Link State

+ Fast convergence (reacts to events quickly)
+ Small window of inconsistency

- Large number of messages sent on events
- Large routing tables as network size grows

Distance Vector

+ Distributed (small tables)
+ No flooding (fewer messages)

- Slower convergence
- Larger window of inconsistency
Today: Real Protocols

• Link State
 – Open Shortest Path First (OSPF)
 – Intermediate System to Intermediate System (IS-IS)

• Distance Vector
 – Routing Information Protocol (RIP)
 – Interior Gateway Routing Protocol (IGRP – CISCO)
 – Border Gateway Protocol (BGP – path vector protocol)
Hierarchical routing

Our routing study thus far - idealization

- all routers identical
- network “flat”

... not true in practice

Scale: with 600 million destinations:
- can’t store all dest’s in routing tables!
- routing table exchange would swamp links!

Administrative autonomy
- internet = network of networks
- each network admin may want to control routing in its own network
Hierarchical routing

- We aggregate routers into regions, “autonomous systems” (AS)
- Routers in same AS run same routing protocol
 - “intra-AS” or “interior” routing protocol
 - routers in different AS can run different intra-AS routing protocol

Gateway (or border) router:
- at “edge” of its own AS
- has link to router in another AS
Interconnected ASes

- Forwarding table configured by both intra- and inter-AS routing algs
 - intra-AS sets entries for internal dests
 - inter-AS & intra-AS sets entries for external dests
Inter-AS tasks

• Suppose router in AS1 receives a datagram destined outside of AS1:
 - Router should forward packet to gateway router, but which one?

 AS1 must:
 1. Learn which dests are reachable through AS2, which through AS3
 2. Propagate this reachability info to all routers in AS1

 Job of inter-AS routing!
Inter-AS tasks

• Suppose AS1 learns (via inter-AS protocol) that AS with prefix x is reachable via AS3 (gateway 1c), but not via AS2
 – inter-AS protocol propagates reachability to all internal routers
• Router 1d determines from intra-AS routing info that its interface I is on the least cost path to 1c
 – Installs forwarding table entry (x,I)
If an external destination is reachable from multiple gateways, a router inside the AS should forward packets for that destination to

A. The closest gateway that can reach the destination.

B. The gateway that has the least-cost external path to the destination.

C. The gateway that has the least-cost path for both the internal and external path.

D. Somewhere else.
Routing Policy

• How should the ISP route the customer’s traffic to the destination?

Do what’s best for… who?
Hot Potato Routing

- Hot Potato: get rid of packets ASAP!
- Best path: get it as close to the destination as we can.
Hot Potato Routing

- **Hot Potato**: get rid of packets ASAP!
- **Best path**: get it as close to the destination as we can.

Not my problem!

(Don’t use resources)
Hot Potato Routing

- **Hot Potato**: get rid of packets ASAP!
- **Best path**: get it as close to the destination as we can.

![Diagram showing network with Customer AS, Customer’s ISP, Other Networks, and Destination AS connected by various nodes and edges.]

Hold packet longer, use more resources….
Provide better service!
Route Selection

• Often dictated by non-technical factors

• When governed by protocols, two categories:
 – Intra-AS / Interior gateway protocols
 – Inter-AS / Exterior gateway protocols
Why different Intra-, Inter-AS routing?

Policy:

- inter-AS: admin wants control over how its traffic routed, who routes through its net.
- intra-AS: single admin, so no policy decisions needed

Scale:

- hierarchical routing saves table size, reduced update traffic

Performance:

- intra-AS: can focus on performance
- inter-AS: policy may dominate over performance
Intra-AS Routing

• Also known as **interior gateway protocols (IGP)**

• Distance Vector:
 ▪ **RIP**: Routing Information Protocol
 ▪ **(E)IGRP**: Interior Gateway Routing Protocol
 (Cisco proprietary)

• Link State:
 ▪ **OSPF**: Open Shortest Path First
 ▪ **IS-IS**: Intermediate system to Intermediate system

OSPF and IS-IS are deployed most commonly today!
Intra-AS Routing

• Also known as *interior gateway protocols (IGP)*

Goal:
Get traffic that is already in an AS to a destination inside that same AS.

OSPF and IS-IS are deployed most commonly today!
RIP (Routing Information Protocol)

- Included in BSD-UNIX distribution in 1982
 - distance metric: # hops (max = 15 hops), each link has cost 1
 - hops = number of subnets traversed
 - Distance vectors exchanged with neighbors every 30 sec
 - Each advertisement: list of up to 25 destination subnets

from router A to destination subnets:

<table>
<thead>
<tr>
<th>subnet</th>
<th>hops</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>1</td>
</tr>
<tr>
<td>v</td>
<td>2</td>
</tr>
<tr>
<td>w</td>
<td>2</td>
</tr>
<tr>
<td>x</td>
<td>3</td>
</tr>
<tr>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>z</td>
<td>2</td>
</tr>
</tbody>
</table>
OSPF (Open Shortest Path First)

- Link state protocol (reliable flooding of LSAs)

- “Open”: standardized, publicly available implementations

- Multiple equal-cost paths allowed (load balancing)

- Additional features:
 - OSPF messages authenticated (to prevent malicious intrusion)
 - Hierarchical OSPF for large autonomous systems.
Hierarchical OSPF

- **Two-level hierarchy**: local area, backbone.
 - link-state advertisements only in area
 - each nodes has detailed area topology; only know direction (shortest path) to nets in other areas.
- **Area border routers**: “summarize” distances to nets in own area, advertise to other Area Border routers.
- **Backbone routers**: route between local areas
- **Boundary routers**: connect to other AS’s.
Hierarchical OSPF

- Backbone router
- Boundary router
- Area 1
- Area 2
- Area 3
- Border routers
- Internal routers
Route Selection

• Often dictated by non-technical factors

• When governed by protocols, two categories:
 – Intra-AS / Interior gateway protocols
 – Inter-AS / Exterior gateway protocols
Internet inter-AS routing: BGP

Goal:
Get traffic from one AS to another.
Border routers: exchange AS reachability,
Internal routers: exchange intra-AS reachability.
Is this sufficient to route from source to destination?

A. Yes
B. No
Internet inter-AS routing: BGP

• BGP (Border Gateway Protocol):
 The de facto inter-domain routing protocol

• BGP provides each AS a means to:
 – external BGP: obtain subnet reachability information from neighboring ASs.
 – internal BGP: propagate reachability information to all AS-internal routers.
 – determine “good” routes to other networks based on reachability information and policy.

• Allows a subnet to advertise its prefix to the rest of the Internet
BGP

- **BGP session:** two BGP routers ("peers") exchange BGP messages:
 - Advertising *paths* to different destination network prefixes ("path vector")
 - Exchanged over long-term TCP connections

- When AS3 advertises a prefix to AS1:
 - AS3 *promises* it will forward datagrams towards that prefix
 - AS3 can aggregate prefixes in its advertisement
BGP: Distributing Path Information

• Using eBGP session between 3a and 1c, AS3 sends prefix reachability info to AS1.
 ▪ 1c can then use iBGP do distribute new prefix info to all routers in AS1
 ▪ 1b can then re-advertise new reachability info to AS2 over 1b-to-2a eBGP session

• When a router learns of a new prefix, it creates an entry for the prefix in its forwarding table.
Path attributes and BGP routes

• An advertised prefix includes BGP attributes
 – prefix + attributes = “route”

• Two important attributes:
 – **AS-PATH:** contains list of ASs through which prefix advertisement has passed:
 • If AS2 advertises a prefix to AS1, AS1 will advertise path: AS1 AS2...
 • Ignore routes that include yourself in them!
 – **NEXT-HOP:** indicates specific internal-AS router to next-hop AS.
 (may be multiple links from current AS to next-hop-AS)

• Gateway router receiving route advertisement uses **import policy** to accept/decline
 – e.g., never route through AS x
 – **policy-based** routing
BGP Route Selection

• Router may learn about more than one route to destination AS, selects route based on:
 – local preference value attribute: administrative policy
 – shortest AS-PATH
 – closest NEXT-HOP router: hot potato routing
 – additional criteria
Which routes a BGP router advertises will depend on…

A. which ISPs have contractual agreements.

B. the shortest path to a subnet/prefix.

C. which subnets are customers of an ISP.

D. More than one of the above. (which?)
Which routes a BGP router advertises will depend on…

A. Which ISPs have contractual agreements.

B. The shortest path to a subnet/prefix.

C. Which subnets are customers of an ISP.

D. More than one of the above. (which?)
• A, B, C are *provider networks*
• X, W, Y are customer (of provider networks)
• X is *dual-homed:* attached to two networks
 ▪ X does not want to route from B via X to C
 ▪ .. so X will not advertise to B a route to C
• A advertises path AW to B
• B advertises path BAW to X
• Should B advertise path BAW to C?
 ▪ B gets no “revenue” for routing CBAW since neither W nor C are B’s customers
 ▪ B wants to force C to route to w via A
 ▪ B wants to route *only* to/from its customers!
BGP routing policy gone wrong

- x advertises a path to E (that it is not connected to).
- all traffic starts to flow into x from B and C!
Faulty redistribution can be dangerous!

- AS7007 incident (April, 1997):

 Hijack large part of the Internet
Summary

• As we’ve seen before (DNS), a hierarchy can help manage state storage constraints.
 – intra-AS routing: lots of info about local routes
 – inter-AS routing: less info about far away routes

• BGP: the inter-AS routing protocol for the Internet
 – Decisions often contractual

• BGP advertises AS prefixes, including:
 – entire path of ASes along the way
 – which border router heard the advertisement (Next Hop)