
CS 31: Introduction to Computer Systems

19 Strings Recap, OS
04-03-2025

Announcements

• Practice Exam is out – try it out before Monday

• More practice at:

• https://diveintosystems.org/exercises/frontmatter.html

https://diveintosystems.org/exercises/frontmatter.html

Reading Quiz

Cache Conscious Programming

Knowing about caching and designing code around it can significantly effect
performance

(ex) 2D array accesses

Algorithmically, both O(N * M).

Is one faster than the other?

for(i=0; i < N; i++) {
for(j=0; j< M; j++) {

sum += arr[i][j];
}}

for(j=0; j < M; j++) {
for(i=0; i< N; i++) {

sum += arr[i][j];
}}

Cache Conscious Programming

Knowing about caching and designing code around it can significantly effect
performance

(ex) 2D array accesses

Algorithmically, both O(N * M).

Is one faster than the other?

for(i=0; i < N; i++) {
for(j=0; j< M; j++) {

sum += arr[i][j];
}}

for(j=0; j < M; j++) {
for(i=0; i< N; i++) {

sum += arr[i][j];
}}

A. is faster. B. is faster.

C. Both would exhibit
roughly equal performance.

Cache Conscious Programming

The first nested loop is more efficient if the cache block size is larger than a

single array bucket (for arrays of basic C types, it will be).

(ex) 1 miss every 4 buckets vs. 1 miss every bucket

for(i=0; i < N; i++) {
 for(j=0; j< M; j++) {
 sum += arr[i][j];
}}

for(j=0; j < M; j++) {
 for(i=0; i< N; i++) {
 sum += arr[i][j];
}}

1 2 3 4 5 6 7 8 9 1

0

1

1

1

2

1

3

1

4

1

5

1

6

. . .

.

.

.

1 . . .

2

3

4

.

.

.

FYI: Example Cache Organization

13

. . .

L3
(shared by all cores)

Main Memory

Multicore processor: multiple CPU cores/chip
Example Sizes
 & Access Times
(KB: 210 MB: 220 GB: 230)

L1: Size: 32 KB
 Access: 4 cycles
 write through
 low associativity

L2: Size: 256 KB
 Access: 10 cycles

L3: Size: 8 MB
 Access: 40 cycles
 write back
 higher associativity

Main Memory (off chip):
 Size: 16 GB

 Access: 100 cycles

L1

L2

CPU Core 0

Regs

L1

L2

CPU Core N

Regs

Memory Bus

Program Efficiency and Memory

• Be aware of how your program accesses data

– Sequentially, in strides of size X, randomly, …

– How data is laid out in memory

• Will allow you to structure your code to run much more efficiently based on
how it accesses its data

• Don’t go nuts…

– Optimize the most important parts, ignore the rest

– “Premature optimization is the root of all evil.” -Knuth

Amdahl’s Law

Idea: an optimization can improve total runtime at most by the fraction it
contributes to total runtime

If program takes 100 secs to run, and you optimize a portion of the code that
accounts for 2% of the runtime, the best your optimization can do is improve
the runtime by 2 secs!

Amdahl’s Law tells us to focus our optimization efforts on the code that
matters:

Speed-up what is accounting for the largest portion of runtime to get the
largest benefit. And, don’t waste time on the small stuff.

Up Next:

• Review of C Strings

• Operating systems, Processes

Slide 16

Review: Strings in C

• char is a basic C type that stores a numeric value usually for storing a single letter value (e.g. ‘a’)

– Variable stores the ASCII encoding for the character

– Can perform arithmetic ops on its ascii value:

char ch = 'a';

ch++; //ch gets ascii value of 'b'

• String literal value between " ": "hello"

• Strings are stored as arrays of char with special terminating null (end of string) char ('\0’) at the

end. char str[20]; // array of 20 chars

 str: 'H' 'e' 'l' 'l' 'o'

[0] [1] [2] [3] [4]

…

[6] [7] [18][19][5]

'\0'

The string "hello" stored in str
17

C Strings and Pointers

• Often accessed as (char *)
char str[20];

str = “hello”;

char *name;

name = str;

printf(”%s”, str);

printf(”%s”, name);

str

base addr str

'H' 'e' 'l' 'l' 'o'

[0] [1] [2] [3] [4]

…

[6] [7] [18][19][5]

'\0'

name

Q: How to print “ello” given these
two variables str and name?

how many different ways can you
come up with?

C Strings and Pointers

char str[20];

str = “hello”;

char *name;

str

addr str[1]

'H' 'e' 'l' 'l' 'o'

[0] [1] [2] [3] [4]

…

[6] [7] [18][19][5]

'\0'

name

Q: How to print “ello” given these
two variables str and name?

starting at str[1] is the string “ello”

printf(“%s”, &str[1]);

or:

name = str;

printf(”%s”, &name[1]);

or:

name = &str[1];

printf(”%s”, name);

char str[20], str2[30], *str3;

str[0] = ‘H’;

str[1] = ‘i’;

str[2] = ‘\0';

C Strings and Pointers

Q: How to initialize str2 and str3 to have the same
 string value, “Hi”, as str?

 (three separate strings, with same string value “Hi”)

str3 = malloc(sizeof (char) * 20);

i=0;

while(str[i] != ‘\0’) {

 str2[i] = str[i];

 str3[i] = str[i];

 i++;

}

are we done?

str2[i] = ‘\0’;

str3[i] = ‘\0’;

str 'H' 'i'

[0] [1] [2] [3] [4]

…

[6] [7] [18][19][5]

'\0'

str2 ‘H’ ‘i’ ‘\0’

[0] [1] [2] [3] [4]

…

[6] [7] [18][19][5]

Stack

Heap

‘H’ ‘i’ ‘\0’

[0] [1] [2] [3] [4]

…

[6] [7] [18][19][5]

str3 addr in heap

//copying strings using C code

C String Library

• #include<string.h>

– Functions to manipulate strings

• strcpy, strdup, strlen, strcat, strcmp, strstr, ...

– User MUST ALLOCATE SPACE for string

• Declare an array of char (char str[20];)

• Declare a char * and dyamically allocate space

• Make sure to include space for ‘\0’ char

– Library functions use ‘\0’ to find end of string

• Don’t need to pass in size of string to function

like you do for passing non-string arrays to function

C string examples
char str1[20], str2[40];

int val;

// remember to null terminate strings!!

str1[0]=‘E’;

str1[1]=‘m’;

str1[2]=‘m’;

str1[3]=‘a’;

str1[4]=‘\0’;

printf("%s\n", str1); // prints Emma

scanf(”%s”, str2);

// reads a string from user stores in str2

printf prints char values
starting at str1[0] until

finds first bucket storing
'\0' (end of string)

// some string library functions do null termination

// for you:

strcpy(str2, “hello”); // str2 better have enough space!

printf(“%s %s %d\n”, str2, str1, strlen(str1));

// prints: hello Emma 4

// strcmp: compares ascii values of corresponding

 chars in str1 and str2 until '\0'

// returns: 0 if equal,

// negative value if str1< str2,

// positive value if str1 > str2

val = strcmp(str1, str2);

if(val) {

 printf(“str1 and str2 are not equal\n”);

}

Dynamically Allocated Strings

char *name, *ptr, str[20];

strcpy(str, ”Yo ho”);

//allocate one extra bucket in the array for

//the null character

name = malloc(sizeof(char)*(strlen(str)+1));

strcpy(name, str);

str

base addr in heap

'Y' 'o' ' ' ’h' 'o'

[0] [1] [2] [3] [4]

…

[6] [7] [18][19][5]

'\0'

name

[0] [1] [2] [3] [4] [5]

Heap

‘Y’ ‘o’ ‘ ’ ‘h’ ‘o’ ‘\0’

Stack

strstr: find string in a string

char *name, *ptr, str[20];

str = “Yo Ho”;

ptr = strstr(str, “ho”);

printf(“%s”, ptr);

str 'Y' 'o' ' ' ’h' 'o'

[0] [1] [2] [3] [4]

…

[6] [7] [18][19][5]

'\0'

ptr addr str[3]

Q: draw the stack diagram

and output of the print

statement.

Try out

char *str2, *ptr, str[64];

strcpy(str, “Hi How Are you?”);

1. code to see if `A` is in the string str (make your code work for any value stored in str, not

just this example)

2. if so, create a copy of the string starting at the first `A` in str2.

3. if not concatenate (add to the end of) to str the string “ no As in here.”

4. compare str2 and str strings, and print out a message indicating which is greater than

which or if they are equal

strcpy, strlen, strcat, strcmp, strstr, strchr

char *str2, *ptr, str[64];

strcpy(str, “Hi How Are you?”);

1. code to see if `A` is in the string str (make your code work for any value stored in str,
not just this example)

ptr = strchr(str, ‘A’); //<-Note the single quotes to find a character

alternatively:

ptr = strchr(str, “A”); //<-Note the double quotes to a substring within a

 // string

char *str2, *ptr, str[64];

strcpy(str, “Hi How Are you?”);

1. code to see if `A` is in the string str (make your code work for any value stored in str,

not just this example)

2. if so, create a copy of the string starting at the first `A` in str2.

ptr = strchr(str, ‘A’); // Step 1

if(ptr != NULL) {

 str2 = malloc(sizeof (char)* (strlen(ptr) + 1)); //start at pointer, allocate

 //an additional byte for the null terminating character

 if(str2 == NULL) { exit(1); }

 strcpy(str2, ptr);

}

char *str2, *ptr, str[64];

strcpy(str, “Hi How Are you?”);

1. code to see if `A` is in the string str (make your code work for any value stored in str, not just

this example)

2. if so, create a copy of the string starting at the first `A` in str2.

3. if not concatenate (add to the end of) to str the string “ no As in here”

ptr = strstr(str, “A”); // Step 1

if(ptr != NULL) {

 str2 = malloc (sizeof (char)*(strlen (ptr) + 1)); // Step 2

 if(str2 == NULL) { exit(1); }

 strcpy(str2, ptr);

} else { //Step 3

 strcat(str, “ no As in here”);

}

4. compare str2 and str strings, and print out a message indicating which is greater
than which or if they are equal

void cmp_strings(str, str2){

 int result;

 result = strcmp(str2, str);

 if (result == 0) {

 printf(“str and str2 are equal\n”);

 } else if (result > 0) {

 printf(“str2 is bigger than str\n”);

 } else {

 printf(“str is bigger than str2\n”);

 }

}

int result;

 char *str2, *ptr, str[64];

 strcpy(str, "Hi How Are you?");

 ptr = strstr(str, "A");

 if(ptr != NULL) {

 printf("ptr = %s\n", ptr);

 str2 = malloc(sizeof(char)*(strlen(ptr) + 1));

 if(str2 == NULL) { exit(1); }

 strcpy(str2, ptr);

 } else {

 strcat(str, "no A");

 }

 result = strcmp(str2, str);

 if(result == 0) {

 printf("str and str2 are equal\n");

 } else if (result > 0) {

 printf("str2 is bigger than str\n");

 } else {

 printf("str is bigger than str2\n");

 }

 printf("str = %s\n", str);

 printf("str2 = %s\n", str2);
31

Safe versions of string library funcs

Take a size limit to avoid writing beyond the bounds of the destination array

#define N 64

...

char str1[N], str2[128];

...

strncpy(str1, str2, N);

str1[N-1] = ‘\0`;

// need to ‘\0’ terminate if str2 >= N chars

In general, uses these versions!

32

What do we know so far?

(1) How a Computer Runs a Program:

 ./a.out to x86 instructions being executed by HW

Program: how instructions and data are encoded to run on HW

HW: how implemented to run program instrs on program data

• CPU implementation and how it works (Fetch, Decode, Execute, Store)

• Memory Hierarchy, different storage types/devices

• CPU Cache implementation(DM and SA) and how it works

(2) How to Efficiently Run Programs

Compiler’s role in producing efficient code (little bits of this)

The Memory Hierarchy and its effect performance

• Caching motivated by lots of locality in program execution

Program

Operating System

Computer Hardware

computer
system

The Operating System

(1) Its role in how a Computer Runs a Program:

 ./a.out to IA32 instructions being executed by HW

(2) How to Efficiently Run Programs

– Compiler’s role in producing efficient code

– The Memory Hierarchy and its effect performance

– OS abstractions for running programs efficiently

Program

Operating System

Computer Hardware

What is an Operating System?

Sits between the HW and the User/Program:

1. Manages the underlying HW

• Coordinates shared access to HW

ps –A (lots of processes sharing CPU, RAM, disk, …)

• Efficiently schedules/manages HW resources

2. Provides easy-to-use interface to the HW

• just type: ./a.out to run a program

User

Program

Operating System

Computer Hardware

OS Big Picture Goals

• OS is a layer of code between user programs and hardware.

• Goal: Make life easier for users and programmers.

• How can the OS do that?

Abstraction

User / Programmer
Wants low complexity

Applications
Specific functionality

Software library
Reusable functionality

Complex devices
Compute & I/O

Operating system
Manage resources

Abstraction

Operating system
Manage resources

Key OS Responsibilities

1. Simplifying abstractions for programs

2. Resource allocation and/or sharing

3. Hardware gatekeeping and protection

OS: Turn undesirable into desirable

• Turn undesirable inconveniences: reality

– Complexity of hardware

– Single processor

– Limited memory

Before Operating Systems

• One program executed at a time…

Why is it not ideal to have only a single program available to the

hardware?

A. The hardware might run out of work to do.

B. The hardware won’t execute as quickly.

C. The hardware’s resources won’t be used as
efficiently.

D. Some other reason(s). (What?)

Today: Multiprogramming

• Multiprogramming: have multiple programs available to the machine,
even if you only have one CPU core that can execute them.

Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

Multiprogramming on one core

….Wait Wait(for some resource) Job 1 Running

….Wait Wait
Job 2 Running

….Wait Wait
Job 3 Running

CPU Time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

…. Combined

How many programs do you think are running on a typical desktop

computer?

A. 1-10

B. 20-40

C. 40-80

D. 80-160

E. 160+

Running multiple programs

• Benefits: when I/O issued, CPU not needed

– Allow another program to run

– Requires yielding and sharing memory

• Challenges: what if one running program…

– Monopolizes CPU, memory?

– Reads/writes another’s memory?

– Uses I/O device being used by another?

More than 200 processes running on a typical desktop!

OS: Turn undesirable into desirable

• Turn undesirable inconveniences: reality

– Complexity of hardware

– Single processor

– Limited memory

• Into desirable conveniences: illusions

– Simple, easy-to-use resources

– Multiple/unlimited number of processors

– Large/unlimited amount of memory

Virtualization

• Rather than exposing real hardware, introduce a “virtual”, abstract
notion of the resource

• Multiple virtual processors

– By rapidly switching CPU use

• Multiple virtual memories

– By memory partitioning and re-addressing

• Virtualized devices

– By simplifying interfaces, and using other resources to enhance function

We’ll focus on the OS ‘kernel’

• “Operating system” has many interpretations

– E.g., all software on machine minus applications
(user or even limited to 3rd party)

• Our focus is the kernel

– What’s necessary for everything else to work

– Low-level resource control

– Originally called the nucleus in the 60’s

The Kernel

• All programs depend on it

– Loads and runs them

– Exports system calls to programs

• Works closely with hardware

– Accesses devices

– Responds to interrupts (hardware events)

• Allocates basic resources

– CPU time, memory space

– Controls I/O devices: display, keyboard, disk, network

Tron, 1982

Kernel provides common functions

• Some functions useful to many programs

– I/O device control

– Memory allocation

• Place these functions in central place (kernel)

– Called by programs ("system calls")

– Or accessed in response to hardware events

• What should functions be?

– How many programs should benefit?

– Might kernel get too big?

OS Kernel

• Big Design Issue: How do we make the OS efficient, reliable, and extensible?

• General OS Philosophy: The design and implementation of an OS involves a

constant tradeoff between simplicity and performance.

• As a general rule, strive for simplicity.

– except when you have a strong reason to believe that you need to make a particular

component complicated to achieve acceptable performance

– (strong reason = simulation or evaluation study)

Main Abstraction: The Process

• Abstraction of a running program

– “a program in execution”

• Dynamic

– Has state, changes over time

– Whereas a program is static

• Basic operations

– Start/end

– Suspend/resume

Basic Resources for Processes

• To run, process needs some basic resources:

– CPU
• Processing cycles (time)

• To execute instructions

– Memory
• Bytes or words (space)

• To maintain state

– Other resources (e.g., I/O)
• Network, disk, terminal, printer, etc.

What sort of information might the OS need to store to keep track of a

running process?

• That is, what MUST an OS know about a process?

• (Discuss with your neighbors.)

Machine State of a Process

• CPU or processor context

– PC (program counter)

– SP (stack pointer)

– General purpose registers

• Memory

– Code

– Global Variables

– Stack of activation records / frames

– Other (registers, memory, kernel-related state)

Must keep track of these
for every running process !

Resource Sharing

Reality

• Multiple processes

• Small number of CPUs

• Finite memory

Abstraction

• Process is all alone

• Process is always running

• Process has all the memory

P1

P2

P3

time

CPU: Time Memory: Space

P1
P2

P3

Resource: CPU

• Many processes, limited number of CPUs.

• Each process needs to make progress over time. Insight: processes
don’t know how quickly they should be making progress.

• Illusion: every process is making progress in parallel.

Timesharing: Sharing the CPUs

• Abstraction goal: make every process think it’s running on the CPU all the

time.

– Alternatively: If a process was removed from the CPU and then given it back, it

shouldn’t be able to tell

• Reality: put a process on CPU, let it run for a short time (~10 ms), switch to

another, … ("context switching")

How is Timesharing Implemented?

• Kernel keeps track of progress of each process

• Characterizes state of process’s progress

– Running: actually making progress, using CPU

– Ready: able to make progress, but not using CPU

– Blocked: not able to make progress, can’t use CPU

• Kernel selects a ready process, lets it run

– Eventually, the kernel gets back control

– Selects another ready process to run, …

Multiprogramming

• Given a running process

– At some point, it needs a resource, e.g., I/O device

– If resource is busy (or slow), process can’t proceed

– “Voluntarily” gives up CPU to another process

• Mechanism: Context switching

Time Sharing / Multiprogramming

• Given a running process

– At some point, it needs a resource, e.g., I/O device

– If resource is busy (or slow), process can’t proceed

– “Voluntarily” gives up CPU to another process

• Mechanism: Context switching

• Policy: CPU scheduling

Resource: Memory

Abstraction goal: make every process think it has the
same memory layout.

– MUCH simpler for compiler if the stack always starts at
0xFFFFFFFF, etc.

Operating system

Stack

Text

Data

Heap

Memory

• Abstraction goal: make every process think it has

the same memory layout.

– MUCH simpler for compiler if the stack always starts at

0xFFFFFFFF, etc.

• Reality: there’s only so much memory to go around

– no two processes should use the same (physical) memory

addresses (unless they’re sharing).

Process 1

Process 3

Process 3

OS

Process 2

Process 1

OS (with help from hardware) will keep track
of who’s using each memory region.

Virtual Memory: Sharing Storage

• Like CPU cache, memory is a cache for disk.

• Processes never need to know where their memory
truly is, OS translates virtual addresses into physical
addresses for them.

P1 P2 P3

P1
P2

P3

Kernel Execution

• Great, the OS is going to somehow give us these nice abstractions.

• So…how / when should the kernel execute to make all this stuff
happen?

The operating system kernel…

A. Executes as a process.

B. Is always executing, in support of other processes.

C. Should execute as little as possible.

D. More than one of the above. (Which ones?)

E. None of the above.

Process vs. Kernel

• Is the kernel itself a process?

– No, it supports processes and devices

• OS only runs when necessary…

– as an extension of a process making system call

– in response to a device issuing an interrupt

Process vs. Kernel

• The kernel is the code that supports processes

– System calls: fork (), exit (), read (), write (), …

– System management: context switching, scheduling, memory
management

Kernel vs. Userspace: Model

Text

Data

Stack

Process 1

Text

Data

Stack

Process 2

Text

Data

Stack

Process N

…

KernelSystem
Calls

write

read

fork

System
Management Scheduling

Context
Switching

OS OS

Heap

Heap

OS

Heap

Kernel vs. Userspace: Model

Text

Data

Stack

Process 1

Text

Data

Stack

Process 2

Text

Data

Stack

Process N

…

KernelSystem
Calls

write

read

fork

System
Management Scheduling

Context
Switching

OS OS

Heap

Heap

OS

Heap

Code:

Data:

Code:

Code +
Data:

Kernel vs. Userspace: Model

Text

Data

Stack

Process 1

Text

Data

Stack

Process 2

Text

Data

Stack

Process N

…

KernelSystem
Calls

write

read

fork

System
Management Scheduling

Context
Switching

OS OS

Heap

Heap

OS

Heap
Makes system call.
OS accesses device,
assigns resource, etc.

Kernel vs. Userspace: Model

Text

Data

Stack

Process 1

Text

Data

Stack

Process 2

Text

Data

Stack

Process N

…

KernelSystem
Calls

write

read

fork

System
Management Scheduling

Context
Switching

OS OS

Heap

Heap

OS

Heap

OS has control. It will
take care of process’s
request, but it might
take a while.

It can context switch
(and usually does at
this point).

Kernel vs. Userspace: Model

Text

Data

Stack

Process 1

Text

Data

Stack

Process 2

Text

Data

Stack

Process N

…

KernelSystem
Calls

write

read

fork

System
Management Scheduling

Context
Switching

OS OS

Heap

Heap

OS

Heap

OS returns control to
a process (usually not
the same one).

Kernel vs. Userspace: Model

Text

Data

Stack

Process 1

Text

Data

Stack

Process 2

Text

Data

Stack

Process N

…

KernelSystem
Calls

write

read

fork

System
Management Scheduling

Context
Switching

OS OS

Heap

Heap

OS

Heap

Transition is expensive,
but often necessary.

Standard C Library Example

C program invoking printf() library call, which calls

write() system call

Control over the CPU

• To context switch processes, kernel must get control:

1. Running process can give up control voluntarily

– To block, call yield () to give up CPU

– Process makes a blocking system call, e.g., read ()

– Control goes to kernel, which dispatches new process

2. CPU is forcibly taken away: preemption

How might the OS forcibly take control of a CPU?

A. Ask the user to give it the CPU.

B. Require a program to make a system call.

C. Enlist the help of a hardware device.

D. Some other means of seizing control (how?).

CPU Preemption

1. While kernel is running, set a hardware timer.

2. When timer expires, a hardware interrupt is generated. (device asking
for attention)

3. Interrupt pauses process on CPU, forces control to go to OS kernel.

4. OS is free to perform a context switch.

	Default Section
	Slide 1: CS 31: Introduction to Computer Systems
	Slide 2: Announcements

	Reading Quiz
	Slide 3: Reading Quiz

	Function Arguments
	Slide 10: Cache Conscious Programming
	Slide 11: Cache Conscious Programming
	Slide 12: Cache Conscious Programming
	Slide 13: FYI: Example Cache Organization
	Slide 14: Program Efficiency and Memory
	Slide 15: Amdahl’s Law
	Slide 16: Up Next:
	Slide 17: Review: Strings in C
	Slide 18: C Strings and Pointers
	Slide 19: C Strings and Pointers
	Slide 20: C Strings and Pointers
	Slide 21
	Slide 22: C String Library
	Slide 23: C string examples
	Slide 24: Dynamically Allocated Strings
	Slide 25: strstr: find string in a string
	Slide 26: Try out
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Safe versions of string library funcs
	Slide 33: What do we know so far?
	Slide 34: The Operating System
	Slide 35: What is an Operating System?
	Slide 36: OS Big Picture Goals
	Slide 37: Abstraction
	Slide 38: Abstraction
	Slide 39: Key OS Responsibilities
	Slide 40: OS: Turn undesirable into desirable
	Slide 41: Before Operating Systems
	Slide 42: Why is it not ideal to have only a single program available to the hardware?
	Slide 43: Today: Multiprogramming
	Slide 44: Multiprogramming on one core
	Slide 45: How many programs do you think are running on a typical desktop computer?
	Slide 46: Running multiple programs
	Slide 47: OS: Turn undesirable into desirable
	Slide 48: Virtualization
	Slide 49: We’ll focus on the OS ‘kernel’
	Slide 50: The Kernel
	Slide 51: Kernel provides common functions
	Slide 52: OS Kernel
	Slide 53: Main Abstraction: The Process
	Slide 54: Basic Resources for Processes
	Slide 55: What sort of information might the OS need to store to keep track of a running process?
	Slide 56: Machine State of a Process
	Slide 57: Resource Sharing
	Slide 58: Resource: CPU
	Slide 59: Timesharing: Sharing the CPUs
	Slide 60: How is Timesharing Implemented?
	Slide 61: Multiprogramming
	Slide 62: Time Sharing / Multiprogramming
	Slide 63: Resource: Memory
	Slide 64: Memory
	Slide 65: Virtual Memory: Sharing Storage
	Slide 66: Kernel Execution
	Slide 67: The operating system kernel…
	Slide 68: Process vs. Kernel
	Slide 69: Process vs. Kernel
	Slide 70: Kernel vs. Userspace: Model
	Slide 71: Kernel vs. Userspace: Model
	Slide 72: Kernel vs. Userspace: Model
	Slide 73: Kernel vs. Userspace: Model
	Slide 74: Kernel vs. Userspace: Model
	Slide 75: Kernel vs. Userspace: Model
	Slide 76: Standard C Library Example
	Slide 77: Control over the CPU
	Slide 78: How might the OS forcibly take control of a CPU?
	Slide 79: CPU Preemption

