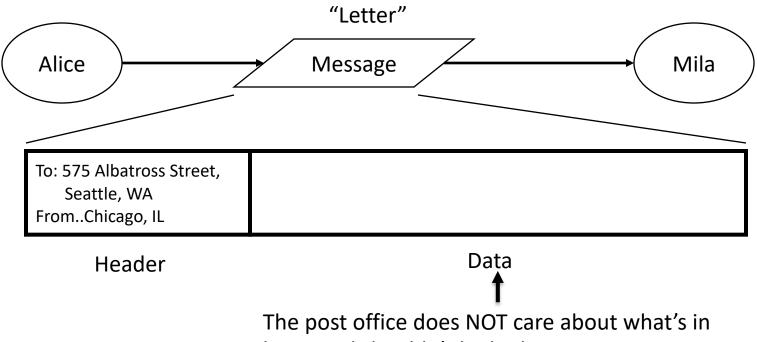
- Whose job is it to:
 - choose the carrier?
 - plan the route?
 - deliver the message?
 - ensure the message is not lost?

Alice would like to send Mila a birthday card.

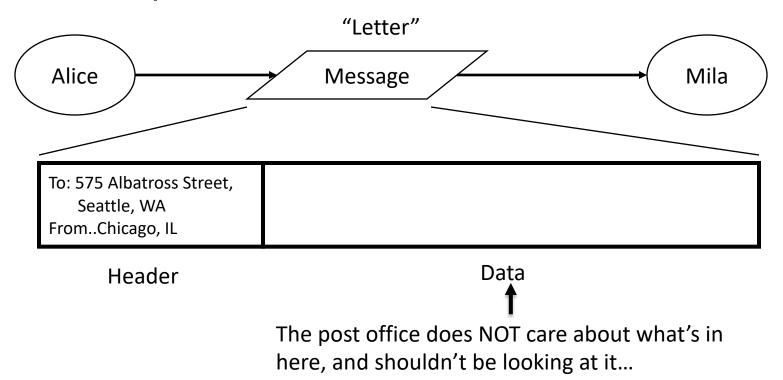
1. <u>Construct the message and the header. Have the header and message</u> portions changed from the previous scenario?

Header (outside envelope): To:	outside envelope): To: From:	
Message?		

Alice would like to send Mila a birthday card.

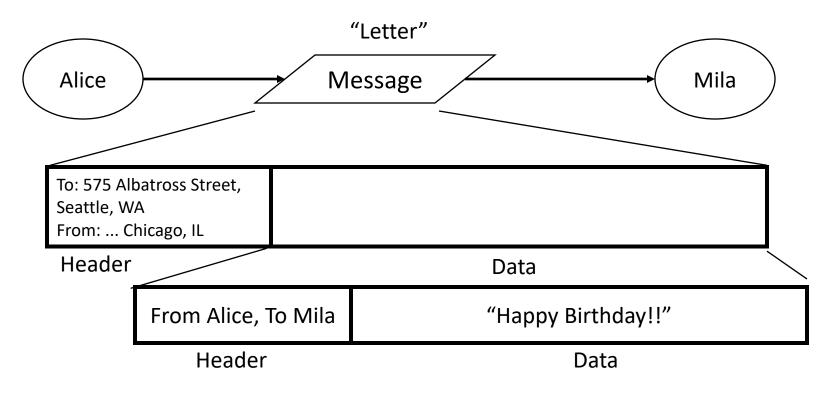

Header portion

Header (outside envelop): To: 575 Albatross Street, From Seattle, WA	Chicago, IL
Message?	


Alice would like to send Mila a birthday card.

Message portion

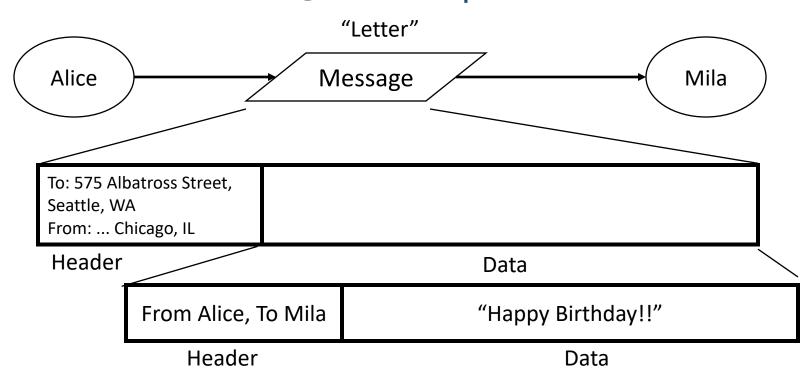
He	Header (outside envelop): To: 575 Albatross Street, From: . Seattle, WA Chicago, IL		
	From Alice, To Mila	"Happy Birthday!"	


here, and shouldn't be looking at it...

• Mail Sending Protocol

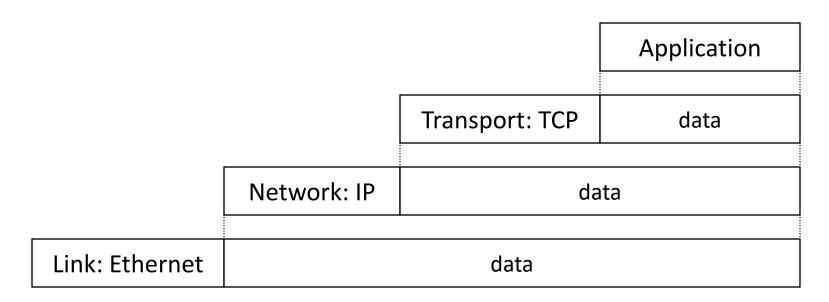
- Message format: (from, to), message contents
- Transfer procedure: post mail in mailbox (agreed upon convention)

A "Simple" analogous task: Postal Mail: other protocols in use?


Mail Protocol

- Message format: (from, to), message contents
- Transfer procedure: post mail in mailbox (agreed upon convention)

Card Protocol (within the mail protocol!)


- Message format: (from, to), message contents

Message Encapsulation

- Card protocol: (message + header) treated as payload
- Put it in another protocol: append an additional header

Message Encapsulation

- Higher layer within lower layer
- Each layer has different concerns, provides abstract services to those above

- Message transportation and delivery
- Who's job is it to:
 - 1. provide the sender and receiver addresses?
 - 2. choose the carrier?
 - 3. plan the route?
 - 4. deliver the message?
 - 5. ensure the message is not lost?

- Message transportation and delivery
- Who's job is it to: Alice decides as the "end host" (1, 2)
 - 1. provide the sender and receiver addresses?
 - 2. choose the carrier?
 - 3. plan the route?
 - 4. transport vehicles?
 - 5. ensure the message is not lost? (reliability)

Postal Department decides as the service that provides message transfer (3, 4)

Reliability? Open question – stay tuned!

Layering: Separation of Functions

Letter: written/sent by Alice, received/read by Mila

Postal System: Mail delivery of letter in envelope

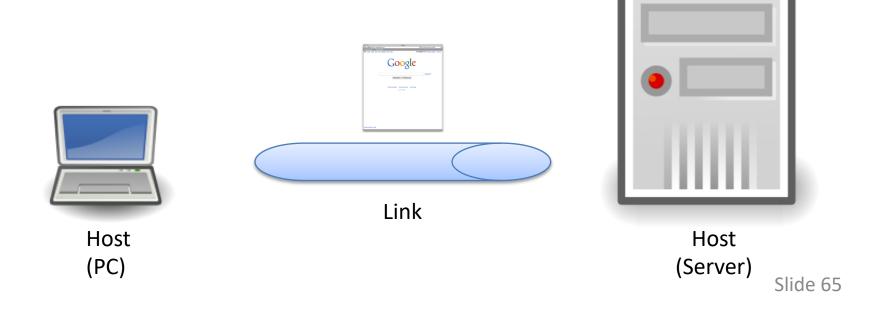
- Alice and Mila
 - Don't have to know about delivery
 - However, aid postal system by providing addresses
- Postal System
 - Only has to know addresses and how to deliver
 - Doesn't care about "data": Alice, Mila, letter

Abstraction!

• Hides the complex details of a process

 Use abstract representation of relevant properties make reasoning simpler

• Ex: Alice and Mila knowledge of postal system:


- Letters with addresses go in, come out other side

- Many more considerations..
 - Who decides the the sender and receiver addresses?
 Does someone maintain a mapping peoples' names to addresses?
 - Can Mila always be guaranteed of this delivery date?
 What factors influence delivery ?
 - What if the mail gets lost who's responsibility is it?
 Alice, Mila or someone else?
 - What about security? privacy?

A "Simple" Task

Send information from one computer to another

- hosts: endpoints of a network
- The plumbing is called a link.

Next Class

- Layering & division of responsibilities
- OSI Model
- End-to-end argument
- HTTP! An Application Layer Protocol

TODO List

- Reading: Protocols
 - Sections 1.1, 1.5
- Sign up on Piazza!
- Register your clicker!
- Please let me know:
 - Your preferred name/pronouns, if different than roster information
 - Academic accommodations