
CS 31: Introduction to Computer Systems

Last Class: Synchronization / Course Summary
04-29-2025

Producer/Consumer Problem
• A shared fix-sized buffer

• Two types of threads:

1. Producer: creates an item, adds it to the buffer

2. Consumer: removes an item from buffer, and

consumes it.

All kinds of real-world examples:

• print queue: users produce print requests, printer is

consumer

• music streaming: server reads music from disk, sends

data to client, client downloads music file from shared

buffer

• web server: server reads file from disk, sends it on the

network, client downloads file

C0 … Cm … P0 … Pm

. . .

Threads:

9 11 3 7buff:

out: in: num_items:

add/remove

1 5 4

item

item

item item item

global variables:

Process

.

stacks:

 each gets own copy
 of local variables

Producer/Consumer Synchronization?

5

int num_items=0, in=0, out=0, buff[N];

void producer_threads(){

 int item;

 while(1) {

 item = produce_item();

 //add to queue

 buff[in] = item;

 in = (in+1)%N;

 num_items++;

 }

}

void consumer_threads(){

 int item;

 while(1) {

 //remove from queue

 item = buff[out];

 out = (out+1)%N;

 num_items--;

 consume_item(item);

 }

}

C0 … Cm … P0 … Pm

. . .

Threads:

9 11 3 7buff:

out: in: num_items:

add/remove

1 5 4

item

item

item item item

global variables:

Process

.

stacks:

 each gets own copy
 of local variables

Producer/Consumer

Producer/Consumer

6

// Global Variables (all threads can access):
int num_items=0, in=0, out=0, buff[N];

void producer_threads(){

 int item; // local variable (own copy)
 while(1) {

 item = produce_item();

 buff[in] = item;

 in = (in+1)%N;

 num_items++;

 }

}

void consumer_threads(){

 int item;

 while(1) {

 item = buff[out];

 out = (out+1)%N;

 num_items--;

 consume_item(item);

 }

}

C0 … Cm … P0 … Pm

. . .

Threads:

9 11 3 7buff:

out: in: num_items:

add/remove

1 5 4

item

item

item item item

global variables:

Process

. . .

stacks:

 each gets own copy
 of local variables

. . .

Producer/Consumer
Solution

// Global Variables:
pthread_mutex_t mux = PTHREAD_MUTEX_INITIALIZER;

int num_items=0, in=0, out=0, buff[N];

Producer Threads:
int item;

while(1) {

 item = produce_item();

 pthread_mutex_lock(&mux);

 buff[in] = item;

 in = (in+1)%N;

 num_items++;

 pthread_mutex_unlock(&mux);

}

Consumer Threads:
int item;

while(1) {

 pthread_mutex_lock(&mux);

 item = buff[out];

 out = (out+1)%N;

 num_items--;

 pthread_mutex_unlock(&mux);

 consume_item(item);

}

9 11 3 7 ? ? ? ?buff:

add/remove

out: in: num_items: 1 5 4

Need Atomic Access to buff state: num_items,buff,in,out
• Want num_items++ and num_items-- to be atomic
• Don’t want multiple consumer threads simultaneously using or updating out
• Don’t want multiple producer threads simultaneously using or updating in

Is this Enough? Have We solved Producer/Consumer?

Producer/Consumer
Solution

// Global Variables:
pthread_mutex_t mux = PTHREAD_MUTEX_INITIALIZER;

int num_items=0, in=0, out=0, buff[N];

Producer Threads:
int item;

while(1) {

 item = produce_item();

 pthread_mutex_lock(&mux);

 buff[in] = item;

 in = (in+1)%N;

 num_items++;

 pthread_mutex_unlock(&mux);

}

Consumer Threads:
int item;

while(1) {

 pthread_mutex_lock(&mux);

 item = buff[out];

 out = (out+1)%N;

 num_items--;

 pthread_mutex_unlock(&mux);

 consue_item(item);

}

Still need some Scheduling Type of Synchronization:

• Consumer threads must wait when there are no items in buff to consume
• Producer threads must wait when there there is no space in buff to put item

9 11 3 7 ? ? ? ?buff:

add/remove

out: in: num_items: 1 5 4

Producer/Consumer Solution
// Global Variables:
pthread_cond_t full = PTHREAD_COND_INITIALIZER;

pthread_cond_t empty = PTHREAD_COND_INITIALIZER;

pthread_mutex_t mux = PTHREAD_MUTEX_INITIALIZER;

int num_items=0, in=0, out=0, buff[N];

Producer Threads:
int item;

while(1) {

 item = produce_item();

 pthread_mutex_lock(&mux);

 while(num_items >= N) {

 pthread_cond_wait(&full,

 &mux);

 }

 buff[in] = item;

 in = (in+1)%N;

 num_items++;

 pthread_cond_signal(&empty);

 pthread_mutex_unlock(&mux);

}

Consumer Threads:
int item;

while(1) {

 pthread_mutex_lock(&mux);

 while(num_items == 0) {

 pthread_cond_wait(&empty,

 &mux);

 }

 item = buff[out];

 out = (out+1)%N;

 num_items--;

 pthread_cond_signal(&full);

 pthread_mutex_unlock(&mux);

 consume_item(item);

}

Synchronization Can be Tricky
• Race Condition: missing synchronization

10

if(num_items > 0) {

 pthread_mutex_lock(&mutex);

 item = buff[out];

 out = (out+1)%N;

 num_items--;

 pthread_mutex_unlock(&mutex);

}

…

if(num_items < N) {

 pthread_mutex_lock(&mutex);

 buff[in] = item;

 in = (in+1)%N;

 num_items++;

 pthread_mutex_unlock(&mutex);

}

Q: Where is the
Race Condition?

if(num_items > 0) {

 pthread_mutex_lock(&mutex);

 item = buff[out];

 out = (out+1)%N;

 num_items--;

 pthread_mutex_unlock(&mutex);

}

…

if(num_items < N) {

 pthread_mutex_lock(&mutex);

 buff[in] = item;

 in = (in+1)%N;

 num_items++;

 pthread_mutex_unlock(&mutex);

}

Race Condition:
Reading value of num_items is NOT Atomic

11

num_items: 1

Ci Ck

(1) threads both read 1
simultaneously,
and evaluate
(1 > 0) is TRUE

(2) One gets mutex first,
gets valid item from
buff

(3) Other gets mutex
second, gets garbage
item from buff

Synchronization Can be Tricky
• Deadlock: tid(s) blocked waiting forever

• bad ordering of concurrent synch calls:

• Forgetting to unlock (must be on every path):

12

Tid 1:

pthread_mutex_lock(&mux1);

pthread_mutex_lock(&mux2);

Tid 2:

pthread_mutex_lock(&mux2);

Pthread_mutex_lock(&mux1);

pthread_mutex_lock(&mux1);

if(some bool expr) {

 // do some atomic stuff

 pthread_mutex_unlock(&mux1);

}

If cond isn’t true, then no call to unlock mutex -> next call to lock will block forever

Parallel Programming Can be Hard

13

Thinking about all possible orderings of concurrent
actions and how Tids may interact/interfere

Some types of errors:
• Race conditions:

outcome depends on arbitrary OS scheduling order

• Deadlock:
errors in resource allocation prevent forward progress

• Livelock / Starvation / Fairness:
arbitrary scheduling can prevent tids progress

These can be difficult to find or difficult to fix

Parallel Programming Can be Hard

14

Thinking about all possible orderings of concurrent
actions and how Tids may interact/interfere

Some types of errors:
• Race conditions:

outcome depends on arbitrary OS scheduling order

• Deadlock:
errors in resource allocation prevent forward progress

• Livelock / Starvation / Fairness:
arbitrary scheduling can prevent tids progress

These can be difficult to find or difficult to fix

Parallel Programming Benefits

15

• Can greatly improve performance of program if can
divide computation into parts that multiple threads
can run simultaneously on multiple cores.

• How much faster can we get?
• With 4 cores? 8 cores? 16 cores? …

Parallel Performance Metrics
• Speed-up: Ratio of Sequential Time to Parallel

Ts/Tp: Ts: time to execute sequential version
 Tp: time to execute a parallel version

• Ideal: linear speed-up as increase the number of
 processors (degree of parallelism)

16

Number
of CPUs

1

2

4

8

16

1 2 4 8 16

Speed-up

Speed-up Reality
• Often unable to achieve ideal linear speedup

17

Number
of CPUs

1

2

4

8

16

1 2 4 8 16

Linear

Actual

• Why?
• Added overheads in parallel version of code:

• thread create/join, synchronization, thread CXS

• Often limits to parallelism
• Need good amount of parallel computation between synch

– 10x10 GOL, 100 threads could be slower than 10 threads

• Number CPUs limit number threads actually running at once

Speed-up Awesomeness!
• Sometimes parallel program can actually do better

than linear speed-up

18

Number
of CPUs

1

2

4

8

16

32

1 2 4 8 16

Linear

Superlinear

• Why?
• Better locality with smaller problem sizes

• More cache hits (faster memory accesses!)

Performance Limits

• Usually linear speed-up is hard to achieve

• Embarrassingly parallel solutions often can achieve
• Parallelism requiring basically no synchronizing actions

• But most parallel solutions have some parallel overheads
that interfere with achieving the ideal
• Typically some points where threads need to synchronize their

actions

• Can we quantify the limits to parallel speed-up?

19

Amdahl’s Law
• Execution time after improvement:
(time effected by improvement)/(amount of improvement)

 + (time not effected by improvement)

• Example: 90% of application can be parallelized
• 10 processors:
Tp = .9*Ts/10 + .1*Ts = .19*Ts

Speed-up = Ts/Tp = ~5.3

• 100 processors:

 Tp = .9*Ts/100 + .1*Ts = .109*Ts

 Speed-up = Ts/Tp = ~9.2

• 1000 processors:
Speed-up = ~9.9

20

Amdahl’s Law
Tells us to focus our efforts on the hot spots:

• Look to parallelize (or optimize in any way) the
portion of code that accounts for the largest portion of
execution time

• Example:
• If one part accounts for 10% of execution time, the best we can do

is completely optimize this portion away

• At best, the overall effect on performance are reducing total
runtime by 10%

• Where is all the time?
• Usually in loops

• Could also be implicit and explicit I/O costs

21

Summary
• Thread: an OS abstraction

• Multiple threads of execution in single process

• Private Stack and Register values, shared everything else

• Threads and Parallelism Computing
• Shared memory model of parallel computing

• Need to think about parallel ordering of threads

• Need to think about synchronization
• Atomic Type

• Scheduling Type

• Race Conditions and Deadlock

• Quantifying the effects of Parallelization:
• Speed-up and Amdahl’s law

22

CS31 Course Summary

23

What do you Know?

24

(1) How a Computer Runs a Program:

(2) How to Efficiently Run Programs
The Memory Hierarchy & its effect performance

• Caching

OS abstractions for running programs efficiently
• Processes, VM, Threads

Support for Parallel programming
• Threads and Synchronization, Multicore

How HW is organized
to run programs

How program is encoded
to run on HW

OS manages HW
provides abstractions

Program

Operating System

Computer Hardware

Regs

RAM

Disk

Cache

Why does my program run so slowly?

One Answer: bad algorithm, big-O analysis

Another Answer: Space Usage and Systems costs
• How is my program accessing its memory?

• Memory Hierarchy Effects, caching, page faults

• Memory Layout of data structures & access patterns

• Can my program be parallelized?
• Am I doing it efficiently? Synchronization Costs?

• Where should I focus my performance tuning efforts?

25

First half of semester

• How HW is designed to run program:
• Based on Von Neumann Architecture

• Basic Logic gates to Circuits to big components:
• Types of Circuits to build CPU, RAM

• Buses connect components

• Binary encoding of programs
• Data and Instructions (IA32 assembly)

• Translation from a high-level-languge (C) to
language HW can execute (IA32 assembly)

• How data structures are laid-out in memory

• Support for functions, the stack

26

Second Half of Semester
Efficiency:

• Memory Hierarchy and caching

• How OS manages HW & run programs
• Implements Easy-to-Use Abstractions on top of HW

• Process:
• multi-programming: more than one process in the system at a time

• process hierarchy, creation, reap, fork-exec, wait, signals

• CPU context switching and scheduling policies

• Virtual Memory:
• protection and lone-view

• Efficient Use of RAM, paging and page replacement

• Threads: for Shared Memory Programming
• Multiple streams of execution in same virtual address space

• Need Synchronization primitives
27

Second Half of Semester

• Efficiency
• Shared Memory Parallel Computing

• Multicore systems

• Threaded programming

• Pthread library functions for creating, synchronizing and joining
threads

• Solving Synchronization Problems

• Atomic and Scheduling types of synchronization

• Deadlock and Race conditions

• Evaluating Program Performance:
• Speed-up, Amdahl’s Law

28

Final Exam

• When: May 12

• Time: 9 – 12pm

• Where: Singer 33

Studying for the Final
• Know Big Themes from first half of the course

• Know Big Themes AND the details from the second
half of the course
• The Memory Hierarchy and Caching

• Processes

• Virtual Memory and Paging

• Threads and Synchronization

30

Upper-level Courses that Expand on CS31 Topics

• CS45: Operating Systems
• Much more in depth on all 2nd half of course topics (and more)

• CS87: Parallel and Distributed Computing
• Threaded parallelism and a lot of other models, systems, algorithms, associated with parallel

and distributed computing

• CS43: Computer Networks
• Systems issues associated with implementing networked and distributed systems

• CS44: Databases
• Focus on Database Management Systems, data layout and access methods and the Memory

Hierarchy, Parallel & Distr. DB

• CS75: Compilers
• How compiler is designed to translate a program written in a HLL to assembly (ex. C to IA32),

optimization

• CS88: Computer Security and Privacy
• Focus on Security: (correctness) and (protection) mechanisms on computer systems and

architecture using CIA: Confidentiality, Integrity and Availability 31

	Slide 1: CS 31: Introduction to Computer Systems
	Slide 2: Producer/Consumer Problem
	Slide 3: Producer/Consumer Synchronization?
	Slide 4
	Slide 5: Producer/Consumer
	Slide 6: Producer/Consumer
	Slide 7: Producer/Consumer Solution
	Slide 8: Producer/Consumer Solution
	Slide 9: Producer/Consumer Solution
	Slide 10: Synchronization Can be Tricky
	Slide 11: Race Condition:
	Slide 12: Synchronization Can be Tricky
	Slide 13: Parallel Programming Can be Hard
	Slide 14: Parallel Programming Can be Hard
	Slide 15: Parallel Programming Benefits
	Slide 16: Parallel Performance Metrics
	Slide 17: Speed-up Reality
	Slide 18: Speed-up Awesomeness!
	Slide 19: Performance Limits
	Slide 20: Amdahl’s Law
	Slide 21: Amdahl’s Law
	Slide 22: Summary
	Slide 23: CS31 Course Summary
	Slide 24: What do you Know?
	Slide 25: Why does my program run so slowly?
	Slide 26: First half of semester
	Slide 27: Second Half of Semester
	Slide 28: Second Half of Semester
	Slide 29: Final Exam
	Slide 30: Studying for the Final
	Slide 31: Upper-level Courses that Expand on CS31 Topics

