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The Operating System

(1) How a Computer Runs a Program:

• OS role in running programs on system

(2)  How to Efficiently Run Programs

• OS abstractions and HW management for running programs efficiently

Program

Operating System

Computer Hardware



Operating System

Special SW sits between the HW & User/Program:

1. Manages the underlying HW

• Coordinates shared access to HW

• Efficiently schedules/manages HW resources

2. Provides easy-to-use interface to the HW

• just type:  ./a.out to run a program

• fopen, fscanf to interact with stored data (files)

User

Program

Operating System

Computer Hardware



Anatomy of a Process

• Abstraction of a running program
– a dynamic “program in execution”

• OS keeps track of process state
– What each process is doing

– Which one gets to run next

• Basic operations
– Suspend/resume (context switch)

– Start (spawn), terminate (kill)



Common fork() usage: Shell

2. child: exec()user-requested program

Shell

fork()

Shell
(p)

Shell
new
prog

wait() exec()

Runs to completion



Common fork() usage: Shell

3. child program terminates, cycle repeats

Shell

fork()

Shell
(p)

Shell
new
prog

wait() exec()

Runs to completion

Child terminates



Common fork() usage: Shell

3. child program terminates, cycle repeats

Shell

fork()

Shell
(p)

Shell
new
prog

wait() exec()

Runs to completion

Child terminatesShell
(p)

Original parent 
shell resumes



Process Management: Summary

• A process is the unit of execution.

• Processes are represented as Process Control Blocks in the OS

– PCBs contain process state, scheduling and  memory management information, 

etc

• A process is either New, Ready, Waiting, Running, or Terminated.

• On a uniprocessor, there is at most one running process at a time.

• The program currently executing on the CPU is changed by performing a 

context switch

• Processes communicate either with message passing or shared memory



Process: an OS Abstraction

Process: an instance of a running program

Process implements 2 main abstractions:

1. Lone View of use of the HW: 

maintains logical control flow of own instructions on CPU with 
protection from seeing effects of others sharing CPU

2. Private Virtual Address Space

• Each Process gets its own text, stack, heap, …, 
Memory space, can’t touch each other’s space

• (e.g.) Multiple processes running same a.out: 

• each gets own private variables (say x)

• P1 executing x=3 doesn’t modify P2’s x value!



What we Know about 
Physical Memory 

(Main Memory  (RAM))

OS0x0

max

RAM is array of addressable bytes, from 0x0 to max

(e.g.) address 0 to 230-1 for 1 GB of RAM space

– The OS needs to be in RAM 
• Usually loaded at address 0x0 

– Physical Storage for running
processes: Process Address 
Spaces  are stored in RAM

OS0x0

max

RAM

P1

P2

P3

x:

x:
P1 and P2
each get
their own
copy of x

Regs

Main memory
(RAM)

Secondary storage

Cache



Memory and Addresses

OS0x0

max

OS0x0

max

RAM

P1

P2

P3

x:

x:
P1 and P2
each get
their own
copy of x

Consider processes P1 and P2 both running the 
same a.out.
They both get their own private address space 
stored in RAM.

Q: What are P1 and P2’s addresses for x?

A: Same.   B: Different

A1: Cleary x has different RAM memory addresses in P1 and P2 

0x222

0x444

Q: What about addresses from x86 instructions?
              movq 0x1234, %rax 

0x1234 is the same address for 
every process executing this code

A2: Cleary x has same memory addresses in P1 & P2 instructions 



Processes and Memory Addresses

• When running two programs, get two separate processes (P1 & P2) each with separate 

address space.

• The code they execute could generate the same memory addresses (and very likely does, 

particularly when running the same a.out):

Example of P1 and P2’s execution of the same instruction

P1: R[%rax]: 100

R[%rdx]: 0x1238

0xf234 movq %rax, (%rdx)

CPU → store 100 to         
              Memory Address
              0x1238

P2: R[%rax]:  30

R[%rdx]: 0x1238

0xf234 movq %rax, (%rdx)

CPU → store 30 to         
              Memory Address
              0x1238

Q:  how to prevent pid P1 and pid P2 from mucking up each other’s execution 
state?



Solution: Virtual Memory Abstraction

• Each Process has its own virtual address space.

•  Virtual Address Space: Process’s view of its own memory

– 2N contiguous addressable bytes ( byte 0, 1, 2, …, 232 -1)

– Addresses in two process’ virtual address space may be same

• P1’s virtual address for x  is 0x1238

• P2’s virtual address for x is 0x1238 

• Virtual Address mapped to different Physical addresses (in RAM)

• P1’s virtual address 0x1238 maps to different physical address

in RAM than P2’s virtual address 0x1238

• Virtual Memory: adds level of indirection to memory references

– system translates (maps) virtual address view to physical address view

Abstraction: the addresses from x86 
instructions executed by CPU)

Reality: addresses to access RAM



Every Process gets its own  Virtual Address Space (VAS)

On fork, the OS:

• Creates child’s VAS, a copy of its 
parent’s

• OS keep track of child’s VAS

On exec, OS: 

• Initializes VAS:

– Loads in code and data

– Creates empty stack and heap 
space

%rsp 

Heap
(created at runtime)

Stack
(created at runtime)

0x0

global variable space

instructions
Loaded 
from  
a.out 
file

232-1

Process’s virtual (logical) 
Address Space



Virtual Memory Abstraction Goal

Every process has the same virtual memory layout

– Exact contents differ, but layout is the same

– Address space of 2N bytes addressed from 0x0 to (2N-1)
• N could be 32, 48, 64  (232 is 4GB of memory, 264 is huge! )

Process 1

Text

Data

Stack

Heap

0x0

Process 2

Text

Data

Stack

Heap

0x0

Process N

Text

Data

Stack

Heap

0x0

2N-1

. . .

2N-12N-1
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Private Virtual Memory Abstraction

• One process could modify a value at a particular  virtual address (ex 0x1238)

– this will not interfere with any other process’ values stored at the same address in their virtual 
memories.

Process 1

Text

Data

Stack

Heap

0x0

Process 2

Text

Data

Stack

Heap

0x0

Process N

Text

Data

Stack

Heap

0x0

2N-1

. . .

2N-12N-1

0x1238 0x1238 0x1238 487

movq $5, 0x1238

5
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Physical Memory (RAM): Reality

RAM is array of addressable bytes, from 0x0 to max

– max is way less than 264  bytes  

– Process’ VAS need to be loaded into RAM
• Each VAS could be 232 or 264 bytes

• Individual VAS may be larger than RAM, together much larger

OS0x0

max

RAM
Process 1

Text

Data

Stack

Heap

0x0

Process 2

Text

Data

Stack

Heap

0x0

Process N

Text

Data

Stack

Heap

0x0

2N-1

. . .

2N-12N-1



Virtual Addresses Map to Physical Addresses

• Process’ Virtual Addresses map to different Physical Addresses

• RAM cannot necessarily store even one full process’ VAS

• Parts of Process’ VAS must be stored at different RAM addresses

Each Processes’s view of its memory (virtual address) 
gets mapped to reality (physical addresses)

OS0x0

max

RAM
Process 1

Text

Data

Stack

Heap

0x0

Process 2

Text

Data

Stack

Heap

0x0

Process N

Text

Data

Stack

Heap

0x0

2N-1

. . .

2N-12N-1

Process N

Process N

Process 2

Process 1

Process 2



Mapping Virtual to Physical Addresses

• CPU generates Virtual Addresses (VA): 

– From instruction execution (e.g. movl)

– VA: Process’s view of its address space

• Memory Mapping Unit (MMU) translates VA→PA 

– Physical Address (PA): Physical Memory Addresses

Physical address
(PA)

4 byte data value at PA 4 

0:
1:

M-1:

Main memory

(Physical Memory)2:
3:
4:
5:
6:
7:

. . . 
8:

4
MMUCPU

Virtual address
(VA)

24100

ex. Pi’s VA 24100 maps to PA 4



Where and what is the MMU?

• Parts of memory mapping are implemented in HW and others in SW (OS)

– OS and HW work together to implement Virtual to Physical Address Translation

• Some address translation can be done using h/w circuitry

• Some address translation by the OS 

– OS’s implements mapping data structures that are stored in RAM

– On context switch, OS sets up state needed by HW circuitry to map process’ VA 

(Virtual Address) to PA (Physical Address)



Memory

• Abstraction goal: make every process 
think it has the same memory layout.

– MUCH simpler for compiler if the stack 
always starts at 0xFFFFFFFF, etc.

• Reality: there’s only so much memory to 
go around, and no two processes should 
use the same (physical) memory 
addresses.

Process 1

Process 3

Process 3

Process 2

Process 1

OS (with help from hardware) will keep track of who’s 
using each memory region.

0x0

0xFFFFFFFF

OS

Stack

Text

Data

Heap

Abstraction

OS

Reality



Memory Terminology

Process 1

Process 3

Process 3

OS

Process 2

Process 1

Physical Memory: The contents of 
the hardware (RAM) memory.
Managed by OS.  Only ONE of these 
for the entire machine!

Virtual (logical) Memory: The 
abstract view of memory given to 
processes.  Each process gets an 
independent view of the memory.

Address Space:
Range of addresses for 
a region of memory.

The set of available 
storage locations.

0x0

0x…
(Determined by amount of  installed RAM.)

0x0

0xFFFFFFFFVirtual address space 
(VAS): fixed size.

OS

Stack

Text

Data

Heap

OS

Stack

Text

Data

Heap

OS

Stack

Text

Data

Heap



Paging Vocabulary

• For each process, the virtual address space is divided into fixed-size 
pages.

• For the system, the physical memory is divided into fixed-size frames.

• The size of a page is equal to that of a frame.

– Often 4 KB in practice.



Main Idea

• ANY virtual page can be stored in any available frame.

– find an appropriately-sized memory gap? 

– very easy!– they’re all the same size.

• For each process, OS keeps a table mapping:

– each virtual page maps to a physical frame.



Paging

• Common implementation of Virtual Memory

– OS divides each process’s VA space into some number of contiguous pages
• Typically 4KB, but it varies and is often configurable

– OS divides RAM into some number of physical frames of the same size (i.e. 
typically 4KB)

– Any page of VM can be stored in any frame of PM
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Virtual Memory Pages

Page N-1 

0:

...

1023:

1024:

...

2047:

2048:

...

3071:

3072:

...

4095:

...

max:

Page 1

Page 2

Page 0

Page 3

...

Virtual Memoryaddress:

Page: grouping of
a contiguous chunk
of memory space
of some size

e.g.  Page is 1Kb
        (210 bytes)
       (1024 bytes)

an  array of addressable bytes

Memory as an  array of pages



Main Idea

• ANY virtual page can be stored in any available frame.

– find an appropriately-sized memory gap? 

– very easy!– they’re all the same size.

Physical
Memory

Virtual
Memory

(OS Mapping)

Implications for fragmentation?

Internal Fragmentation: About 
the same.  Process can always 
request memory and not use it.



Paging

VM and PM divided into Page-sized chunks
Any page of VM can be stored in any frame of PM

Pi’s Virtual Memory

unmapped

VP 0

VP 1

VP  N-1

unmapped

unmapped

unmapped

unmapped

0

Pi’s VP i PF M-1

Physical memory

(RAM)

empty

Pi’s VP N-2

empty

PF 0

PF 1

empty

Pi’s VP 1

0

Virtual Pages of 
Pi’s logical address space 

Physical Frames 
of RAM (physical Mem.)

Contiguous
 pages of 
VA space:

Mapped into
non-contiguous
physical page 
frames that store
some of them

max

PF k

Physical 
Frame 
Number

Virtual
Page
Number

232 -1

VP  N-2

VP i



Paging

Any page of VM can be stored in any frame of PM

Process Pi’s 
Virtual Memory

unmapped

VP 0

VP 1

VP  N-1

unmapped

unmapped

unmapped

unmapped

0

PF M-1

Physical Memory 
(RAM)

empty

empty

PF 0

PF 1

empty

0

max

232

PF k

Q: How to know which Physical Frame of RAM 
     stores Pi’s Virtual Page p?

A: OS has to keep mapping of VP to PF for each process



Page Tables

OS keeps a page table data structure for each process

Each page table entry (PTE) maps one of the process’s virtual pages to a 
physical page frame of RAM

Since each page of Pi’s virtual 
address space can map to any 
physical frame, need to keep 
one mapping per page of Pi’s 
virtual address space

Process Pi’s Page table 
Valid Physical frame number (f)

0

1

k

N

…

… …

……

…

valid bit

PTE entry k: 1 j * valid 1: VP k is in RAM
* f:  VP k stored in Frame j

Frame number



Page Tables are Stored in Memory

With Each Process, the OS keeps the base address of its Page Table in 
memory

– Page Table: array of PTEs indexed by virtual page number

– On a context switch: OS loads Pi’s page table base address into a special 
register: Page Table Base Register 

Page table 
base register

(PTBR)

Process Pi’s 
Page Table
In Memory 

Stores Physical Memory
Address of the start of
Process Pi’s Page Table

Valid Physical frame number (f)

Physical Memory (RAM)

CPU



OS and PTBR on Context Switch

On a context switch Pi to Pj: OS saves Pi’s PTBR value and loads Pj’s PTBR value into 
PTBR

Page table 
base register

(PTBR)

Process Pi’s 
Page Table

Stores Physical Memory
Address of the start of
Process’s Page Table

Valid Physical page frame number (f)

Physical Memory (RAM)

CPU

Valid Physical page frame number (f)

Process Pj’s 
Page Table

Pi needs to use Pi’s page 
table  mappings! (not Pj’s)



OS and PTBR on Context Switch

On a context switch Pi to Pj: OS saves Pi’s PTBR value and loads Pj’s PTBR value into PTBR

Page table 
base register

(PTBR)

Process Pi’s 
Page Table

Stores Physical Memory
Address of the start of
Process’s Page Table

Valid Physical page frame number (f)

Physical Memory (RAM)

CPU

Valid Physical page frame number (f)

Process Pj’s 
Page Table

Pj uses Pj’s page table 

mappings!

OS protects Pi’s memory from Pj 



Virtual Addresses
Every byte’s virtual address is divided into 2 parts:

1. Byte offset within a page (d): low-order bits

• Number of bits depends on the page size

• 4KB pages: 4KB is 212, so 12 bits for page offset

2. Page Number (p): high-order bits

• Whichever high-order bits are left after byte offset bits

For a Virtual Address Space of 2n bytes, with page size  of 2k bytes,  the VA bits are 
interpreted as:

Virtual page number: p Byte offset within page: d

0k-1k  n-1



Page Offset and Page Number

Page N-1 

...00000:

...00001:

...00010:

...00011:

...00100:

...00101:

...00110:

..00111:

...01000:

...01001:

...01010:

...01011:

...

max:

Page 1

Page 2

Page 0

Memoryaddress:

e.g.
If page size if 4 bytes

page offset is:
 low-order 2 bytes
(which byte of 4 in 
  the page)

page number is: 
remaining high-order
bits

......



Physical Addresses

Every byte’s physical address is divided into 2 parts:

1. Byte offset within a page (d): low-order bits

• Number of bits depends on the page size

• Virtual Page and physical frame are the same size, so the byte offset bits from the 
VA are identical to the byte offset bits in the PA

2. Frame Number (f): high-order bits

• The high-order bits that are left over after the byte offset bits

For a Physical Addresses space of 2m bytes, with a page (and frame) size size of 2k bytes,  
the PA bits are interpreted as:

Frame Number: f Byte offset within frame: d

0k-1k  m-1

Number of Frames of PAS and Pages of VAS can differ: VAS and PAS can be different sizes



Virtual to Physical Address Translation

Virtual page number (p) Virtual page offset (d)

f

Virtual address: from the CPU 

Physical address: used to address RAM

Valid Physical page frame number (f)

Page table 
base register

(PTBR)

Process Pi’s Page Table Page Table 
Base Address 
for process Pi
(a physical
  memory address)

If Valid bit == 0:
page not in 

Physical memory
(page fault)

0k-1kn-1

Physical page offset (d)

0k-1

Physical page number (f)

km-1

:pth entry

a CPU register:
(e.g. movq 0x1234,%rax)



Example
Virtual Address: 8 bits, Page Size: 16 bytes, 8 page frames of RAM

• For each VA below, break into its Page Number and Offset and 
translate to is Physical Address using part of the Page Table below

Virtual Address Page Number Offset Physical Address

00110101

00011100

00000010

00111101

00100101

Page Table (1st part of it )

Entry Num Valid Frame Num

0000 1 101

0001 1 110

0010 1 111

0011 1 010

0100 1 000

1. How many bits of VA 
for page offset?

2. How many bits of VA 
for page number?

3. How many bits are
physical addresses?



Example: Answer these questions 1st

Virtual Address: 8 bits

Page Size: 16 bytes

8 page frames of RAM

1. How many bits of VA for page offset?

2. How many bits of VA for page number?

3. For VA 10011010:

1. what is the page number?

2. what is the page offset?

4. How many bits are in a physical address?



Example
Virtual Address: 8 bits, Page Size: 16 bytes, 8 page frames of RAM

• For each VA below, break into its Page Number and Offset and 
translate to is Physical Address using part of the Page Table below

Virtual Address Page Number Offset Physical Address

00110101

00011100

00000010

00111101

00100101

Page Table (1st part of it)

Entry Num Valid Frame Num

0000 1 101

0001 1 110

0010 1 111

0011 1 010

0100 1 000

1. How many bits of VA 
for page offset?

2. How many bits of VA 
for page number?

3. How many bits are
physical addresses?



Example Solution
Virtual Addresses are 8 bits and Page Size is 16 bytes:
 low order 4 bits for page offset (24 = 16)
 remaining high-order 4 bits for virtual page number

Virtual Address Page Number Offset Physical Address

00110101 0011 0101 0100101

00011100

00000010

00111101

00100101

8 Frames of Physical 
Memory, each 16 bytes:

• 3 bits for frame num

• 4 bits for page offset

PAs are 7 bits

Page Table

Entry Num Valid Frame Num

0000 1 101

0001 1 110

0010 1 111

0011 1 010

0100 1 000



Example Solution
Virtual Addresses are 8 bits and Page Size is 16 bytes:
 low order 4 bits for page offset (24 = 16)
 remaining high-order 4 bits for virtual page number

Virtual Address Page Number Offset Physical Address

00110101 0011 0101 0100101

00011100 0001 1100 1101100

00000010 0000 0010 1010010

00111101 0011 1101 0101101

00100101 0010 0101 1110101

8 Frames of Physical 
Memory, each 16 bytes:

• 3 bits for frame num

• 4 bits for page offset

PAs are 7 bits

Page Table

Entry Num Valid Frame Num

0000 1 101

0001 1 110

0010 1 111

0011 1 010

0100 1 000



Not All pages of Pi’s VAS need to be 

stored in RAM

(and they might not all fit)

+  More Efficient Use of RAM

– Unused or rarely used pages of a Pi’s virtual address space can be on disk

– RAM space for storing pages that are actively being used

– Main Memory is a cache for Virtual Address space on disk

Page Table Valid bit indicates if a Virtual Page is currently stored in RAM

– 1: yes, PTE entry stores valid Frame num mapping

– 0: no, PTE entry stores disk location of page

Regs

Main memory
(RAM)

Secondary storage

Cache



Page Hit

45

Page hit: reference to VM address that is on a 
                 page stored in Physical Memory

null

null

Page Table
In Memory

VPs in Physical Memory

VP 7
VP 4

VPs on disk

Valid

0

1

0
1

0

1

0

1

PTE 0

PTE 7

PF 0
VP 2

VP 1

PF 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual Page Num 2

PTE 3

PTE 6

Valid bit 1: Mapping is the frame number
                    of RAM that stores VA  page 2 

Regs

RAM

Disk

Cache



Page Fault

• Page fault: reference to VM address that 
                    is not in physical memory

46

null

null

Page Table
In Memory

VPs in Physical Memory

VP 7
VP 4

Valid

0

1

0
1

0

1

0

1

Valid bit 0: Mapping is disk address
                    of where VA page 3 is stored
                    on disk

PTE 0

PTE 7

PF 0
VP 2

VP 1

PF 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual Page Num 3

PTE 6
VPs on disk

Regs

RAM

Disk

Cache



Page Fault Handling by the OS

Page fault causes an interrupt to get OS to handle it

mechanism of handling a page fault: 

1. reads in the virtual page from disk

2. stores it in a physical memory frame

3. Updates PTE with frame num & valid bit = 1

4. Restarts instruction that cause the page fault

If RAM is full, the OS needs to pick a page to kick out of 
RAM:  OS needs a page replacement policy

– FIFO, Random, LRU, …  

47



Page Faults are Expensive

• Disk: 5-6 orders magnitude slower than RAM

– Very expensive; but if very rare, tolerable

• Example

– RAM access time: 100 nsec

– Disk access time: 10 msec

– p = page fault probability

– Effective access time: 100  +  p × 10,000,000 nsec

– If p = 0.1% (99.9% hit rate), effective access time = 10,100 nsec!

• Good Replacement Policy can have huge effect on 
performance (keep page fault rate low)

Regs

RAM

Disk

Cache

CS45 (and CS44)  investigate page replacement policies



Another Paging Example

Step through stream of Virtual Addresses from two 
processes context switched on and off CPU: 

1. Show how bits of each address is used for each 
Virtual Address & its Physical Address mapping

2. Translate each VA to its PA using the appropriate PTE

3. Update Pi and Pj’s PTEs appropriately as you go

4. Show the history of the contents of RAM as these 
addresses are accessed

(which virtual page of which process does it store)

5. Implement FIFO (First-In-First-Out) page 
replacement
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Pi running: VA (page #, offset) PA (frame #, offset) Page Fault?

00011101

01100001

11100001

00010010

order of memory accesses of 2 processes, Pi and Pj, running on CPU (note context switches)

Pj running   (context switch)

00011101

00010010

01100001

11100001

Pi running:  (context switch)

00011010

01100100

Pj running:  (context switch)

11101111

01100110



Pi’s Valid Frame

0 0

1 0

2 0

3 0

4 0

5 0

6 0

…

14 0

15 0

Pj’s Valid Frame

0 0

1 0

2 0

3 0

4 0

5 0

6 0

…

14 0

15 0

frame Whose Page

0

1

2

3

Page Size: 16 bytes
4 frames of RAM

8 bit virtual addresses

Pi’s Page Table Pj’s Page Table

RAM

Let’s figure out VA and PA 
bits and sizes first….
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Q1: How many bits of VA for page offset?  

 

Q2: How many bits of VA for page number?

   

Q3: How many bits are physical addresses?  How many 
for frame number, and for frame offset?   

Virtual Address (VA): 8 bits

Page Size: 16 bytes

4 frames of RAM



Virtual Address: 8 bits

Page Size: 16 bytes

4 frames of RAM

58

Q1: How many bits of VA for page offset?    4

• page size is 16 bytes (24) ➔ need 4 bits to address all 16 
bytes in the page

Q2: How many bits of VA for page number?   4

• Num bits in VA – Num bits for page offset = 8 – 4 = 4

Q3: How many bits are physical addresses?   6

• 4 bits for the frame offset (to address bytes in each frame 
frame of 16 bytes)

• Plus 2 bits to specify which of 4 frame numbers (22 == 4)
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Pi’s Valid Frame

0 0

1 0

2 0

3 0

4 0

5 0

6 0

…

14 0

15 0

Pj’s Valid Frame

0 0

1 0

2 0

3 0

4 0

5 0

6 0

…

14 0

15 0

RAM Whose Page

0

1

2

3

Pi running: VA (page #, offset) PA (frame #, offset) Page Fault?

00011101 0001 1101 Yes: Valid bit ==0

01100001

11100001

00010010

Page Size: 16 bytes
4 frames of RAM

8 bit VA: 4 bits page num  
                4 bits page offset

6 bit PA: 2 bits frame num 
                4 bits frame offset
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Pi’s Valid Frame

0 0

1 0

2 0

3 0

4 0

5 0

6 0

…

14 0

15 0

Pj’s Valid Frame

0 0

1 0

2 0

3 0

4 0

5 0

6 0

…

14 0

15 0

RAM Whose Page

0

1

2

3

Pi running: VA (page #, offset) PA (frame #, offset) Page Fault?

00011101 0001 1101 Yes: Valid bit ==0

01100001

11100001

00010010

Page Size: 16 bytes
4 frames of RAM

8 bit VA: 4 bits page num  
                4 bits page offset

6 bit PA: 2 bits frame num 
                4 bits frame offset
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Pi’s Valid Frame

0 0

1 0

2 0

3 0

4 0

5 0

6 0

…

14 0

15 0

Pj’s Valid Frame

0 0

1 0

2 0

3 0

4 0

5 0

6 0

…

14 0

15 0

RAM Whose Page

0 Pi:0001

1

2

3

Pi running: VA (page #, offset) PA (frame #, offset) Page Fault?

00011101 0001 1101 00 1101 Yes: Valid bit ==0

01100001

11100001

00010010

Page Size: 16 bytes
4 frames of RAM

8 bit VA: 4 bits page num  
                4 bits page offset

6 bit PA: 2 bits frame num 
                4 bits frame offset
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Pi’s Valid Frame

0 0

1 0 1 0

2 0

3 0

4 0

5 0

6 0 1 1

…

14 0 1 2

15 0

Pj’s Valid Frame

0 0

1 0

2 0

3 0

4 0

5 0

6 0

…

14 0

15 0

RAM Whose Page

0 Pi:1

1 Pi:6

2 Pi:14

3

Pi running: VA (page #, offset) PA (frame #, offset) Page Fault?

00011101 (0001, 1101) 001101 (00, 1101) Yes: Valid bit ==0

01100001 (0110, 0001) 010001 (01, 0001) Yes: Valid bit == 0

11100001 (1110, 0001) 100001 (10, 0001) Yes: Valid bit == 0

00010010 (0001, 0010) 000010  (00, 0010) No: V==1, Frame#: 0

4 bits for page offset
8 bit virtual address
6 bit physical addresses



Pi’s Valid Frame

0 0

1 1 0 0

2 0

3 0

4 0

5 0

6 1 0 1

…

14 1 2

15 0

Pj’s Valid Frame

0 0

1 0 1 3

2 0

3 0

4 0

5 0

6 0 1 0

…

14 0 1 1

15 0

RAM Whose Page

0 Pi:1, Pj:6

1 Pi:6, Pj:14

2 Pi:14

3 Pj:1

Pj running VA (page #, offset) PA (frame #, offset) Page Fault?

00011101 (0001, 1101) 111101  (11, 1101) Yes (V==0)

00010010 (0001, 0010) 110010  (11, 0010) No (V==1, Frame#: 3)

01100001 (0110, 0001) 000001  (00, 0001) Yes, replace Frame 0

11100001 (1110, 0001) 010010  (01, 0010) Yes, replace 1

4 bits for page offset
8 bit virtual address
6 bit physical addresses



Pi’s Valid Frame

0 0

1 0 1 0 2

2 0

3 0

4 0

5 0

6 0 1 1 3

…

14 1 0 2

15 0

Pj’s Valid Frame

0 0

1 1 0 3

2 0

3 0

4 0

5 0

6 1 0

…

14 1 1

15 0

RAM Whose Page

0 Pi:1,Pj:6

1 Pi:6,Pj:14

2 Pi:14,Pi:1

3 Pj:1,Pi:6

Pi running: VA (page #, offset) PA (frame #, offset) Page Fault?

00011010 (0001, 1010) 101010  (10, 1010) Yes (V==0) replace 2

01100100 (0110, 0100) 110100  (11, 0100) Yes (V==0) replace 3

Pj running:

11101111 (1110, 1111) 011111 (01, 1111) No (V==1) F#1

01100110 (0110, 0110) 000110 (00, 0110) No (V==1), F#0

4 bits for page offset
8 bit virtual address
6 bit physical addresses



Announcements

• Thanksgiving and Assignments
– Ninja sessions next week: Monday and Tuesday

– Lab 9: encourage you to complete by Monday evening

– Lab 10: assigned Tuesday next week (attend Tues Ninja session)

– HW9: assigned tomorrow, due Tues after Thanksgiving

• Optional: you may pick partner for lab 10
– You and your partner submit form By Friday 5pm 

(link in Announcements at top of home page)

• More Practice with Processes and Virtual Memory
– Exercises at end of Chapt. 13

– Early Access Interactive “Ask me another” Questions
(can generate an infinite number of questions of the same type)

68



Addresses & the Memory Hierarchy

movl -8(%rbp), %rax  # load from Memory into Reg 

Virtual address: value of -8(%rbp) 
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Regs

Cache

Main memory (RAM)

How value is read into Register:

1. Check if the value at the load address is 
already in the cache.  If so, copy it from 
cache into register & done.  

Use Virtual Address for cache lookup*

2. Else, cache miss, need to read in from 
RAM, copy into Cache, copy into register.

Need Physical Address to read from RAM 

10

10

on chip

10

memory
bus

*common, but some HWs could use physical addresses for lookup

Regs

Main memory

cache



Line V D Tag Data

0

1

2

3

4

… ...    

1020 1 0 1323

1021

1022

1023

Example: Addresses and Memory

32 bit Virtual Address: 00000001111011001011111111100010

a. Use index bits  to find line (1024)
b. Valid but Tag (3941) doesn’t match one 
      in cache line (1323)

  cache miss → need to read bytes from RAM (using PA)

Tag (19 bits) Index (10 bits) Byte offset (3 bits)

3941 1020 2
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1. First try to find byte(s) in the cache
(Direct Mapped, 210 lines, 8 byte blocks)

Divide VA into:  tag, index, byte offset

0000000111101100101  1111111100  010

                 (3941)                (1020)             (2)

Cache Memory (not RAM)



2. Read from RAM:  1st get PA associated with this VA

  a. Divide up VA bits into  page number and offset (assume 4KB page size)

         32 bit  VA: 0000000111101100101 111111100010
                                                (2041)                        (4066)

b. Look at PTE 2041 to
     get frame number (f) 5678

Page Number (p)  (20 bits) Page offset (d) (12 bits)

2041 4066

71

PTBR

Physical Memory (RAM)

c. Construct Physical Address from f & d: 
PA:  00000001011000101110 111111100010
              (5678)                               (4066)

d. Read bytes from RAM using PA: 
 0000001011000101110 111111100010

valid Physical frame number (f)

…
56781

Frame 

0
1
.
.
.

…
5678



Why Virtual Memory?

• Uses main memory Efficiently
+  Main Memory ~a cache for the parts of virtual address 

 spaces that are being accessed (rest can stay on disk)

+  Pages from processes address spaces can be mapped 
into any Physical Memory frames

• Simplifies memory management
+ Each process gets same uniform linear address space

• Isolates address spaces
+One process can’t interfere with another’s memory

• MMU won’t map into another Pi’s address space in RAM

• OS swaps PTBR on process context switch 
(Pi can only use Pi's PTE mappings)
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Regs

RAM

Disk

Cache



Why Not Virtual Memory?

Memory access is now more expensive:

- Extra Memory space to store Page Tables

- Extra Address Translation costs per access
• Two memory accesses per byte fetched from RAM: 

      1 to access the PTE in RAM

      1 to access the byte of data in RAM
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Regs

RAM

Disk

Cache



Can we do better than this?

Every Memory access is now more expensive:

Two memory accesses per byte fetched from RAM: 
1 to access the PTE + 1 to access the byte of data

 every RAM access is twice as slow!!!

Q:  Can we make this faster?   
Can we do something to avoid having to access the PTE in RAM on 
every load or store (ex. movq $10,-8(%rbp)) to program virtual 
address space stored in RAM ?
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Can we do better than this?

Every RAM access is 2 times as slow with Paging!

1 RAM to access the PTE + 1 to access data byte

Q: What technique have we seen to 
      make Memory accesses faster?

Q: Do we expect locality in VA to PA?

A: Cache VA to PA Translations (Mappings)
– Cache recent translations of 

Virtual Page Number to Physical Frame Number

– If Cache contains a translation, don’t need to access PTE 
in RAM to translate VA to PA!
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TLB: Translation Look-aside Buffer

• Fast, small HW cache that keeps most recent 
page# to frame# translations

– Fully associative hardware lookup

– On hit: get Physical Frame number from cache vs. PTE

– On miss: get PTE from RAM, cache translation in TLB

f   p

Page Number Frame Number

Translation Look-aside Buffer (TLB)

Page number (p) page offset (d)

Frame number (f) frame offset (d)

VA:

PA:

compare all 
entry’s Page 
Number to

p

yes



TLB: Translation Look-aside Buffer

If no matching entry
for p in TLB, get f from 
PageTable[p] in RAM:

f   1

valid Frame #
PTBR

Process Pi’s Page Table 

p:

• Only on a TLB miss do need to go to RAM to access 
the PTE to get the page# to frame# mapping

f   p

Page # Frame #

TLB

Page number (p) page offset (d)

Frame number (f) frame offset (d)

VA:

PA:

is p 
in 

TLB?

hit

miss on chip

in RAM



VM Summary

• Operating System implements Abstraction of Virtual 
Memory
– Part of implementing the “Lone View” 

– Makes more Efficient use of Memory

• Paging is typical implementation
– Mapping Virtual to Physical Addresses

– Page Tables with each Process

– Need some HW support
• PTBR stores base address of a Pi’s Page Table in memory 

• OS saves/restores value on CXS

• Trade-offs in choosing VM or not
+’s  of VM usually way outweigh the –’s

78


	Default Section
	Slide 1: CS 31: Introduction to Computer Systems

	Operating Systems
	Slide 2: The Operating System
	Slide 3: Operating System

	OS Kernel
	Slide 4: Anatomy of a Process
	Slide 5: Common fork() usage: Shell
	Slide 6: Common fork() usage: Shell
	Slide 7: Common fork() usage: Shell
	Slide 8: Process Management: Summary
	Slide 9: Process: an OS Abstraction
	Slide 10: What we Know about  Physical Memory  (Main Memory  (RAM))
	Slide 11: Memory and Addresses
	Slide 12: Processes and Memory Addresses
	Slide 13: Solution: Virtual Memory Abstraction
	Slide 14: Every Process gets its own  Virtual Address Space (VAS)
	Slide 15:  Virtual Memory Abstraction Goal
	Slide 16:  Private Virtual Memory Abstraction
	Slide 17:   Physical Memory (RAM): Reality
	Slide 18:   Virtual Addresses Map to Physical Addresses
	Slide 19: Mapping Virtual to Physical Addresses
	Slide 20: Where and what is the MMU?
	Slide 21: Memory
	Slide 22: Memory Terminology
	Slide 23: Paging Vocabulary
	Slide 24: Main Idea
	Slide 25: Paging
	Slide 26: Virtual Memory Pages
	Slide 27: Main Idea
	Slide 28: Paging
	Slide 29: Paging
	Slide 30: Page Tables
	Slide 31: Page Tables are Stored in Memory
	Slide 32: OS and PTBR on Context Switch
	Slide 33: OS and PTBR on Context Switch
	Slide 34: Virtual Addresses
	Slide 35: Page Offset and Page Number
	Slide 36: Physical Addresses
	Slide 37: Virtual to Physical Address Translation
	Slide 39: Example
	Slide 40: Example: Answer these questions 1st
	Slide 41: Example
	Slide 42: Example Solution
	Slide 43: Example Solution
	Slide 44: Not All pages of Pi’s VAS need to be stored in RAM (and they might not all fit)
	Slide 45: Page Hit
	Slide 46: Page Fault
	Slide 47: Page Fault Handling by the OS
	Slide 48: Page Faults are Expensive
	Slide 54: Another Paging Example
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68: Announcements
	Slide 69: Addresses & the Memory Hierarchy
	Slide 70: Example: Addresses and Memory
	Slide 71
	Slide 72: Why Virtual Memory?
	Slide 73: Why Not Virtual Memory?
	Slide 74: Can we do better than this?
	Slide 75: Can we do better than this?
	Slide 76: TLB: Translation Look-aside Buffer
	Slide 77: TLB: Translation Look-aside Buffer
	Slide 78: VM Summary


