CS 43: Computer Networks

28: Switches and LANs
Dec 5, 2018
Last Class: Media Access Control protocols

• channel partitioning, by time, frequency or code
 • Time Division, Frequency Division

• random access (dynamic),
 ▪ ALOHA, S-ALOHA, CSMA, CSMA/CD
 ▪ carrier sensing:
 ▪ easy in some technologies (wire), hard in others (wireless)
 ▪ CSMA/CD used in Ethernet
 ▪ CSMA/CA used in 802.11

• taking turns
 ▪ Polling from central site, token passing
 ▪ Bluetooth, FDDI, token ring
Today

- Ethernet link and physical layer standard
- MAC addresses
- Addressing and ARP
“Dominant” wired LAN technology:

- cheap $20 for NIC
- first widely used LAN technology
- simpler, cheaper than token LANs and ATM
- kept up with speed race: 10 Mbps – 10 Gbps
Ethernet: unreliable, connectionless

• **Connectionless:** no handshaking between sending and receiving NICs
• **Unreliable:** receiving NIC doesn’t send acks or nacks to sending NIC
 – data in dropped frames recovered only if initial sender uses higher layer reliable delivery (e.g., TCP), otherwise dropped data lost
• Ethernet’s MAC protocol: **CSMA/CD with binary exponential backoff**
802.3 Ethernet standards: link & physical layers

- Many different Ethernet standards
 - Common MAC protocol and frame format
 - Speeds: 2 Mbps, 10 Mbps, 100 Mbps, 1Gbps, 10Gbps
 - Physical layer media: fiber, copper cable
Ethernet frame structure

Sender encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

preamble:
- 7 bytes with pattern 10101010 followed by one byte with pattern 10101011
Clock Synching

- Bits represented as voltages, either low or high
- We will read one bit per clock cycle
Clock Synching

• Bits represented as voltages, either low or high
• We will read one bit per clock cycle

Ideal receiver: Sample signal at regular interval.

For 1 Gbps Ethernet, ~1 nanosecond interval.
Clock Synching

- Bits represented as voltages, either low or high
- We will read one bit per clock cycle

Problem: receiver clock may not agree with sender!

Preamble let’s receiver see several 0 -> 1 -> 0 -> ... transitions.
Ethernet frame structure (more)

- **addresses**: 6 byte source, destination MAC addresses
 - if adapter receives frame with matching destination address, or with broadcast address (e.g. ARP packet), it passes data in frame to network layer protocol
 - otherwise, adapter discards frame

- **type**: indicates higher layer protocol (mostly IP but others possible, e.g., Novell IPX, AppleTalk)

- **CRC**: cyclic redundancy check at receiver
 - error detected: frame is dropped
A quick lab note…

• You will NOT see the preamble in the frames you receive.
 – (It also doesn’t count as part of the 1500 byte MTU)

• There are header structs defined in sr_protocol.h.

• First task upon receiving a packet: “Is this for me?”
 – Compare dest address of packet against address of interface that received it.
 – Function already exists for this (ether_to_me)
MAC Addresses

- 32-bit IP address:
 - network-layer address for interface
 - used by network layer for end-to-end routing

- MAC (or LAN or physical or Ethernet) address:
 - function: used locally to get a frame from one interface to another physically-connected interface (same sub-network)
 - 48 bit MAC address (for most LANs) burned in NIC ROM, also (usually) software settable
 - e.g.: 1A-2F-BB-76-09-AD

 hexadecimal (base 16) notation
 (each digit represents 4 bits)
MAC Addresses

Each interface/adapter on LAN has unique MAC address

LAN (wired or wireless)

- 1A-2F-BB-76-09-AD
- 71-65-F7-2B-08-53
- 58-23-D7-FA-20-B0
- 0C-C4-11-6F-E3-98

adapter
MAC Addresses

- MAC address allocation administered by IEEE
- Manufacturer buys portion of MAC address space (to assure uniqueness)
- Analogy:
 - MAC address: like Social Security Number
 - IP address: like postal address
- MAC flat address → portability
 - can move LAN card from one LAN to another
- IP hierarchical address not portable!
 - address depends on IP subnet to which node is attached
ARP: Address Resolution Protocol

Question: how to determine interface’s MAC address, knowing its IP address?

ARP table: each IP node (host, router) on LAN has table

- IP/MAC address mappings for some LAN nodes:
 - < IP address; MAC address; TTL>
 - **TTL** (Time To Live): time after which address mapping will be forgotten (typically 20 min)
ARP protocol & LAN communication

• A wants to send datagram to B. A knows B’s IP address.
 – B’s MAC address not in A’s ARP table.

• A broadcasts ARP query packet, containing B's IP address
 – dest Ethernet address = FF-FF-FF-FF-FF-FF
 – all nodes on LAN receive ARP query, most ignore it

• B receives ARP packet, replies to A with its (B's) MAC address
 – frame sent to A’s MAC address (unicast)

• A caches IP-to-MAC address pair in its ARP table until timeout
 – soft state: times out unless refreshed, can be reacquired
Addressing: routing to another LAN

Walkthrough: send datagram from A to B via R

– focus on addressing – at IP (datagram) and MAC layer (frame)
– assume A knows B’s IP address (e.g., DNS lookup is done)

– Note: there’s a router here, these are separate subnets
Addressing: routing to another LAN

Walkthrough: send datagram from A to B via R

—Who do we address the datagram to (IP destination)?

—Who do we forward it to on the first hop?
Addressing: routing to another LAN

Walkthrough: send datagram from A to B via R

— Who do we address the datagram to (IP destination)?
 • IP Address to B (End-to-end address to express where we want to get to)

— Who do we forward it to on the first hop?
 • MAC Address to R (Intermediate address to send to router)
How does A learn the IP address of R?

A. ARP: Address Resolution Protocol
B. DHCP: Dynamic Host Configuration Protocol
C. IP: Internet Protocol
D. Routing Protocol

why do we even need the IP address of Router?
How does A learn the IP address of the Router?

A. ARP: Address Resolution Protocol
B. DHCP: Dynamic Host Configuration Protocol (it gives you your IP address, and the IP address of the router to get to the Internet and it is up to you figure out the MAC address)
C. IP: Internet Protocol
D. Routing Protocol
How does A learn the MAC address of R?

A. ARP: Address Resolution Protocol
B. DHCP: Dynamic Host Configuration Protocol
C. IP: Internet Protocol
D. Routing Protocol
How does A learn the MAC address of R?

A. **ARP: Address Resolution Protocol**
B. **DHCP: Dynamic Host Configuration Protocol**
C. **IP: Internet Protocol**
D. **Routing Protocol**
Addressing: routing to another LAN

- A creates IP datagram with IP source A, destination B
- A creates link-layer frame with R's MAC address as dest, frame contains A-to-B IP datagram
Addressing: routing to another LAN

- frame sent from A to R
- frame received at R, datagram removed, passed up to IP
Addressing: routing to another LAN

- R forwards datagram with IP source A, destination B
- R creates link-layer frame with B's MAC address as dest, frame contains A-to-B IP datagram

What needs to happen before the router can transmit?
Addressing: routing to another LAN

- R forwards datagram with IP source A, destination B
- R creates link-layer frame with B's MAC address as dest, frame contains A-to-B IP datagram

IP src: 111.111.111.111
IP dest: 222.222.222.222
MAC src: 1A-23-F9-CD-06-9B
MAC dest: 49-BD-D2-C7-56-2A
IP src: 111.111.111.111
IP dest: 222.222.222.222

A
111.111.111.111
74-29-9C-E8-FF-55
111.111.111.112
CC-49-DE-D0-AB-7D

B
222.222.222.222
49-BD-D2-C7-56-2A
222.222.222.221
88-B2-2F-54-1A-0F

Lecture 28 - Slide 28
Addressing: routing to another LAN

- R forwards datagram with IP source A, destination B
- R creates link-layer frame with B's MAC address as dest, frame contains A-to-B IP datagram
Physical Topology: Bus

- **Bus:** popular through mid 90s
 - all nodes in same collision domain (transmissions collide with each other)

- *bus:* coaxial cable
Physical Topology: Star

• **Hub** in the center:
 – broadcasts all messages to all hosts
 – retransmits on collisions
 – often considered a physical layer device (like a bus wire)
Physical Topology: Star (Switched)

- **Switch: prevails today**
 - each “spoke” runs a (separate) Ethernet protocol (nodes do not collide with each other)
 - Full duplex: No collisions on spoke
Institutional Network (Tree)

To external network

router

mail server

web server

IP subnet
Ethernet switch

- link-layer device: takes an active role
 - store, forward Ethernet frames
 - examines incoming frame’s MAC address, selectively forwards frame to one-or-more outgoing links when frame is to be forwarded on segment, uses CSMA/CD to access segment
- transparent
 - hosts are unaware of presence of switches
- plug-and-play, self-learning
 - switches do not need to be configured
Switch: multiple simultaneous transmissions

- hosts have dedicated, direct connection to switch
- switches buffer packets
- Ethernet protocol used on each incoming link, but no collisions; full duplex
 - each link is its own collision domain
- **switching**: A-to-D and B-to-E can transmit simultaneously, without collisions

Diagram:

Switch with six interfaces (1, 2, 3, 4, 5, 6)
Switch forwarding table

Q: how does switch know D reachable via interface 4, E reachable via interface 5?

A: each switch has a forwarding table, each entry:
 - (MAC address of host, interface to reach host, time stamp)
 - looks like a router’s forwarding table!
Self-learning, forwarding: example

- frame destination, D, location unknown:
- destination A location known: selectively send on just one link

<table>
<thead>
<tr>
<th>MAC addr</th>
<th>interface</th>
<th>TTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>D</td>
<td>4</td>
<td>60</td>
</tr>
</tbody>
</table>
Suppose the switch receives a packet from A to G. (Assume it knows what interface both A and G are on.) It should…

A. Flood the packet
B. Throw the packet away
C. Send the packet out on interface 1
D. Do something else
Suppose the switch receives a packet from A to G. (Assume it knows what interface both A and G are on.) It should…

A. Flood the packet

B. Throw the packet away

C. Send the packet out on interface 1

D. Do something else
Switch: frame filtering/forwarding

when frame received at switch:

1. record incoming link, MAC address of sending host
2. index switch table using MAC destination address
3. if entry found for destination:
 if destination on segment from which frame arrived: drop frame
 else: forward frame on interface indicated by entry
else: flood // forward on all interfaces except arriving interface
Interconnecting switches

- Switches often connected to form trees.
Sending from A to G - how does S1 know to forward frame destined to G via S4 and S3?

A. A network administrator will need to configure this.

B. S1 will automatically learn the entire path.

C. S1 will learn to send packets to G on the interface that leads to S4.
Sending from A to G - how does S1 know to forward frame destined to G via S4 and S3?

A. A network administrator will need to configure this.
B. S1 will automatically learn the entire path.
C. S1 will learn to send packets to G on the interface that leads to S4.
Eve wants to snoop and read all of the frames being sent to anyone on the LAN. She will NOT be able to do this on a..

A. Bus
B. Hub
C. Switch
D. She can do this on all of these
Eve wants to snoop and read all of the frames being sent to anyone on the LAN. She will NOT be able to do this on a:

A. Bus

B. Hub

C. Switch (more secure than hub and bus, but doesn’t subvert every problem).

D. She can do this on all of these
Switches vs. routers

both are store-and-forward:

- **routers**: network-layer devices (examine network-layer headers)
- **switches**: link-layer devices (examine link-layer headers)

both have forwarding tables:

- **routers**: compute tables using routing algorithms, IP addresses
- **switches**: learn forwarding table using flooding, learning, MAC addresses
Switches vs. routers

Switches do NOT run a complex coordination protocol like routing.

Both have forwarding tables:
- **routers**: compute tables using routing algorithms, IP addresses
- **switches**: learn forwarding table using flooding, learning, MAC addresses
Switches vs. routers

You do NOT address frames directly to a switch (unless you’re configuring it).

both have forwarding tables:

- **routers**: compute tables using routing algorithms, IP addresses
- **switches**: learn forwarding table using flooding, learning, MAC addresses
Summary

• LAN address: flat (vs. hierarchical IP)

• Many potential topologies:
 – Bus: shared wire, star (hub)
 – Switched: star, tree

• Switches learn who is connected, selectively forward toward destination