
CS 31: Introduction to Computer Systems

20 OS Processes
04-10-2025

OS Big Picture Goals

• OS is a layer of code between user programs and hardware.

• Goal: Make life easier for users and programmers.

• How can the OS do that?

Key OS Responsibilities

1. Simplifying abstractions for programs

2. Resource allocation and/or sharing

3. Hardware gatekeeping and protection

Running multiple programs

• Benefits: when I/O issued, CPU not needed

– Allow another program to run

– Requires yielding and sharing memory

• Challenges: what if one running program…

– Monopolizes CPU, memory?

– Reads/writes another’s memory?

– Uses I/O device being used by another?

More than 200 processes running on a typical desktop!

OS: Turn undesirable into desirable

• Turn undesirable inconveniences: reality

– Complexity of hardware

– Single processor

– Limited memory

• Into desirable conveniences: illusions

– Simple, easy-to-use resources

– Multiple/unlimited number of processors

– Large/unlimited amount of memory

Virtualization

• Rather than exposing real hardware, introduce a “virtual”, abstract
notion of the resource

• Multiple virtual processors

– By rapidly switching CPU use

• Multiple virtual memories

– By memory partitioning and re-addressing

• Virtualized devices

– By simplifying interfaces, and using other resources to enhance function

We’ll focus on the OS ‘kernel’

• “Operating system” has many interpretations

– E.g., all software on machine minus applications
(user or even limited to 3rd party)

• Our focus is the kernel

– What’s necessary for everything else to work

– Low-level resource control

– Originally called the nucleus in the 60’s

The Kernel

• All programs depend on it

– Loads and runs them

– Exports system calls to programs

• Works closely with hardware

– Accesses devices

– Responds to interrupts (hardware events)

• Allocates basic resources

– CPU time, memory space

– Controls I/O devices: display, keyboard, disk, network

Tron, 1982

Kernel provides common functions

• Some functions useful to many programs

– I/O device control

– Memory allocation

• Place these functions in central place (kernel)

– Called by programs ("system calls")

– Or accessed in response to hardware events

• What should functions be?

– How many programs should benefit?

– Might kernel get too big?

OS Kernel

• Big Design Issue: How do we make the OS efficient, reliable, and extensible?

• General OS Philosophy: The design and implementation of an OS involves a

constant tradeoff between simplicity and performance.

• As a general rule, strive for simplicity.

– except when you have a strong reason to believe that you need to make a particular

component complicated to achieve acceptable performance

– (strong reason = simulation or evaluation study)

Main Abstraction: The Process

• Abstraction of a running program

– “a program in execution”

• Dynamic

– Has state, changes over time

– Whereas a program is static

• Basic operations

– Start/end

– Suspend/resume

Basic Resources for Processes

• To run, process needs some basic resources:

– CPU
• Processing cycles (time)

• To execute instructions

– Memory
• Bytes or words (space)

• To maintain state

– Other resources (e.g., I/O)
• Network, disk, terminal, printer, etc.

Machine State of a Process

• CPU or processor context

– PC (program counter)

– SP (stack pointer)

– General purpose registers

• Memory

– Code

– Global Variables

– Stack of activation records / frames

– Other (registers, memory, kernel-related state)

Must keep track of these
for every running process !

Anatomy of a Process

• Abstraction of a running program
– a dynamic “program in execution”

• OS keeps track of process state
– What each process is doing

– Which one gets to run next

• Basic operations
– Suspend/resume (context switch)

– Start (spawn), terminate (kill)

Managing Processes

• Processes created by calling fork()

– “Spawning” a new process

• “Parent” process spawns “Child” process

– Brutal relationship involving “zombies”, “killing” and “reaping”.
(I’m not making this up!)

• Processes interact with one another by sending signals.

Recap

• OS sits between HW and User/Program

– Manages HW & Makes system easier to use

– Interrupt Driven: HW or User/Program interrupt it to do
something on their behalf
• HW interrupt, Program system call traps to OS

• OS implements the Process Abstraction
– Process: a running program

• Lone view & private virtual address space

– Why: efficient use of system resources
• Multiprogramming and Timesharing. (ps –A)

– fork(): system call to create a new process

Program

Operating System

Computer Hardware

Managing Processes

• Given a process, how do we make it execute the program we want?

• Model: fork() a new process, execute program

fork()

• System call (function provided by OS kernel)

• Creates a duplicate of the requesting process

– Process is cloning itself:
• CPU context

• Memory “address space”

OS

Stack

Text
Data

Heap

OS

Stack

Text
Data

Heap

OS

Stack

Text
Data

Heap

(Almost) identical clones

fork() return value

• The two processes are identical in every way, except for the return value
of fork().

– The child gets a return value of 0.

– The parent gets a return value of child’s PID.

pid_t pid = fork(); // both continue after call

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

Which process executes next? Child? Parent? Some other process?

Up to OS to decide. No guarantees. Don’t rely on particular behavior!

What Happens after a fork?

Parent & Child become concurrent processes
• Both assign return value to their copy of ret variable

• Both execute if-else
• Child: if-cond is true
• Parent: if-cond is false

• Who executes the printf statement first?
• Depends on which gets scheduled on CPU first
• Can vary every execution: no ordering of concurrent actions

ret = fork(); // both continue after call

if (ret == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

fork()

Parent:120 Child: 123
Exact copy
of parent
 ret:123 ret:0

Bye

Bye

Bye

Bye

fork example

• Both Parent and Child process can continue forking

void forky()

{

 printf("L0 ");

 fflush(stdout); // forces printf to output
 // (printing \n does too)

 fork(); // parent & child cont.
 printf("L1 "); // both print
 fflush(stdout);

 fork(); // both fork new child
 printf("Bye "); // all 4 processes print
 fflush(stdout);

}

L0 L1

L1

time

How many hello’s will be printed?

fork();

printf(“hello”);

if (fork()) {

 printf(“hello”);

}

fork();

printf(“hello”);

How many hello’s will be printed?

fork();

printf(“hello”);

if (fork()) {

 printf(“hello”);

}

fork();

printf(“hello”);

A.6
B.8
C.12
D.16
E.18

How many hello’s will be printed?

time

fork();

printf(“hello”);

if (fork()) {

 printf(“hello”);

}

fork();

printf(“hello”);

Parent hello

hello

hello

hello

hello

hello

hello

hello

hello

hello

hello

hello

fork() fork() fork()

8 processes and 12 “hello”s printed

Common fork() usage: Shell

• A “shell” is the program controlling your terminal (e.g., bash).

• It fork()s to create new processes, but we don’t want a clone
(another shell).

• We want the child to execute some other program: exec() family of

functions.

exec()

• Family of functions (execl, execlp, execv, …).

• Replace the current process with a new one.

• Loads program from disk:

– Old process is overwritten in memory.

– Does not return unless error.

exec system calls

(ex) int execvp(char *filename,char *argv[]);

 (there are different versions of exec, diff names and diff args)

1. Overlays the executable code from filename on the calling process’s address space

2. Initializes other parts of memory space: stack, heap, data, ...

3. Sets up process to execute the first instruction in the filename binary (changes child’s

%rip value)

4. Passes in argv as command line arguments

 exec system call only returns if it fails with an error.

27

Child Process exec’s

execvp: child runs a.out code from its start rather than its copy of
parent’s code from after fork (which has been completely overwritten
with a.out by execvp)

pid = fork();

if (pid == 0) { /* child */

 if (execvp(“a.out”,argv)<0) {

 printf("%s: Command not found.\n", argv[0]);

 exit(0);

 }

}

fork()

Parent:
bash

Child:
 copy of
parent bash
 process

fork()

Parent:
bash

Child:
 a.out
code

Common fork() usage: Shell

1. fork()child process.

2. exec()/execvp()desired program to replace child’s address space.

2. wait()for child process to terminate.

3. repeat…

The parent and child each do
something different next.

Common fork() usage: Shell

1. fork()child process.

Shell

fork()

Shell
(p)

Shell
(c)

Common fork() usage: Shell

2. parent: wait()for child to finish

Shell

fork()

Shell
(p)

Shell
(c)

wait()

Common fork() usage: Shell

2. child: exec()user-requested program

Shell

fork()

Shell
(p)

Shell
(c)

wait() exec()

Common fork() usage: Shell

2. child: exec()user-requested program

Shell

fork()

Shell
(p)

Shell
new
prog

wait() exec()

Runs to completion

Common fork() usage: Shell

3. child program terminates, cycle repeats

Shell

fork()

Shell
(p)

Shell
new
prog

wait() exec()

Runs to completion

Child terminates

Common fork() usage: Shell

3. child program terminates, cycle repeats

Shell

fork()

Shell
(p)

Shell
new
prog

wait() exec()

Runs to completion

Child terminatesShell
(p)

Original parent
shell resumes

Process Termination

• When does a process die?

– It calls exit(int status);

– It returns (an int) from main

– It receives a termination signal (from the OS or another process)

• Key observation: the dying process produces status information.

• Who looks at this?

• The parent process!

Reaping Children
(Bet you didn’t expect to see THAT title on a slide when you signed up for CS 31?)

• wait(): parents reap their dead child processes

– Given info about why child terminated, exit status, etc.

• Two variants:

– wait(): wait for and reap next child to exit

– waitpid(): wait for and reap specific child

• This is how the shell determines whether or not the program you
executed succeeded.

Common fork() usage: Shell

fork()child process.

(child) exec()desired program to replace child’s address space.

(parent) wait()for child process to terminate.

– Check child’s result, notify user of errors.

repeat…

What should happen if dead child processes are never reaped?

(That is, the parent has not wait()ed on them?)

A. The OS should remove them from the process table

B. The OS should leave them in the process table

C. The neglected processes seek revenge as undead in the afterlife.

“Zombie” Processes

• Zombie: A process that has terminated but not been reaped by parent.
(AKA defunct process)

• Does not respond to signals (can’t be killed)

• OS keeps their entry in process table:

– Parent may still reap them, want to know status

– Don’t want to re-use the process ID yet

Basically, they’re kept around for bookkeeping purposes, but that’s much less exciting...

Signals

• How does a parent process know that a child has exited (and that it
needs to call wait)?

• Signals: inter-process notification mechanism

– Info that a process (or OS) can send to a process.
• Please terminate yourself (SIGTERM)

• Stop NOW (SIGKILL)

• Your child has exited (SIGCHLD)

• You’ve accessed an invalid memory address (SIGSEGV)

• Many more (SIGWINCH, SIGUSR1, SIGPIPE, …)

Signal Handlers

• By default, processes react to signals according to the signal type:
– SIGKILL, SIGSEGV, (others): process terminates

– SIGCHLD, SIGUSR1: process ignores signal

• You can define “signal handler” functions that execute upon
receiving a signal.
– Drop what program was doing, execute handler, go back to what it

was doing.

– Example: got a SIGCHLD? Enter handler, call wait()

– Example: got a SIGUSR1? Reopen log files.

• Some signals (e.g., SIGKILL) cannot be handled.

Terminating a Process

void exit(int status);

• A process calls exit to terminate:

exit(0); // 0 means: exit without an error

exit(1); // non-zero means: an error exit

fork_pirates() {

 printf(“Yo“);

 fflush(stdout);

 fork();

 printf(“HoHo”);

 fflush(stdout);

 exit(0);

}

Yo

HoHo

HoHo

time

To see program’s
exit value:
 ./a.out

How does the call to exit happen?

1. Explicit to the C programmer:

– include a call to exit in the program code

2. “Implicit“ hidden from C programmer:

– return from main
 code runs after main returns and it calls exit

3. In signal handler code:

– Another process can send this process a kill signal
telling it to call exit to terminate (CNTL-C)

– This process does something irreversibly bad
(SEGFAULT), triggers code that calls exit

44

Process

create & exit

fork() create a new child process

– gets exact copy of its parent execution state

– fork returns 2x: one in parent’s execution context, one in
child’s

– returns 0 to child, child’s pid to parent

– parent and child are concurrent processes after fork

exit() terminate the calling process

– process cleans up most of own process state from system
by running exit system call

– then enters the EXITED state (can no longer run on CPU)

45

fork()

Parent:120

Child: 123
Exact copy
of parent

ret:123

ret:0

What Happens when a process

exits?

It becomes a zombie process until its parent
reaps it

Zombie process:

– exited, mostly dead, not runnable anymore
(unlike real zombies they won’t
 try to eat other processes)

– waiting for parent to completely remove all of
its state from the system

FYI: How to see a zombie

• stop parent from exiting before we can see it (ex. infinite loop)

• ps -S lists processes started by shell

 <defunct>: zombie child process

• kill -9 6639 kills parent process, which will reap its zombie children

47

void zombie(){

 if (fork() == 0) {// child

 printf(”Child, PID = %d\n", getpid());

 exit(0);

 }

 else {//parent

 printf(“Parent, PID = %d\n", getpid());

 while(1) {

 //Infinite loop

 }

 }

}

$./a.out &

Parent, PID = 6639

Child, PID = 6640

$ ps -S

 PID TTY TIME CMD

 6585 ttyp9 00:00:00 bash

 6639 ttyp9 00:00:03 ./a.out

 6640 ttyp9 00:00:00 ./a.out <defunct>

 6641 ttyp9 00:00:00 ps

$ kill -9 6639

$ ps

1. Parent waits for child to exit by calling a wait system

call:

1. Blocks the parent until the child exits

2. reaps the exited child and returns

2. Parent receives a SIGCHILD signal when child exits, and its
signal handler code calls wait to reap the child:

1. Reaps the exited child and returns

How does parent reap zombie child?

Remove all remaining parts of exited child process from the system

// blocks caller (parent) until child process exits,

// returns pid of child process that terminated

pid_t wait(int *child_status);

// more configurable: wait for specific child, or any, or just
// check and see if a child exited (don’t block or reap if not),

pid_t waitpid(pid_t pid, int *status, int options);

wait system calls

Wait Example

void fork_and_wait() {

 int child_status;

 pid_t pid;

 if (fork() == 0) {

 printf("C\n");

 }

 else {

 printf("P\n");

 pid = wait(&child_status);

 printf(“X\n");

 }

 printf("Bye\n");

 exit(0);

}

P

C Bye

X Bye

Q: What are all possible orderings of program
output?

Summary: Running a Program

Basic system calls:

– fork: spawns new process
• Called once, Returns twice (in parent and child process)

– exit: terminates own process
• Called once, never returns

• Puts it into “zombie” status

– wait or waitpid: reap terminated children

– execvp: runs new program in existing process
• Called once, (normally) never returns

51

Summary

• Processes cycled off and on CPU rapidly
– Mechanism: context switch
– Policy: CPU scheduling

• Processes created by fork()ing

• Other functions to manage processes:
– exec(): replace address space with new program
– exit(): terminate process
– wait(): reap child process, get status info

• Signals one mechanism to notify a process of something

	Default Section
	Slide 1: CS 31: Introduction to Computer Systems

	Operating Systems
	Slide 2: OS Big Picture Goals
	Slide 3: Key OS Responsibilities

	OS Kernel
	Slide 4: Running multiple programs
	Slide 5: OS: Turn undesirable into desirable
	Slide 6: Virtualization
	Slide 7: We’ll focus on the OS ‘kernel’
	Slide 8: The Kernel
	Slide 9: Kernel provides common functions
	Slide 10: OS Kernel
	Slide 11: Main Abstraction: The Process
	Slide 12: Basic Resources for Processes
	Slide 13: Machine State of a Process
	Slide 14: Anatomy of a Process
	Slide 15: Managing Processes
	Slide 16: Recap
	Slide 17: Managing Processes
	Slide 18: fork()
	Slide 19: fork() return value
	Slide 20: What Happens after a fork?
	Slide 21: fork example
	Slide 22: How many hello’s will be printed?
	Slide 23: How many hello’s will be printed?
	Slide 24: How many hello’s will be printed?
	Slide 25: Common fork() usage: Shell
	Slide 26: exec()
	Slide 27: exec system calls
	Slide 28: Child Process exec’s
	Slide 29: Common fork() usage: Shell
	Slide 30: Common fork() usage: Shell
	Slide 31: Common fork() usage: Shell
	Slide 32: Common fork() usage: Shell
	Slide 33: Common fork() usage: Shell
	Slide 34: Common fork() usage: Shell
	Slide 35: Common fork() usage: Shell
	Slide 36: Process Termination
	Slide 37: Reaping Children (Bet you didn’t expect to see THAT title on a slide when you signed up for CS 31?)
	Slide 38: Common fork() usage: Shell
	Slide 39: What should happen if dead child processes are never reaped? (That is, the parent has not wait()ed on them?)
	Slide 40: “Zombie” Processes
	Slide 41: Signals
	Slide 42: Signal Handlers
	Slide 43: Terminating a Process
	Slide 44: How does the call to exit happen?
	Slide 45: Process create & exit
	Slide 46: What Happens when a process exits?
	Slide 47: FYI: How to see a zombie
	Slide 48: How does parent reap zombie child?
	Slide 49: wait system calls
	Slide 50: Wait Example
	Slide 51: Summary: Running a Program
	Slide 52: Summary

