
CS 31: Introduction to Computer Systems

22-23 OS Processes and Parellelism
04-15-2025

OS Big Picture Goals

• OS is a layer of code between user programs and hardware.

• Goal: Make life easier for users and programmers.

• How can the OS do that?

Key OS Responsibilities

1. Simplifying abstractions for programs

2. Resource allocation and/or sharing

3. Hardware gatekeeping and protection

Running multiple programs

• Benefits: when I/O issued, CPU not needed

– Allow another program to run

– Requires yielding and sharing memory

• Challenges: what if one running program…

– Monopolizes CPU, memory?

– Reads/writes another’s memory?

– Uses I/O device being used by another?

More than 200 processes running on a typical desktop!

OS: Turn undesirable into desirable

• Turn undesirable inconveniences: reality

– Complexity of hardware

– Single processor

– Limited memory

• Into desirable conveniences: illusions

– Simple, easy-to-use resources

– Multiple/unlimited number of processors

– Large/unlimited amount of memory

Virtualization

• Rather than exposing real hardware, introduce a “virtual”, abstract
notion of the resource

• Multiple virtual processors

– By rapidly switching CPU use

• Multiple virtual memories

– By memory partitioning and re-addressing

• Virtualized devices

– By simplifying interfaces, and using other resources to enhance function

We’ll focus on the OS ‘kernel’

• “Operating system” has many interpretations

– E.g., all software on machine minus applications
(user or even limited to 3rd party)

• Our focus is the kernel

– What’s necessary for everything else to work

– Low-level resource control

– Originally called the nucleus in the 60’s

The Kernel

• All programs depend on it

– Loads and runs them

– Exports system calls to programs

• Works closely with hardware

– Accesses devices

– Responds to interrupts (hardware events)

• Allocates basic resources

– CPU time, memory space

– Controls I/O devices: display, keyboard, disk, network

Tron, 1982

Kernel provides common functions

• Some functions useful to many programs

– I/O device control

– Memory allocation

• Place these functions in central place (kernel)

– Called by programs ("system calls")

– Or accessed in response to hardware events

• What should functions be?

– How many programs should benefit?

– Might kernel get too big?

OS Kernel

• Big Design Issue: How do we make the OS efficient, reliable, and extensible?

• General OS Philosophy: The design and implementation of an OS involves a

constant tradeoff between simplicity and performance.

• As a general rule, strive for simplicity.

– except when you have a strong reason to believe that you need to make a particular

component complicated to achieve acceptable performance

– (strong reason = simulation or evaluation study)

Main Abstraction: The Process

• Abstraction of a running program

– “a program in execution”

• Dynamic

– Has state, changes over time

– Whereas a program is static

• Basic operations

– Start/end

– Suspend/resume

Basic Resources for Processes

• To run, process needs some basic resources:

– CPU
• Processing cycles (time)

• To execute instructions

– Memory
• Bytes or words (space)

• To maintain state

– Other resources (e.g., I/O)
• Network, disk, terminal, printer, etc.

Machine State of a Process

• CPU or processor context

– PC (program counter)

– SP (stack pointer)

– General purpose registers

• Memory

– Code

– Global Variables

– Stack of activation records / frames

– Other (registers, memory, kernel-related state)

Must keep track of these
for every running process !

Anatomy of a Process

• Abstraction of a running program
– a dynamic “program in execution”

• OS keeps track of process state
– What each process is doing

– Which one gets to run next

• Basic operations
– Suspend/resume (context switch)

– Start (spawn), terminate (kill)

Managing Processes

• Processes created by calling fork()

– “Spawning” a new process

• “Parent” process spawns “Child” process

– Brutal relationship involving “zombies”, “killing” and “reaping”.
(I’m not making this up!)

• Processes interact with one another by sending signals.

Recap

• OS sits between HW and User/Program

– Manages HW & Makes system easier to use

– Interrupt Driven: HW or User/Program interrupt it to do
something on their behalf
• HW interrupt, Program system call traps to OS

• OS implements the Process Abstraction
– Process: a running program

• Lone view & private virtual address space

– Why: efficient use of system resources
• Multiprogramming and Timesharing. (ps –A)

– fork(): system call to create a new process

Program

Operating System

Computer Hardware

Summary: Running a Program

Basic system calls:

– fork: spawns new process
• Called once, Returns twice (in parent and child process)

– exit: terminates own process
• Called once, never returns

• Puts it into “zombie” status

– wait or waitpid: reap terminated children

– execvp: runs new program in existing process
• Called once, (normally) never returns

OS: Turn undesirable into desirable

• Turn undesirable inconveniences: reality

– Complexity of hardware

– Single processor

– Limited memory

• Into desirable conveniences: illusions

– Simple, easy-to-use resources

– Multiple/unlimited number of processors

– Large/unlimited amount of memory

Making Programs Run Faster

• In the “old days” (1980’s - 2005):
– Algorithm too slow? Wait for HW to catch up.

• Modern CPUs exploit parallelism for speed:
– Executes multiple instructions at once
– Reorders instructions on the fly

• Today, can’t make a single core go much faster.
– Limits on clock speed, heat, energy consumption

• Use extra transistors to put multiple CPU cores on the chip.

• Programmer’s job to speed-up computation
– Humans bad at thinking in parallel

From Herb Sutter,

Dr. Dobbs Journal

Processor
Design
Trends

Transistors (*10^3)

Clock Speed
(MHZ)

Power (W)

ILP (IPC)
Instruction
Level
Parallelism

Today’s Processors are Multi-core

22

Main Memory (RAM)

Multiple CPU cores/chip

All CPU cores share
same Main Memory

OS manages all cores
and memory

RAM contains
processes’ VM pages

. . .

L3
(shared by all cores)

L1

L2

CPU Core 0

Regs

L1

L2

CPU Core N

Regs

Memory Bus

Parallel Abstraction

• To speed up a job, must divide it across multiple cores.

• A process contains both execution information and memory/resources.

• What if we want to separate the execution information to give us
parallelism in our programs?

Which components of a process might we replicate to take

advantage of multiple CPU cores?

A. The entire address space (memory – not duplicated)

B. Parts of the address space (memory - stack)

C. OS resources (open files, etc – not duplicated.)

D. Execution state (PC, registers, etc.)

E. More than one of these (which?)

Which components of a process might we replicate to take

advantage of multiple CPU cores?

A. The entire address space (memory – not duplicated)

B. Parts of the address space (memory - stack)

C. OS resources (open files, etc – not duplicated.)

D. Execution state (PC, registers, etc.)

E. More than one of these (which?)

Don’t duplicate shared resources,
duplicate resources where we need a private copy per thread:
like execution state, and stack

Threads

• Modern OSes separate the concepts of processes and threads.

– The process defines the address space and general process attributes (e.g., open
files)

– The thread defines a sequential execution stream within a process (PC, SP,
registers)

• A thread is bound to a single process

– Processes, however, can have multiple threads

– Each process has at least one thread (e.g. main)

Processes versus Threads

• A process defines the address space, text, resources, etc.,

• A thread defines a single sequential execution stream within a

process (PC, stack, registers).

• Threads extract the thread of control information from the

process

• Threads are bound to a single process.

• Each process may have multiple threads of control within it.

– The address space of a process is shared among all its threads

– No system calls are required to cooperate among threads

Threads

This is the picture we’ve
been using all along:

A process with a single
thread, which has execution
state (registers) and a stack.

Text

Data

Stack

OS

Heap

Thread 1
PC1

SP1

Threads

Thread 2

PC2

SP2

We can add a thread to the
process. New threads share all
memory (VAS) with other
threads.

New thread gets private
registers, local stack.

Text

Data

OS

Heap

Thread 1
PC1

SP1

Stack 1

Stack 2

Threads

Thread 3

PC3

SP3

A third thread added.

Note: they’re all executing the
same program (shared
instructions in text), though
they may be at different points
in the code.

Thread 2

PC2

SP2

Text

Data

OS

Heap

Thread 1
PC1

SP1

Stack 1

Stack 2

Stack 3

Why Use Threads?

• Separating threads and processes makes it easier to support
parallel applications:

– Creating multiple paths of execution does not require creating new
processes (less state to store, initialize – Light Weight Process)

– Low-overhead sharing between threads in same process (threads
share page tables, access same memory)

• Concurrency (multithreading) can be very useful

Concurrency?

• Several computations or threads of control are executing
simultaneously, and potentially interacting with each other.

• We can multitask! Why does that help?

– Taking advantage of multiple CPUs / cores

– Overlapping I/O with computation

– Improving program structure

Recall: Processes

Text

Data

Stack

Process 1

Text

Data

Stack

Process 2

Text

Data

Stack

Process n

…

KernelSystem
Calls

write

read

fork

System
Management Scheduling

Context
Switching

Scheduling Threads

• We have basically two options

1. Kernel explicitly selects among threads in a process

2. Hide threads from the kernel, and have a user-level scheduler inside each multi-
threaded process

• Why do we care?

– Think about the overhead of switching between threads

– Who decides which thread in a process should go first?

– What about blocking system calls?

Pthreads Programming

PThreads: The POSIX threading interface

– The Portable Operating System Interface for UNIX

– A standard Interface to OS utilities

system calls have same prototype & semantics on all OSes

(e.g.) POSIX compliant code on Solaris will compile on Linux

Pthreads library contains functions for:

– Creating threads (and thread exit)

– Synchronizing threads

• Coordinating their access to shared state

To compile: gcc myprog.c -lpthread

User-Level Threads

Text

Data

Process 1

Text

Data

Process 2

Text

Data

Process n

…

KernelSystem
Calls

write

read

fork

Stack Stack Stack

Thread C/S + Sched
Thread C/S + Sched

Thread C/S + Sched

System Management

Process
Scheduling

Process
Context

Switching

Library
divides
stack region

Threads are
invisible to
the kernel

Kernel-Level Threads

Text

Data

Process 1

Text

Data

Process 2

Text

Data

Process n

…

KernelSystem
Calls

write

read

fork

Stack 3

Stack 2

Stack 1

Stack 2

Stack 1
Stack 1

System Management

Thread +
Process

Scheduling

Thread
Context

Switching

Kernel Context
switching over
threads

Each process
has explicitly
mapped
regions for
stacks

If you call thread_create() on a modern OS

(Linux/Mac/Windows), which type of thread would you expect

to receive? (Why? Which would you pick?)

A. Kernel threads

B. User threads

C. Some other sort of threads

If you call thread_create() on a modern OS

(Linux/Mac/Windows), which type of thread would you expect

to receive? (Why? Which would you pick?)

A. Kernel threads

B. User threads

C. Some other sort of threads

Kernel vs. User Threads

• Kernel-level threads

– Integrated with OS (informed scheduling)

– Slower to create, manipulate, synchronize
• Requires getting the OS involved, which means changing context (relatively

expensive)

• User-level threads

– Faster to create, manipulate, synchronize

– Not integrated with OS (uninformed scheduling)

• If one thread makes a syscall, all of them get blocked because the
OS doesn’t distinguish.

Threads & Sharing

• Code (text) shared by all threads in process

• Global variables and static objects are shared

– Stored in the static data segment, accessible by any thread

• Dynamic objects and other heap objects are shared

– Allocated from heap with malloc/free or new/delete

• Local variables should not be shared

– Refer to data on the stack

– Each thread has its own stack

– Never pass/share/store a pointer to a local variable on another thread’s stack!!

Example
static int x;

int foo(int *p) {

 int y;

 y = 3;

 y = *p;

 *p = 7;

 x += y;

} Heap:

Stack:

0x0

Globals:

Instructions:

max

TjTi

If threads Ti and Tj both execute
function foo code:
 Q1: which variables do they each get own copy of?
 which do they share?
Q2: which statement can affect values seen by the
 other thread?

Shared Virtual Address Space:

foo:

static int x;

int foo(int *p) {

 int y;

 y = 3;

 y = *p;

 *p = 7;

 x += y;

}

Example

Each Tid gets its
own copy of y

on its stack

x is in global
memory and
is shared by
every thread

Heap:

Stack:

0x0

Globals:

Instructions:

max

p is parameter, each
tid gets its own copy
of p. However, p
could point to an int
storage location: on
the stack, or in global
mem, or on the
heap, or even in
another’s stack frame

x:10

y:3

p:-

Tid jTid i

Stack:
y:3

p:-

Threads & Sharing

• Local variables should not be shared

– Refer to data on the stack

– Each thread has its own stack

– Never pass/share/store a pointer to a local variable on another thread’s stack

…

function C

function D

…

function A

function B

Shared Heap
int *x;

Z

Thread 1’s stack Thread 2’s stack

Thread 2 can dereference x
to access Z.Function B returns…

Threads & Sharing

• Local variables should not be shared

– Refer to data on the stack

– Each thread has its own stack

– Never pass/share/store a pointer to a local variable on another thread’s stack

…

function C

function D

…

function A

function C

Shared Heap
int *x;

Thread 1’s stack Thread 2’s stack

Thread 2 can dereference x
to access Z.Function B returns…

?

Threads & Sharing

• Local variables should not be shared

– Refer to data on the stack

– Each thread has its own stack

– Never pass/share/store a pointer to a local variable on another thread’s stack

…

function C

function D

…

function A

function B

Shared Heap
int *x;

Thread 1’s stack Thread 2’s stack

Thread 2 can dereference x
to access Z.

Z

Shared data on heap!

Thread-level Parallelism

• Speed up application by assigning portions to
CPUs/cores that process in parallel

• Requires:

– partitioning responsibilities (e.g., parallel algorithm)

– managing their interaction

• Example: game of life (next lab)

One core: Three cores:

If one CPU core can run a program at a rate of X, how quickly will

the program run on two cores? Why?

A. Slower than one core (<X)

B. The same speed (X)

C. Faster than one core, but not double (X-2X)

D. Twice as fast (2X)

E. More than twice as fast(>2X)

If one CPU core can run a program at a rate of X, how quickly will

the program run on two cores? Why?

A. Slower than one core (<X) (if we try to parallelize serial

applications!)

B. The same speed (X) (some applications are not parallelizable)

C. Faster than one core, but not double (X-2X): most of the time:

(some communication overhead to coordinate/synchronization of

the threads)

D. Twice as fast (2X)(class of problems called embarrassingly parallel

programs. E.g. protein folding, SETI)

E. More than twice as fast(>2X) (rare: possible if you have more CPU

+ more memory)

Parallel Speedup

• Performance benefit of parallel threads depends on many factors:

– algorithm divisibility

– communication overhead

– memory hierarchy and locality

– implementation quality

• For most programs, more threads means more communication,
diminishing returns.

Summary

• Physical limits to how much faster we can make a
single core run.

– Use transistors to provide more cores.

– Parallelize applications to take advantage.

• OS abstraction: thread

– Shares most of the address space with other threads in
same process

– Gets private execution context (registers) + stack

• Coordinating threads is challenging!

Threads

Thread 1
PC1

SP1

Thread 2

Thread 3

PC2

SP2PC3

SP3

Process 1

Text

Data

Stack 3

OS

Heap

Stack 2

Stack 1

They’re all
executing the same
program (shared
instructions in text),
though they may be
at different points
in the code.

Kernel-Level Threads

Text

Data

Process 1

Text

Data

Process 2

Text

Data

Process n

…

KernelSystem
Calls

write

read

fork

Stack 3

Stack 2

Stack 1

Stack 2

Stack 1
Stack 1

System Management

Thread +
Process

Scheduling

Thread
Context

Switching

Kernel Context
switching over
threads

Each process
has explicitly
mapped
regions for
stacks

Common pthread functions
Creating a thread (starts running start_func w/passed args):

 int pthread_create(pthread_t *thread,

 pthread_attr_t *attr,

void *(*start_func)(void *),

void *args);

Joining (reaping) a thread (caller waits for thread to exit):

 int pthread_join(pthread_t thread, void **retval);

Terminating a thread:

 void pthread_exit(void *retval)

 (or just return from thread’s main function)

void *

int pthread_create(…, void *args);

void *: a pointer to any type (a generic pointer) can be used for return value and

parameter types only

– all memory addresses take up the same number of bytes

char *cptr; int *ptr; // store 8 byte addresses

– can pass the address of any type as a void *

pthread_create(…, &x); // addr of an int

pthread_create(…, &ch); //addr of a char

cannot de-reference a void * pointer directly

*args = 6; // store 6 in 1 byte? 2 bytes? 4 bytes?

– re-cast first before dereference!

*((int *) args) = 6; // store 6 in an int (4 bytes)

Example: hello.c with 2 threads

#include “pthreads.h”

void *hello(void *arg); //thread’s "main" function

int main() {

 pthread_t tid[2];//two thread ids

 pthread_create(&tid[0], NULL, hello, NULL);

 pthread_create(&tid[1], NULL, hello, NULL);

 pthread_join(tid[0], NULL);

 pthread_join(tid[1], NULL);

 exit(0);

}

void *hello(void *arg) {

 printf("Hello, world!\n");

 return NULL;

}

Thread attributes
(usually NULL)

Thread arguments
(void *p)

return value (void **p)
"pass by pointer parameter"

pass NULL (or 0) if you don't
need return value (or if
thread’s main returns NULL)

Note: not showing error return value handling

Concurrent Execution

main thread

exit()
terminates

main thread and
any peer threads

pthread_create()

pthread_create()

thread 0

thread 1

hello() return NULL;

hello() return NULL;

main thread waits for
 thread 0 to terminate

pthread_join()

pthread_join() pthread_join() returns
pthread_join() returns

Example: hello.c with N threads

• Code on slides is subset of full code

– Minus error detection and handling for space

– Minus other non-thread important code

• You can copy and try out the full code from here:

$ cd ~/cs31/WeeklyLabs $ mkdir week12

$ cd week12

$ pwd /home/you/cs31/WeeklyLabs/week12

$ cp ~chaganti/public/cs31/s25/week12/* ./

[week12]$./hello 3

Hello! I am thread 0

Hello! I am thread 2

Hello! I am thread 1

Goodbye! I was thread 2

Goodbye! I was thread 0

Goodbye! I was thread 1

count = 1283598

Main thread done

[week12]$./hello 3

Hello! I am thread 0

Hello! I am thread 1

Hello! I am thread 2

Goodbye! I was thread 2

Goodbye! I was thread 1

Goodbye! I was thread 0

count = 1123889

hello.c: main function

59

static unsigned long long count = 0; // global variable

int main(int argc, char *argv) {

 pthread_t *tids; // thread ids

 int ntids, i, *tid_args; //arguments passed to thread funcs.

initial var. declaration

hello.c: main function

60

static unsigned long long count = 0; // global variable

int main(int argc, char *argv) {

 pthread_t *tids; // thread ids

 int ntids, i, *tid_args; //arguments passed to thread funcs.

 ntids = atoi(argv[1]);

 tids = (pthread_t *) malloc(sizeof(pthread_t) * ntids);

 tid_args = (int *) malloc(sizeof(int) * ntids);

initial var. declaration

allocate memory
for pointer vars.

hello.c: main function
static unsigned long long count = 0; // global variable

int main(int argc, char *argv) {

 pthread_t *tids; // thread ids

 int ntids, i, *tid_args; //arguments passed to thread funcs.

 ntids = atoi(argv[1]);

 tids = (pthread_t *) malloc(sizeof(pthread_t) * ntids);

 tid_args = (int *) malloc(sizeof(int) * ntids);

for (i=0; i < ntids; i++) { //loop through num. threads

 tid_args[i] = i; //input argument for each thread.

 pthread_create(&tids[i], 0, thread_hello, &tid_args[i]);

 } //create the thread, with tid, func ptr, and input args.

for (i=0; i < ntids; i++) {

 pthread_join(tids[i], 0);

 }

}

initial var. declaration

allocate memory
for pointer vars.

create threads

join equivalent of waiting to
reap threads

Hello.c: main function:

pthread_create:

 ret = pthread_create(&tids[i], NULL,
 thread_hello, &tid_args[i])

– function pointer argument (thread_hello)
• name of the function that the spawned thread will start executing

• generic function pointer type:

 void *thread_main_func(void *arg);

– args argument (&tid_args[i])
void *: pass a pointer to any type: int, float, struct, array, …

pthread_join: like wait in fork-wait

– tid argument: which pthreads thread to wait for to exit

static unsigned long long count =0; // global variable

void *thread_hello(void *arg) {

 int myid, i;
 myid = *((int *)arg);

 printf("hello I'm thread %d with pthread_id %lu\n",
 myid, pthread_self());

 for(i = 0; i < 1000000; i++) {

 count += i;
 }

 printf("goodbye I'm thread %d\n”,myid);
return (void *)0; // recast 0 to return type (void *)

}

hello.c: thread main function

getting arg’s value:
arg’s type is void *
but we know its type for a specific
implementation, re-cast to correct type

all threads can access global variable (shared access)

thread get own copy of local
vars and params on its stack

returns the ID of the thread in which
it is invoked

Some runs with 4 threads:

result with 4 threads should be 1999998000000

./hello 4

count = 793900079488

./hello 4

count = 539879105421

./hello 4

count = 509829883618

./hello 4

count = 581580128846

Synchronization

• Synchronize: to (arrange events to) happen such that two events do not
overwrite each other’s work.

• Thread synchronization

– When one thread has to wait for another

– Events in threads that occur “at the same time”

• Uses of synchronization

– Prevent race conditions

– Wait for resources to become available (only one thread has access at any
time - deadlocks)

Synchronization:

Too Much Milk (TMM)

Lecture 8 – Slide-66

Milk

3.30

3.05 Look in fridge, no milk

3.10 Leave for the grocery store

3.15

3.20 Arrive at the grocery store

3.25 Buy Milk

3.35
Arrive home, put milk in

fridge
Arrive Home

3.00 Arrive home

3.40 Look in fridge, find milk

3.45 Cold Coffee (nom)

Time You Your Roommate

What mechanisms do
we need for two
independent threads to
communicate and get a
consistent view
(computer state)?

How many cartons of milk can we have in this scenario? (Can we

ensure this somehow?)

Milk

3.30

3.05 Look in fridge, no milk

3.10 Leave for the grocery store

3.15

3.20 Arrive at the grocery store

3.25 Buy Milk

3.35
Arrive home, put milk in

fridge
Arrive Home

3.00 Arrive home

3.40 Look in fridge, find milk

3.45 Cold Coffee (nom)

Time You Your Roommate

A. One carton
(you)

B. Two cartons
C. No cartons
D. Something

else

Synchronization:

Too Much Milk (TMM): One possible scenario

Lecture 8 – Slide-68

Milk

3.30 Arrive at grocery

3.05 Look in fridge, no milk

3.10 Leave for grocery Arrive Home

3.15 Look in fridge, no milk

3.20 Arrive at grocery Leave for grocery

3.25 Buy Milk

3.35
Arrive home, put milk in

fridge

3.00 Arrive home

3.40
Arrive home, put milk in

fridge

3.45 Oh No!

Time You Your Roommate

Milk

What mechanisms do
we need for two
independent threads to
communicate and get a
consistent view
(computer state)?

Synchronization:

Lecture 8 – Slide-69

Milk

3.30 Arrive at grocery

3.05 Look in fridge, no milk

3.10 Leave for grocery Arrive Home

3.15 Look in fridge, no milk

3.20 Arrive at grocery Leave for grocery

3.25 Buy Milk

3.35
Arrive home, put milk in

fridge

3.00 Arrive home

3.40
Arrive home, put milk in

fridge

3.45 Oh No!

Time You Your Roommate

Milk

What mechanisms do
we need for two
independent threads to
communicate and get a
consistent view
(computer state)?

Threads get scheduled in an arbitrary manner:
bad things may happen: ...or nothing may happen

Synchronization Example

• Coordination required:

– Which thread goes first?

– Threads in different regions must work together to
compute new value for boundary cells.

– Threads might not run at the same speed (depends on
the OS scheduler). Can’t let one region get too far
ahead.

– Context switches can happen at any time!

One core: Three cores:

Thread Ordering
(Why threads require care. Humans aren’t good at reasoning about this.)

• As a programmer you have no idea when threads will run. The OS
schedules them, and the schedule will vary across runs.

• It might decide to context switch from one thread to another at any
time.

• Your code must be prepared for this!

– Ask yourself: “Would something bad happen if we context switched here?”

• hard to debug this problem if it is not reproducible

Example: The Credit/Debit Problem

• Say you have $1000 in your bank account

– You deposit $100

– You also withdraw $100

• How much should be in your account?

• What if your deposit and withdrawal occur at the same time, at
different ATMs?

Credit/Debit Problem: Race Condition

Thread T0

Credit (int a) {

 int b;

 b = ReadBalance ();

 b = b + a;

 WriteBalance (b);

 PrintReceipt (b);

}

Thread T1

Debit (int a) {

 int b;

 b = ReadBalance ();

 b = b - a;

 WriteBalance (b);

 PrintReceipt (b);

}

Credit/Debit Problem: Race Condition

Thread T0

Credit (int a) {

 int b;

 b = ReadBalance ();

 b = b + a;

 WriteBalance (b);

 PrintReceipt (b);

}

Thread T1

Debit (int a) {

 int b;

 b = ReadBalance ();

 b = b - a;

 WriteBalance (b);

 PrintReceipt (b);

}

Say T0 runs first

Read $1000 into b

Credit/Debit Problem: Race Condition

Thread T0

Credit (int a) {

 int b;

 b = ReadBalance ();

 b = b + a;

 WriteBalance (b);

 PrintReceipt (b);

}

Thread T1

Debit (int a) {

 int b;

 b = ReadBalance ();

 b = b - a;

 WriteBalance (b);

 PrintReceipt (b);

}

Say T0 runs first

Read $1000 into b

Switch to T1

Read $1000 into b

Debit by $100

Write $900

CONTEXT SWITCH

Credit/Debit Problem: Race Condition

Thread T0

Credit (int a) {

 int b;

 b = ReadBalance ();

 b = b + a;

 WriteBalance (b);

 PrintReceipt (b);

}

Thread T1

Debit (int a) {

 int b;

 b = ReadBalance ();

 b = b - a;

 WriteBalance (b);

 PrintReceipt (b);

}

Say T0 runs first

Read $1000 into b

Switch to T1

Read $1000 into b

Debit by $100

Write $900

Switch back to T0

Read $1000 into b

Credit $100

Write $1100

Bank gave you $100!

What went wrong?

“Critical Section”

Thread T0

Credit (int a) {

 int b;

 b = ReadBalance ();

 b = b + a;

 WriteBalance (b);

 PrintReceipt (b);

}

Thread T1

Debit (int a) {

 int b;

 b = ReadBalance ();

 b = b - a;

 WriteBalance (b);

 PrintReceipt (b);

}

Bank gave you $100!

What went wrong?

Badness if
context
switch here!

Danger Will Robinson!

To Avoid Race Conditions

1. Identify critical sections

2. Use synchronization to enforce mutual exclusion

– Only one thread active in a critical section

Thread 0

- Critical -
- Section -

Thread 1

- Critical -
- Section -

Critical Section and Atomicity

• Sections of code executed by multiple threads

– Access shared variables, often making local copy

– Places where order of execution or thread interleaving will affect the
outcome

– Follows: read + modify + write of shared variable

• Must run atomically with respect to each other

– Atomicity: runs as an entire instruction or not at all. Cannot be divided into
smaller parts.

Which code region is a critical section?

Thread A

main ()

{ int a,b;

 a = getShared();

 b = 20;

 a = a - b;

 saveShared(a);

 a += 1

 return a;

}

Thread B

 s = 40;

shared
memory

main ()

{ int a,b;

 a = getShared();

 b = 10;

 a = a + b;

 saveShared(a);

 a += 1

 return a;

}

A
C

B

D

E

Which code region is a critical section?

Thread A Thread B

shared
memory

D

read + modify + write of shared variable

Large enough for correctness + Small enough to minimize slow down

main ()

{ int a,b;

 a = getShared();

 b = 20;

 a = a - b;

 saveShared(a);

 a += 1

 return a;

}

 s = 40;

main ()

{ int a,b;

 a = getShared();

 b = 10;

 a = a + b;

 saveShared(a);

 a += 1

 return a;

}

Which values might the shared s variable hold after both threads finish?

shared
memory

main ()

{ int a,b;

 a = getShared();

 b = 20;

 a = a - b;

 saveShared(a);

 a += 1

 return a;

}

 s = 40;

main ()

{ int a,b;

 a = getShared();

 b = 10;

 a = a + b;

 saveShared(a);

 a += 1

 return a;

}

Thread A Thread B

If A runs first

(s = 40)

 s = 50

shared
memory

Thread A Thread B

main ()

{ int a,b;

 a = getShared();

 b = 20;

 a = a - b;

 saveShared(a);

 a += 1

 return a;

}

main ()

{ int a,b;

 a = getShared();

 b = 10;

 a = a + b;

 saveShared(a);

 a += 1

 return a;

}

B runs after A Completes

(s = 50)

 s = 30;

shared
memory

Thread A Thread B

main ()

{ int a,b;

 a = getShared();

 b = 20;

 a = a - b;

 saveShared(a);

 a += 1

 return a;

}

main ()

{ int a,b;

 a = getShared();

 b = 10;

 a = a + b;

 saveShared(a);

 a += 1

 return a;

}

What about interleaving?

main ()

{ int a,b;

 a = getShared();

 b = 10;

 a = a + b;

 saveShared(a);

 return a;

}

main ()

{ int a,b;

 a = getShared();

 b = 20;

 a = a - b;

 saveShared(a);

 return a;

}

 s = 40;

shared
memory

Thread A Thread B

One of the threads will overwrite the other’s changes.

Is there a race condition?

Suppose count is a global variable, multiple threads increment it:

count++;

A. Yes, there’s a race condition (count++ is a critical section).

B. No, there’s no race condition (count++ is not a critical section).

C. Cannot be determined

movq (%rdx), %rax // read count value

addq $1, %rax // modify value

movq %rax, (%rdx) // write count

How about if compiler implements it as:

incq (%rdx) // increment value

How about if compiler implements it as:

Atomicity

• The implementation of acquiring/releasing critical section must be
atomic.

– An atomic operation is one which executes as though it could not be interrupted

– Code that executes “all or nothing”

• How do we make them atomic?

– Atomic instructions (e.g., test-and-set, compare-and-swap)

– Allows us to build “semaphore” OS abstraction

Four Rules for Mutual Exclusion

1. No two threads can be inside their critical sections at the same time
(one of many but not more than one).

2. No thread outside its critical section may prevent others from entering
their critical sections.

3. No thread should have to wait forever to enter its critical section.
(Starvation)

4. No assumptions can be made about speeds or number of CPU’s.

Railroad Semaphore
- Help trains figure

out which track to
be on at any given
time.

Railroad Semaphore
- Help trains figure

out which track to
be on at any given
time.

O.S. Semaphore:
- Construct that the

OS provides to
processes.

- Make system calls
to modify their
value

Mutual Exclusion with Semaphores

T0

lock (mutex);

< critical section >

unlock (mutex);

T1

lock (mutex);

< critical section >

unlock (mutex);

mutex = 1; //lock and unlock mutex atomically.

Atomicity: run the entire instruction without interruption.

Mutual Exclusion with Semaphores

T0

lock (mutex);

< critical section >

unlock (mutex);

T1

lock (mutex);

< critical section >

unlock (mutex);

mutex = 1; //unlocked.

Atomicity: run the entire instruction without interruption.

T0: Wants to execute the critical section

T0: Reads the value of mutex,

 Changes the value of mutex = 0 (acquires lock)

 Enters critical section.

Mutual Exclusion with Semaphores

T0

lock (mutex);

< critical section >

unlock (mutex);

T1

lock (mutex);

< critical section >

unlock (mutex);

mutex = 0; //locked.

Atomicity: run the entire instruction without interruption.

T0: Wants to execute the critical section

T0: Reads the value of mutex,

 Changes the value of mutex = 0 (acquires lock)

 Enters critical section.

Atomic Execution

Mutual Exclusion with Semaphores

T0

lock (mutex);

< critical section >

unlock (mutex);

T1 (blocked)

lock (mutex);

< critical section >

unlock (mutex);

mutex = 0; //locked.

Atomicity: run the entire instruction without interruption.

T0: In the critical section

T1: Wants to enter the critical section.

 Reads the value of mutex (mutex = 0)

 Cannot enter critical section.

 Blocked.

Mutual Exclusion with Semaphores

T0

lock (mutex);

< critical section >

unlock (mutex);

T1 (blocked)

lock (mutex);

< critical section >

unlock (mutex);

mutex = 0; //locked.

Atomicity: run the entire instruction without interruption.

T0: Completes execution of critical section

 Updates mutex value = 1. (release lock)

Atomic Execution

Mutual Exclusion with Semaphores

T0

lock (mutex);

< critical section >

unlock (mutex);

T1 (blocked)

lock (mutex);

< critical section >

unlock (mutex);

mutex = 1; //unlocked.

Atomicity: run the entire instruction without interruption.

T0: Completes execution of critical section

 Updates mutex value = 1. (release lock)

Mutual Exclusion with Semaphores

T0

lock (mutex);

< critical section >

unlock (mutex);

T1

lock (mutex);

< critical section >

unlock (mutex);

mutex = 1; //locked.

Atomicity: run the entire instruction without interruption.

T1: Can now acquire lock atomically and

 Enter the critical section

Mutual Exclusion with Semaphores

• Use a “mutex” semaphore initialized to 1

• Only one thread can enter critical section at a time.

• Simple, works for any number of threads

T0

lock (mutex);

< critical section >

unlock (mutex);

T1

lock (mutex);

< critical section >

unlock (mutex);

mutex = 1; //lock and unlock mutex atomically.

Atomicity: runs as an entire instruction or not at all.

Semaphores

• Semaphore: OS synchronization variable

– Has integer value

– List of waiting threads

• Works like a gate

• If sem > 0, gate is open

– Value equals number of threads that can enter

• Else, gate is closed

– Possibly with waiting threads

critical
section

sem = 1

sem = 2
sem = 3

sem = 0

Semaphores

• Associated with each semaphore is a queue of waiting threads

• When wait() is called by a thread:

– If semaphore is open, thread continues

– If semaphore is closed, thread blocks on queue

• Then signal() opens the semaphore:

– If a thread is waiting on the queue, the thread is unblocked

– If no threads are waiting on the queue, the signal is remembered for the next
thread

Semaphore Operations

sem s = n; // declare and initialize

wait (sem s) // Executes atomically(*)
 decrement s;
 if s < 0:
 block thread (and associate with s);

signal (sem s) // Executes atomically(*)
 increment s;
 if blocked threads:
 unblock (any) one of them;

(*) With help from special hardware instructions.

Semaphore Operations

Based on what you know about semaphores, should a process be able
to check beforehand whether wait(s) will cause it to block?

A. Yes, it should be able to check.

B. No, it should not be able to check.

sem s = n; // declare and initialize

wait (sem s) // Executes atomically(*)
 decrement s;
 if s < 0:
 block thread (and associate with s);

signal (sem s) // Executes atomically(*)
 increment s;
 if blocked threads:
 unblock (any) one of them;

Semaphore Operations

• No other operations allowed
• In particular, semaphore’s value can’t be tested!

• No thread can tell the value of s

sem s = n; // declare and initialize

wait (sem s) // Executes atomically(*)
 decrement s;
 if s < 0:
 block thread (and associate with s);

signal (sem s) // Executes atomically(*)
 increment s;
 if blocked threads:
 unblock (any) one of them;

Synchronization: More than Mutexes

• “I want to block a thread until something specific happens.”

– Condition variable: wait for a condition to be true

• “I want all my threads to sync up at the same point.”

– Barrier: wait for everyone to catch up.

Barriers

• Used to coordinate threads, but also other forms of concurrent
execution.

• Often found in simulations that have discrete rounds. (e.g., game of life)

Barrier Example, N Threads

shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {

 while (…) {

 compute_sim_round()

 barrier_wait(&b)

 }

}

T1T0 T2 T3 T4

Barrier (0 waiting)

Time

Barrier Example, N Threads

Time

T1

T0 T2

T3

T4

Barrier (0 waiting)

Threads make progress computing
current round at different rates.

shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {

 while (…) {

 compute_sim_round()

 barrier_wait(&b)

 }

}

Barrier Example, N Threads

Time

Barrier (3 waiting)

Threads that make it to barrier must
wait for all others to get there.

T1

T0 T2

T3

T4

shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {

 while (…) {

 compute_sim_round()

 barrier_wait(&b)

 }

}

Barrier Example, N Threads

Time

Barrier (5 waiting)

Barrier allows threads to pass when
N threads reach it.

T1T0 T2 T3 T4

Matches

shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {

 while (…) {

 compute_sim_round()

 barrier_wait(&b)

 }

}

Barrier Example, N Threads

Barrier (0 waiting)

Threads compute next round, wait
on barrier again, repeat…

T1

T0 T2 T3

T4

Time

shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {

 while (…) {

 compute_sim_round()

 barrier_wait(&b)

 }

}

Synchronization: More than Mutexes

• I want all my threads to sync up at the same point.

– Barrier: wait for everyone to catch up.

• I want to block a thread until something specific happens.

– Condition variable: wait for a condition to be true

• I want my threads to share a critical section when they’re
reading, but still safely write.

– Readers/writers lock: distinguish how lock is used

Synchronization: Beyond Mutexes

Message Passing

• Operating system mechanism for IPC
– send (destination, message_buffer)

– receive (source, message_buffer)

• Data transfer: in to and out of kernel message buffers

• Synchronization: can’t receive until message is sent

send (to, buf) receive (from, buf)

kernel

P1 P2

Summary

• We have no idea when OS will schedule or context
switch our threads.

– Code must be prepared, tough to reason about.

• Threads often must synchronize

– To safely communicate / transfer data, without races

• Synchronization primitives help programmers

– Kernel-level semaphores: limit # of threads that can do
something, provides atomicity

– User-level locks: built upon semaphore, provides mutual
exclusion (usually part of thread library)

	Default Section
	Slide 1: CS 31: Introduction to Computer Systems

	Operating Systems
	Slide 2: OS Big Picture Goals
	Slide 3: Key OS Responsibilities

	OS Kernel
	Slide 4: Running multiple programs
	Slide 5: OS: Turn undesirable into desirable
	Slide 6: Virtualization
	Slide 7: We’ll focus on the OS ‘kernel’
	Slide 8: The Kernel
	Slide 9: Kernel provides common functions
	Slide 10: OS Kernel
	Slide 11: Main Abstraction: The Process
	Slide 12: Basic Resources for Processes
	Slide 13: Machine State of a Process
	Slide 14: Anatomy of a Process
	Slide 15: Managing Processes
	Slide 16: Recap
	Slide 17: Summary: Running a Program
	Slide 18: OS: Turn undesirable into desirable
	Slide 19: Making Programs Run Faster
	Slide 20
	Slide 21
	Slide 22: Today’s Processors are Multi-core
	Slide 23: Parallel Abstraction
	Slide 24: Which components of a process might we replicate to take advantage of multiple CPU cores?
	Slide 25: Which components of a process might we replicate to take advantage of multiple CPU cores?
	Slide 26: Threads
	Slide 27: Processes versus Threads
	Slide 28: Threads
	Slide 29: Threads
	Slide 30: Threads
	Slide 31: Why Use Threads?
	Slide 32: Concurrency?
	Slide 33: Recall: Processes
	Slide 34: Scheduling Threads
	Slide 35: Pthreads Programming
	Slide 36: User-Level Threads
	Slide 37: Kernel-Level Threads
	Slide 38: If you call thread_create() on a modern OS (Linux/Mac/Windows), which type of thread would you expect to receive? (Why? Which would you pick?)
	Slide 39: If you call thread_create() on a modern OS (Linux/Mac/Windows), which type of thread would you expect to receive? (Why? Which would you pick?)
	Slide 40: Kernel vs. User Threads
	Slide 41: Threads & Sharing
	Slide 42: Example
	Slide 43: Example
	Slide 44: Threads & Sharing
	Slide 45: Threads & Sharing
	Slide 46: Threads & Sharing
	Slide 47: Thread-level Parallelism
	Slide 48: If one CPU core can run a program at a rate of X, how quickly will the program run on two cores? Why?
	Slide 49: If one CPU core can run a program at a rate of X, how quickly will the program run on two cores? Why?
	Slide 50: Parallel Speedup
	Slide 51: Summary
	Slide 52: Threads
	Slide 53: Kernel-Level Threads
	Slide 54: Common pthread functions
	Slide 55: void *
	Slide 56: Example: hello.c with 2 threads
	Slide 57: Concurrent Execution
	Slide 58: Example: hello.c with N threads
	Slide 59: hello.c: main function
	Slide 60: hello.c: main function
	Slide 61: hello.c: main function
	Slide 62: Hello.c: main function:
	Slide 63: hello.c: thread main function
	Slide 64: Some runs with 4 threads:
	Slide 65: Synchronization
	Slide 66: Synchronization: Too Much Milk (TMM)
	Slide 67: How many cartons of milk can we have in this scenario? (Can we ensure this somehow?)
	Slide 68: Synchronization: Too Much Milk (TMM): One possible scenario
	Slide 69: Synchronization:
	Slide 70: Synchronization Example
	Slide 71: Thread Ordering (Why threads require care. Humans aren’t good at reasoning about this.)
	Slide 72: Example: The Credit/Debit Problem
	Slide 73: Credit/Debit Problem: Race Condition
	Slide 74: Credit/Debit Problem: Race Condition
	Slide 75: Credit/Debit Problem: Race Condition
	Slide 76: Credit/Debit Problem: Race Condition
	Slide 77: “Critical Section”
	Slide 78: To Avoid Race Conditions
	Slide 79: Critical Section and Atomicity
	Slide 80: Which code region is a critical section?
	Slide 81: Which code region is a critical section?
	Slide 82: Which values might the shared s variable hold after both threads finish?
	Slide 83: If A runs first
	Slide 84: B runs after A Completes
	Slide 85: What about interleaving?
	Slide 86: Is there a race condition?
	Slide 87: Atomicity
	Slide 88: Four Rules for Mutual Exclusion
	Slide 89
	Slide 90
	Slide 91: Mutual Exclusion with Semaphores
	Slide 92: Mutual Exclusion with Semaphores
	Slide 93: Mutual Exclusion with Semaphores
	Slide 94: Mutual Exclusion with Semaphores
	Slide 95: Mutual Exclusion with Semaphores
	Slide 96: Mutual Exclusion with Semaphores
	Slide 97: Mutual Exclusion with Semaphores
	Slide 98: Mutual Exclusion with Semaphores
	Slide 99: Semaphores
	Slide 100: Semaphores
	Slide 101: Semaphore Operations
	Slide 102: Semaphore Operations
	Slide 103: Semaphore Operations
	Slide 104: Synchronization: More than Mutexes
	Slide 105: Barriers
	Slide 106: Barrier Example, N Threads
	Slide 107: Barrier Example, N Threads
	Slide 108: Barrier Example, N Threads
	Slide 109: Barrier Example, N Threads
	Slide 110: Barrier Example, N Threads
	Slide 111: Synchronization: More than Mutexes
	Slide 112: Synchronization: Beyond Mutexes Message Passing
	Slide 113: Summary

