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Announcements

• CS 31 Final Exam: Singer 33: 9 – 12PM: May 12th

• Final exam is inclusive of all the material in the course

• You can request a reschedule if you have more than 2 exams in a 24 - 48 hour 
period. 

• All other travel related requests are not entertained 

• HW 6 Pushed out to next Monday

• CS 31 Midterm next Tuesday: Syllabus inclusive of Set-Associative 
Cache. 
• Practice Exam out today + topics (midterm 1 – midterm 2) 

• Please respond to accommodations requests for the midterm!! 



Last class: The Memory Hierarchy

Local secondary storage (disk)

Larger  
Slower
Cheaper 
per byte

Remote secondary storage
(tapes, Web servers / Internet)

~100 M cycles to access

On 
Chip 

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM)

~100 cycles to access

CPU
instrs 

can
directly 
access

slower
      than local
           disk to access

Registers
1 cycle to access

Cache(s)
(SRAM)

~10’s of cycles to access

Flash SSD / Local network



Memory Address Tells Us…

• Is the block containing the byte(s) you want already in the cache?

• If not, where should we put that block?

– Do we need to kick out (“evict”) another block?

• Which byte(s) within the block do you want?



Memory Addresses for use with Cache

• Like everything else: series of bits (x86_64 has 64 bit addresses)

• Keep in mind:

– N bits gives us 2N unique values.

• 64-bit address:

– 1011000101110010110101000101011010110001011100101101010001010110

Divide into regions, each with distinct meaning.



Address Division

• First section: Tag

– Of all the addresses that map to this location, which one is here?

– Number of bits for this section is any bits left over after index and offset.

• Second section: Index

– Which location(s) in the cache should we check for the data with this address?

– Number of bits for this section depends on the number of cache locations.

• Third section: Offset

– If we find a block of bytes in the cache (on a hit) which byte offset within the 
block do we actually want?

– Number of bits for this section depends on the block size – must be able to 
uniquely identify every byte in the block.



Address Division

• First section: Tag
– Of all the addresses that map to this location, which one is here?
– Uniquely identify the subset of memory contained within a cache line.
– Number of bits for this section is any bits left over after index and offset.

• Second section: Index
– Which location(s) in the cache should we check for the data with this address?
– Number of bits for this section depends on the number of cache locations.

• Third section: Offset
– If we find a block of bytes in the cache (on a hit) which bytes within the block do we actually 

want?
– Number of bits for this section depends on the block size – must be able to uniquely identify 

every byte in the block.

1011000101110010110101000101011010110001011100101101010001010110

Tag (X bits) Index (Y bits) Byte offset (Z bits)



A. In exactly one place.  (“Direct-mapped”)

– Every location in memory is directly mapped to one 
place in the cache.  Easy to find data.

B. In a few places.  (“Set associative”)

– A memory location can be mapped to (2, 4, 8) 
locations in the cache.  Middle ground.

A. Anywhere in the cache. (“Fully associative”)

– No restrictions on where memory can be placed in the 
cache.  Fewer conflict misses, more searching.



Direct Mapped Cache

Addr. Value

0000 i

0001 j

0010

0011

0100

0101

0110

0111

…

…

1110

1111

Index Value

0

1

2

3

Cache 

Main Memory

16 locations

4 locations

i and j map to the same cache line
and may constantly evict each other!



Direct-Mapped

• One place data can be.

• Example: let’s assume some parameters:

– 1024 cache locations (every block mapped to one)

– Block size of 8 bytes



Suppose we had 8-bit addresses, a cache with 8 lines, and a block 

size of 4 bytes.

• How many bits would we use for:

– Tag?

– Index?

– Offset?



Suppose a system has 8-bit addresses, a DM cache with 8 

lines, and 4-byte block size

• How many bits would be used for:
– Byte-offset: 2 bits 

• 4 byte block size, can address each byte in 2 bits (00, 01, 10, 11)

– Index: 3 bits
• With 8 lines, need 3 bits to encode each cache line number

– Tag: 3 bits
• Bits left over in the address after byte-offset and index (8 – 2 – 3)

• Which bits would be used for:
– Tag?   high order
– Index?  middle (right after byte offset bits)

– Byte offset? low order 

ex. 01010011



Read 01000100 (Value: 5)

Read 11100010 (Value: 17)

Write 01110000 (Value: 7)

Read 10101010 (Value: 12)

Write 01101100 (Value: 2)

Line V D Tag Data 
(4 Bytes)

0 1 0 111 17

1 1 0 011 9

2 0 0 101 15

3 1 1 001 8

4 1 0 011 4

5 0 0 111 6

6 0 0 101 32

7 1 0 110 3

Memory address

How would the cache change if we performed the following memory 

operations?



How would the cache change if we performed the following memory 

operations?

Read 01000100 (Value: 5)

Read 11100010 (Value: 17)

Read 10111101 (Value: 2)

Write 01111100 (Value 10)

Write 01110000 (Value: 7)

Read 10101010 (Value: 12)

Write 01101100 (Value: 2)

Line V D Tag Data (4 Bytes)

0 1 0 111 17

1 1 0 011   010 9     5

2 0 0 101 15

3 1 1 001 8

4 1 0 011 4

5 0 0 111 6

6 0 0 101 32

7 1 0 110 3

Memory address Tag: 3
Index: 3 
Offset: 2

MISS

At line 1, V=1 but tags don’t match, so we have a MISS. 
Dirty bit is 0, so we can safely overwrite it.
Write: V = 1; D = 0 (we’re reading, not writing); tag, data (value)



How would the cache change if we performed the following memory 

operations?

Read 01000100 (Value: 5)

Read 11100010 (Value: 17)

Read 10111101 (Value: 2)

Write 01111100 (Value 10)

Write 01110000 (Value: 7)

Read 10101010 (Value: 12)

Write 01101100 (Value: 2)

Line V D Tag Data (4 Bytes)

0 1 0 111 17 

1 1 0 011   010 9     5

2 0 0 101 15

3 1 1 001 8

4 1 0 011 4

5 0 0 111 6

6 0 0 101 32

7 1 0 110 3

Memory address
Tag: 3
Index: 3 
Offset: 2

MISS

HIT

At line 1, V=1 and tags match, so we have a HIT. 
What we wanted in cache is there, so we saved time!



How would the cache change if we performed the following memory 

operations?

Read 01000100 (Value: 5)

Read 11100010 (Value: 17)

Read 10111101 (Value: 2)

Write 01111100 (Value 10)

Write 01110000 (Value: 7)

Read 10101010 (Value: 12)

Write 01101100 (Value: 2)

Line V D Tag Data (4 Bytes)

0 1 0 111 17

1 1 0 011   010 9     5

2 0 0 101 15

3 1 1 001 8

4 1 0 011 4

5 0 0 111 6

6 0 0 101 32

7 0
1

0 110   101 3    2

Memory address
Tag: 3
Index: 3 
Offset: 2

MISS

HIT

MISS

At line 7, V=0 and tags don’t match, so we have a MISS. 
Dirty bit is 0, so we can safely overwrite it.
Write: V = 1; tag, data (value)



How would the cache change if we performed the following memory 

operations?

Read 01000100 (Value: 5)

Read 11100010 (Value: 17)

Read 10111101 (Value: 2)

Write 01111100 (Value 10)

Write 01110000 (Value: 7)

Read 10101010 (Value: 12)

Write 01101100 (Value: 2)

Line V D Tag Data (4 Bytes)

0 1 0 111 17

1 1 0 011   010 9     5

2 0 0 101 15

3 1 1 001 8

4 1 0 011 4

5 0 0 111 6

6 0 0 101 32

7 0
1

0
1

110   101
011

3    2
10

Memory address
Tag: 3
Index: 3 
Offset: 2

MISS

HIT

MISS

At line 7, V=1 but tags don’t match, so we have a MISS. D=0, so 
we can safely overwrite it. Write: V = 1; D = 1 (we’re updating 
cache but it is now out of sync with main memory); tag, data (value)

1

MISS



How would the cache change if we performed the following memory 

operations?

Read 01000100 (Value: 5)

Read 11100010 (Value: 17)

Read 10111101 (Value: 2)

Write 01111100 (Value 10)

Write 01110000 (Value: 7)

Read 10101010 (Value: 12)

Write 01101100 (Value: 2)

Line V D Tag Data (4 Bytes)

0 1 0 111 17

1 1 0 011   010 9     5

2 0 0 101 15

3 1 1 001 8

4 1 0 011 4 7

5 0 0 111 6

6 0 0 101 32

7 0
1

0
1

110   101
011

3    2
10

Memory address
Tag: 3
Index: 3 
Offset: 2

MISS

HIT

MISS

At line 4, V=1 and tags match, so we have a HIT. D=0. Write 
value 7. Set data (value); D = 1 (we’re updating cache and it is 
now out of synch with main memory)

1

MISS

HIT



How would the cache change if we performed the following memory 

operations?

Read 01000100 (Value: 5)

Read 11100010 (Value: 17)

Read 10111101 (Value: 2)

Write 01111100 (Value 10)

Write 01110000 (Value: 7)

Read 10101010 (Value: 12)

Write 01101100 (Value: 2)

Line V D Tag Data (4 Bytes)

0 1 0 111 17

1 1 0 011   010 9     5

2 0
1

0 101 101 15 12

3 1 1 001 8

4 1 0 011 4 7

5 0 0 111 6

6 0 0 101 32

7 0
1

0
1

110   101
011

3    2
10

Memory address
Tag: 3
Index: 3 
Offset: 2

MISS

HIT

MISS

At line 2, tags match but V=0, so we have a MISS. D=0, so no need 
to evict anything. Read value in from memory and store it in 
cache. Set V=1, D=0; tag; data (value).

1

MISS

HIT

MISS



How would the cache change if we performed the following memory 

operations?

Read 01000100 (Value: 5)

Read 11100010 (Value: 17)

Read 10111101 (Value: 2)

Write 01111100 (Value 10)

Write 01110000 (Value: 7)

Read 10101010 (Value: 12)

Write 01101100 (Value: 2)

Line V D Tag Data (4 Bytes)

0 1 0 111 17

1 1 0 011   010 9     5

2 0
1

0 101 101 15 12

3 1
1

1
1

001 011 8      2

4 1 0 011 4 7

5 0 0 111 6

6 0 0 101 32

7 0
1

0
1

110   101
011

3    2
10

Memory address
Tag: 3
Index: 3 
Offset: 2

MISS

HIT

MISS

At line 3, V=1 and tags don’t match, so we have a MISS. D=1, so 
we need to save it to memory before we overwrite it. Set V=1, 
D=1; tag; data (value).

1

MISS

HIT

MISS

MISS



Associativity

• Problem: suppose we’re only using a small amount of 
data (e.g., 8 bytes, 4-byte block size)

• Bad luck: (both) blocks map to same cache line

– Constantly evicting one another

– Rest of cache is going unused!

• Associativity: allow a set blocks to be stored at the 
same index. Goal: reduce conflict misses.

Slide 21



Direct-mapped vs N-way set associative Cache

Direct-mapped

• Tag tells you if you found the correct 
data.

• Offset specifies which byte within 
block.

• Middle bits (index) tell you which 1 line 
to check.

• (+) Low complexity, fast.

• (-) Conflict misses.

N-way set associative

• Tag tells you if you found the correct 
data.

• Offset specifies which byte within 
block.

• Middle bits (set) tell you which N lines 
to check.

• (+) Fewer conflict misses.

• (-) More complex, slower, consumes 
more power.



Direct Mapped Cache

Addr. Value

0000 i

0001 j

0010

0011

0100

0101

0110

0111

…

…

1110

1111

Index Value

0

1

2

3

Cache 

Main Memory

16 locations

4 locations

i and j map to the same cache line
and may constantly evict each other!



Set Associative Cache

Addr. Value

0000 i

0001 j

0010

0011

0100

0101

0110

0111

…

…

1110

1111

Index Line 1 Line2

0

1

Cache 

Main Memory

16 locations

2 sets, 4 locations

i and j map to the same cache line
but different locations in the cache. 



Comparison: 1024 Lines
(For the same cache size, in bytes.)

Direct-mapped

• 1024 indices (10 bits)

2-way set associative

• 512 sets (9 bits)

– Tag slightly (1 bit) larger.

V D Tag Data (8 Bytes)

…

Set # V D Tag Data (8 Bytes)

0

1

2

3

4

… …

508

509

510

511



2-Way Set Associative

V D Tag Data (8 Bytes)

1 0 3941

…

Set # V D Tag Data (8 Bytes)

0

1

2

3

4 1 1 4063

… …

508

509

510

511

Tag (52 bits) Set (9 bits) Byte offset (3 bits)

3941 4

Same capacity as previous example:
1024 rows with 1 entry vs.  
512 rows with 2 entries



2-Way Set Associative

V D Tag Data (8 Bytes)

1 0 3941

…

Set # V D Tag Data (8 Bytes)

0

1

2

3

4 1 1 4063

… …

508

509

510

511

Tag (52 bits) Set (9 bits) Byte offset (3 bits)

3941 4

Check all locations in the set, in parallel.



2-Way Set Associative

V D Tag Data (8 Bytes)

1 0 3941

…

Set # V D Tag Data (8 Bytes)

0

1

2

3

4 1 1 4063

… …

508

509

510

511

Tag (52 bits) Set (9 bits) Byte offset (3 bits)

3941 4

0 1 2 3 4 5 6 70 1 2 3 4 5 6 7

Multiplexer Select correct value.
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Eviction

• Mechanism is the same…

– Overwrite bits in cache line: update tag, valid, data

• Policy: choose which line in the set to evict

– Pick a random line in set

– Choose an invalid line first

– Choose the least recently used block
• Has exhibited the least locality, kick it out!

Common 
combo in 
practice.



Least Recently Used (LRU)

• Intuition: if it hasn’t been used in a while, we have no reason to believe 
it will be used soon.

• Need extra state to keep track of LRU info: which line is least recently 
used -> left or right?

V D Tag Data (8 Bytes)

1 0 3941

…

Set # LRU V D Tag Data (8 Bytes)

0 0

1 1

2 1

3 0

4 1 1 1 4063

… …



Least Recently Used (LRU)

• Intuition: if it hasn’t been used in a while, we have no reason to believe it 
will be used soon.

• Need extra state to keep track of LRU info.

• For perfect LRU info:

– 2-way: 1 bit

– 4-way: 8 bits

– N-way: N * log2 N bits

Another reason why associativity 
often maxes out at 8 or 16.

These are metadata bits, not
“useful” program data storage.

(Approximations make it not quite 
as bad.)



Suppose a system has 8-bit addresses, a two-way set 

associative cache with 8 lines, and 4-byte block size

• How many bits would we use for:

– Tag?

– Index?

– Offset?



Suppose a system has 8-bit addresses, a two-way set 

associative cache with 8 lines, and 4-byte block size

• How many bits would we use for:

– Tag? 3

– Set? 3

– Offset? 2



How would the cache change if we performed the following memory 

operations? (2-way set)

Read 01000100 (Value: 5)

Read 11100010 (Value: 17)

Write 01100100 (Value: 7)

Read 01000110 (Value: 5)

Write 01100000 (Value: 2)

V D Tag Data (4 Bytes)

1 0 001 17

1 0 010 5

… …

Set # LRU V D Tag Data (4 Bytes)

0 0 0 0 111 4

1 1 1 1 111 9

2 … …

3

4

5

6

7

LRU = 0 means the left line in the set was 
least recently used.  

LRU = 1 means the right line was used least 
recently.

Tag:  
Set:   
Offset:  



How would the cache change if we performed the following memory 

operations? (2-way set)

Read 01000100 (Value: 5)

Read 11100010 (Value: 17)

Write 01100100 (Value: 7)

Read 01000110 (Value: 5)

Write 01100000 (Value: 2)

V D Tag Data (4 Bytes)

1 0 001 17

1 0 010 5

… …

Set # LRU V D Tag Data (4 Bytes)

0 0 0 0 111 4

1 1 0 1 1 111 9

2 … …

3

4

5

6

7

Tag: 3
Set: 3 
Offset: 2

HIT
LRU = 0 means the left line in the set was 
least recently used.  

LRU = 1 means the right line was used least 
recently.



How would the cache change if we performed the following memory 

operations? (2-way set)

Read 01000100 (Value: 5)

Read 11100010 (Value: 17)

Write 01100100 (Value: 7)

Read 01000110 (Value: 5)

Write 01100000 (Value: 2)

V D Tag Data (4 Bytes)

1 0 001 17

1 0 010 5

… …

Set # LRU V D Tag Data (4 Bytes)

0 0 1 0 0 111 4 17

1 1 0 1 1 111 9

2 … …

3

4

5

6

7

Tag: 3
Index: 3 
Offset: 2

1

HIT

MISS
LRU = 0 means the left line in the set was 
least recently used.  

LRU = 1 means the right line was used least 
recently.



How would the cache change if we performed the following memory 

operations? (2-way set)

Read 01000100 (Value: 5)

Read 11100010 (Value: 17)

Write 01100100 (Value: 7)

Read 01000110 (Value: 5)

Write 01100000 (Value: 2)

V D Tag Data (4 Bytes)

1 0 001 17

1 0 010 5

… …

Set # LRU V D Tag Data (4 Bytes)

0 0 1 0 0 111 4 17

1 1 0 1 1 111 011 9  7

2 … …

3

4

5

6

7

Tag: 3
Index: 3 
Offset: 2

1

HIT

MISS

MISS

1 11

LRU = 0 means the left line in the set was 
least recently used.  

LRU = 1 means the right line was used least 
recently.



How would the cache change if we performed the following memory 

operations? (2-way set)

Read 01000100 (Value: 5)

Read 11100010 (Value: 17)

Write 01100100 (Value: 7)

Read 01000110 (Value: 5)

Write 01100000 (Value: 2)

V D Tag Data (4 Bytes)

1 0 001 17

1 0 010 5

… …

Set # LRU V D Tag Data (4 Bytes)

0 0 1 0 0 111 4 17

1 1 0 1 1 111 011 9  7

2 … …

3

4

5

6

7

Tag: 3
Index: 3 
Offset: 2

1

HIT

MISS

MISS

1 11

HIT

0

LRU = 0 means the left line in the set was 
least recently used.  

LRU = 1 means the right line was used least 
recently.



How would the cache change if we performed the following memory 

operations? (2-way set)

Read 01000100 (Value: 5)

Read 11100010 (Value: 17)

Write 01100100 (Value: 7)

Read 01000110 (Value: 5)

Write 01100000 (Value: 2)

V D Tag Data (4 Bytes)

1 0 001 011 17 2

1 0 010 5

… …

Set # LRU V D Tag Data (4 Bytes)

0 0 1 0 0 111 4 17

1 1 0 1 1 111 011 9  7

2 … …

3

4

5

6

7

Tag: 3
Index: 3 
Offset: 2

1

HIT

MISS

MISS

1 11

HIT

0

1 10

LRU = 0 means the left line in the set was 
least recently used.  

LRU = 1 means the right line was used least 
recently.



Cache Conscious Programming

Knowing about caching and designing code around it can significantly effect 
performance

   (ex) 2D array accesses

Algorithmically, both O(N * M).

Is one faster than the other?

for(i=0; i < N; i++) {
  for(j=0; j< M; j++) {
      sum += arr[i][j];
}}

for(j=0; j < M; j++) {
  for(i=0; i< N; i++) {
     sum += arr[i][j];
}}



Cache Conscious Programming

Knowing about caching and designing code around it can significantly effect 
performance

   (ex) 2D array accesses

Algorithmically, both O(N * M).

Is one faster than the other?

for(i=0; i < N; i++) {
  for(j=0; j< M; j++) {
      sum += arr[i][j];
}}

for(j=0; j < M; j++) {
  for(i=0; i< N; i++) {
     sum += arr[i][j];
}}

A. is faster. B. is faster.

C. Both would exhibit 
roughly equal performance.



Cache Conscious Programming

The first nested loop is more efficient if the cache block size is larger than a 

single array bucket  (for arrays of basic C types, it will be).

(ex)            1 miss every 4 buckets      vs.          1 miss every bucket

for(i=0; i < N; i++) {
  for(j=0; j< M; j++) {
      sum += arr[i][j];
}}

for(j=0; j < M; j++) {
  for(i=0; i< N; i++) {
     sum += arr[i][j];
}}

1 2 3 4 5 6 7 8 9 1

0

1

1

1

2

1

3

1

4

1

5

1

6

. . . 

. 

. 

.

1 . . . 

2

3

4

.

.

.



FYI: Example Cache Organization

43

. . .

L3
(shared by all cores)

Main Memory

Multicore processor:  multiple CPU cores/chip
Example Sizes
 & Access Times
(KB: 210 MB: 220 GB: 230)

L1:  Size:  32 KB 
       Access: 4 cycles
       write through
       low associativity

L2:  Size:  256 KB
       Access: 10 cycles

L3:   Size:  8 MB
       Access: 40 cycles
       write back
       higher associativity

Main Memory (off chip):
       Size: 16 GB

 Access: 100 cycles

L1 

L2

CPU Core 0

Regs

L1 

L2

CPU Core N

Regs

Memory       Bus



Program Efficiency and Memory

• Be aware of how your program accesses data 

– Sequentially, in strides of size X, randomly, …

– How data is laid out in memory

• Will allow you to structure your code to run much more efficiently based on 
how it accesses its data

• Don’t go nuts…

– Optimize the most important parts, ignore the rest

– “Premature optimization is the root of all evil.” -Knuth



Amdahl’s Law

Idea: an optimization can improve total runtime at most by the fraction it 
contributes to total runtime

If program takes 100 secs to run, and you optimize a portion of the code that 
accounts for 2% of the runtime, the best your optimization can do is improve 
the runtime by 2 secs!

Amdahl’s Law tells us to focus our optimization efforts on the code that 
matters:  

Speed-up what is accounting for the largest portion of runtime to get the 
largest benefit.  And, don’t waste time on the small stuff.



Up Next:

• Operating systems, Processes

• Virtual Memory

Slide 46



What do we

know so far?

(1) How a Computer Runs a Program:

  ./a.out to x86 instructions being executed by HW

Program: how instructions and data are encoded to run on HW
HW: how implemented to run program instrs on program data

• CPU implementation and how it works (Fetch, Decode, Execute, Store)
• Memory Hierarchy, different storage types/devices
• CPU Cache implementation(DM and SA) and how it works

(2) How to Efficiently Run Programs

Compiler’s role in producing efficient code (little bits of this)
The Memory Hierarchy and its effect performance

• Caching motivated by lots of locality in program execution

47

Program

Operating System

Computer Hardware

computer
system



The Operating System

(1)Its role in how a Computer Runs a Program:

  ./a.out to IA32 instructions being executed by HW

(2)  How to Efficiently Run Programs
– Compiler’s role in producing efficient code

– The Memory Hierarchy and its effect performance

– OS abstractions for running programs efficiently

48

Program

Operating System

Computer Hardware



What is an Operating System?

Sits between the HW and the User/Program:

1. Manages the underlying HW

• Coordinates shared access to HW

ps –A (lots of processes sharing CPU, RAM, disk, …)

•  Efficiently schedules/manages HW resources

2. Provides easy-to-use interface to the HW

•  just type:  ./a.out to run a program

49

User

Program

Operating System

Computer Hardware



OS Big Picture Goals

• OS is a layer of code between user programs and hardware.

• Goal: Make life easier for users and programmers.

• How can the OS do that?



Abstraction

User / Programmer
Wants low complexity

Applications
Specific functionality

Software library
Reusable functionality

Complex devices
Compute & I/O

Operating system
Manage resources
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Abstraction

Operating system
Manage resources

Slide 52



Key OS Responsibilities

1. Simplifying abstractions for programs

2. Resource allocation and/or sharing

3. Hardware gatekeeping and protection



OS: Turn undesirable into desirable

• Turn undesirable inconveniences: reality

– Complexity of hardware

– Single processor

– Limited memory



Before Operating Systems

• One program executed at a time…



Why is it not ideal to have only a single program available to the 

hardware?

A. The hardware might run out of work to do.

B. The hardware won’t execute as quickly.

C. The hardware’s resources won’t be used as 
efficiently.

D. Some other reason(s).  (What?)



Today: Multiprogramming

• Multiprogramming: have multiple programs available to the machine, 
even if you only have one CPU core that can execute them.

Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap



Multiprogramming on one core 

….Wait Wait(for some resource)  Job 1 Running

….Wait Wait 
Job 2 Running

….Wait Wait 
Job 3 Running

CPU Time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

…. Combined 



How many programs do you think are running on a typical desktop 

computer?

A. 1-10

B. 20-40

C. 40-80

D. 80-160

E. 160+



Running multiple programs

• Benefits: when I/O issued, CPU not needed

– Allow another program to run

– Requires yielding and sharing memory

• Challenges: what if one running program…

– Monopolizes CPU, memory?

– Reads/writes another’s memory?

– Uses I/O device being used by another?

More than 200 processes running on a typical desktop! 



OS: Turn undesirable into desirable

• Turn undesirable inconveniences: reality

– Complexity of hardware

– Single processor

– Limited memory

• Into desirable conveniences: illusions

– Simple, easy-to-use resources

– Multiple/unlimited number of processors

– Large/unlimited amount of memory



Virtualization

• Rather than exposing real hardware, introduce a “virtual”, abstract 
notion of the resource

• Multiple virtual processors

– By rapidly switching CPU use

• Multiple virtual memories

– By memory partitioning and re-addressing

• Virtualized devices

– By simplifying interfaces, and using other resources to enhance function



We’ll focus on the OS ‘kernel’

• “Operating system” has many interpretations

– E.g., all software on machine minus applications 
(user or even limited to 3rd party)

• Our focus is the kernel

– What’s necessary for everything else to work

– Low-level resource control

– Originally called the nucleus in the 60’s



The Kernel

• All programs depend on it

– Loads and runs them

– Exports system calls to programs

• Works closely with hardware

– Accesses devices

– Responds to interrupts (hardware events)

• Allocates basic resources

– CPU time, memory space

– Controls I/O devices: display, keyboard, disk, network

Tron, 1982



Kernel provides common functions

• Some functions useful to many programs

– I/O device control

– Memory allocation

• Place these functions in central place (kernel)

– Called by programs ("system calls")

– Or accessed in response to hardware events

• What should functions be?

– How many programs should benefit?

– Might kernel get too big?



OS Kernel

• Big Design Issue: How do we make the OS efficient, reliable, and extensible?

• General OS Philosophy: The design and implementation of an OS involves a 

constant tradeoff between simplicity and performance. 

• As a general rule, strive for simplicity.

– except when you have a strong reason to believe that you need to make a particular 

component complicated to achieve acceptable performance

– (strong reason = simulation or evaluation study)



Main Abstraction: The Process

• Abstraction of a running program

– “a program in execution”

• Dynamic

– Has state, changes over time

– Whereas a program is static

• Basic operations

– Start/end

– Suspend/resume



Basic Resources for Processes

• To run, process needs some basic resources:

– CPU
• Processing cycles (time)

• To execute instructions

– Memory
• Bytes or words (space)

• To maintain state

– Other resources (e.g., I/O)
• Network, disk, terminal, printer, etc.



What sort of information might the OS need to store to keep track of a 

running process?

• That is, what MUST an OS know about a process?

• (Discuss with your neighbors.)



Machine State of a Process

• CPU or processor context

– PC (program counter)

– SP (stack pointer)

– General purpose registers

• Memory

– Code

– Global Variables

– Stack of activation records / frames

– Other (registers, memory, kernel-related state)

Must keep track of these 
for every running process !



Resource Sharing

Reality

• Multiple processes

• Small number of CPUs

• Finite memory

Abstraction

• Process is all alone

• Process is always running

• Process has all the memory

P1

P2

P3

time

CPU: Time Memory: Space

P1
P2

P3



Resource: CPU

• Many processes, limited number of CPUs.

• Each process needs to make progress over time.  Insight: processes 
don’t know how quickly they should be making progress.

• Illusion: every process is making progress in parallel.



Timesharing: Sharing the CPUs

• Abstraction goal: make every process think it’s running on the CPU all the 

time.

– Alternatively: If a process was removed from the CPU and then given it back, it 

shouldn’t be able to tell

• Reality: put a process on CPU, let it run for a short time (~10 ms), switch to 

another, … ("context switching")



How is Timesharing Implemented?

• Kernel keeps track of progress of each process

• Characterizes state of process’s progress

– Running: actually making progress, using CPU

– Ready: able to make progress, but not using CPU

– Blocked: not able to make progress, can’t use CPU

• Kernel selects a ready process, lets it run

– Eventually, the kernel gets back control

– Selects another ready process to run, …



Multiprogramming

• Given a running process

– At some point, it needs a resource, e.g., I/O device

– If resource is busy (or slow), process can’t proceed

– “Voluntarily” gives up CPU to another process

• Mechanism: Context switching



Time Sharing / Multiprogramming

• Given a running process

– At some point, it needs a resource, e.g., I/O device

– If resource is busy (or slow), process can’t proceed

– “Voluntarily” gives up CPU to another process

• Mechanism: Context switching

• Policy: CPU scheduling



Resource: Memory

Abstraction goal: make every process think it has the 
same memory layout.

– MUCH simpler for compiler if the stack always starts at 
0xFFFFFFFF, etc.

Operating system

Stack

Text

Data

Heap



Memory

• Abstraction goal: make every process think it has 

the same memory layout.

– MUCH simpler for compiler if the stack always starts at 

0xFFFFFFFF, etc.

• Reality: there’s only so much memory to go around

– no two processes should use the same (physical) memory 

addresses (unless they’re sharing).

Process 1

Process 3

Process 3

OS

Process 2

Process 1

OS (with help from hardware) will keep track 
of who’s using each memory region.



Virtual Memory: Sharing Storage

• Like CPU cache, memory is a cache for disk.

• Processes never need to know where their memory 
truly is, OS translates virtual addresses into physical 
addresses for them.

P1 P2 P3

P1
P2

P3



Kernel Execution

• Great, the OS is going to somehow give us these nice abstractions.

• So…how / when should the kernel execute to make all this stuff 
happen?



The operating system kernel…

A. Executes as a process.

B. Is always executing, in support of other processes.

C. Should execute as little as possible.

D. More than one of the above. (Which ones?)

E. None of the above.



Process vs. Kernel

• Is the kernel itself a process?

– No, it supports processes and devices

• OS only runs when necessary…

– as an extension of a process making system call

– in response to a device issuing an interrupt



Process vs. Kernel

• The kernel is the code that supports processes

– System calls: fork ( ), exit ( ), read ( ), write ( ), …

– System management: context switching, scheduling, memory 
management



Kernel vs. Userspace: Model
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Kernel vs. Userspace: Model
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Kernel vs. Userspace: Model
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Makes system call.  
OS accesses device, 
assigns resource, etc.



Kernel vs. Userspace: Model
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OS has control.  It will 
take care of process’s 
request, but it might 
take a while.

It can context switch 
(and usually does at 
this point).



Kernel vs. Userspace: Model
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OS returns control to 
a process (usually not 
the same one).



Kernel vs. Userspace: Model
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Transition is expensive, 
but often necessary.



Standard C Library Example

C program invoking printf() library call, which calls 

write() system call



Control over the CPU

• To context switch processes, kernel must get control:

1. Running process can give up control voluntarily

– To block, call yield () to give up CPU

– Process makes a blocking system call, e.g., read ()

– Control goes to kernel, which dispatches new process

2. CPU is forcibly taken away: preemption



How might the OS forcibly take control of a CPU?

A. Ask the user to give it the CPU.

B. Require a program to make a system call.

C. Enlist the help of a hardware device.

D. Some other means of seizing control (how?).



CPU Preemption

1. While kernel is running, set a hardware timer.

2. When timer expires, a hardware interrupt is generated.  (device asking 
for attention)

3. Interrupt pauses process on CPU, forces control to go to OS kernel.

4. OS is free to perform a context switch.
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