String Man Pages

NAME

strlen - calculate the length of a string
LIBRARY

Standard C library (libc, -Ic)
SYNOPSIS

#include <string.h>
size_t strlen(const char *s);
DESCRIPTION
The strlen() function calculates the length of the string pointed to by s, exclud-
ing the terminating null byte (\0").
RETURN VALUE
The strlen() function returns the number of bytes in the string pointed to by s.

NAME

stpcpy, strepy, strcat - copy or catenate a string
LIBRARY

Standard C library (libc, -Ic)
SYNOPSIS

#include <string.h>

char *stpcpy(char *restrict dst, const char *restrict src);

char *strcpy(char *restrict dst, const char *restrict src);

char *strcat(char *restrict dst, const char *restrict src);

DESCRIPTION

stpcpy()

strepy()
These functions copy the string pointed to by src, into a string at the
buffer pointed to by dst. The programmer is responsible for allocating a
destination buffer large enough, that is, strlen(src) + 1. For the differ-
ence between the two functions, see RETURN VALUE.

strcat()
This function catenates the string pointed to by src, after the string
pointed to by dst (overwriting its terminating null byte). The programmer
is responsible for allocating a destination buffer large enough, that is,

strlen(dst) + strlen(src) + 1.

RETURN VALUE
stpcpy()
This function returns a pointer to the terminating null byte of the copied
string.
strepy()
strcat()
These functions return dst.

NAME
strdup, strndup, strdupa, strndupa - duplicate a string

LIBRARY
Standard C library (libg, -Ic)
SYNOPSIS
#include <string.h>
char *strdup(const char *s);
char *strndup(const char s[.n], size_t n);
char *strdupa(const char *s);
char *strndupa(const char s[.n], size_t n);
DESCRIPTION
The strdup() function returns a pointer to a new string which is a duplicate of the
string s. Memory for the new string is obtained with malloc(3), and can be freed
with free(3).
The strndup() function is similar, but copies at most n bytes. If s is longer than
n, only n bytes are copied, and a terminating null byte (\0') is added.
strdupa() and strndupa() are similar, but use alloca(3) to allocate the buffer.
RETURN VALUE
On success, the strdup() function returns a pointer to the duplicated string. It
returns NULL if insufficient memory was available, with errno set to indicate the
error.
ERRORS
ENOMEM Insufficient memory available to allocate duplicate string.

NAME

strcmp, strncmp - compare two strings
LIBRARY

Standard C library (libc, -Ic)
SYNOPSIS

#include <string.h>
int strcmp(const char *s1, const char *s2);
int strncmp(const char s1[.n], const char s2[.n], size_t n);
DESCRIPTION
The stremp() function compares the two strings s1 and s2. The locale is not taken
into account (for a locale-aware comparison, see strcoll(3)). The comparison is
done using unsigned characters.
stremp() returns an integer indicating the result of the comparison, as follows:
» 0, if the s1 and s2 are equal;
* anegative value if g1 is less than s2;
* a positive value if s1 is greater than s2.
The strncmp() function is similar, except it compares only the first (at most) n
bytes of s1 and s2.
RETURN VALUE
The stremp() and strnemp() functions return an integer less than, equal to, or
greater than zero if g1 (or the first n bytes thereof) is found, respectively, to
be less than, to match, or be greater than s2.

NAME

strstr, strcasestr - locate a substring
LIBRARY

Standard C library (libc, -Ic)

SYNOPSIS
#include <string.h>
char *strstr(const char *haystack, const char *needle);
#define _GNU_SOURCE [* See feature_test_macros(7) */
#include <string.h>
char *strcasestr(const char *haystack, const char *needle);
DESCRIPTION
The strstr() function finds the first occurrence of the substring needle in the string
haystack. The terminating null bytes (\0') are not compared.
The strcasestr() function is like strstr(), but ignores the case of both arguments.
RETURN VALUE
These functions return a pointer to the beginning of the located substring, or NULL if the
substring is not found.
If needle is the empty string, the return value is always haystack itself.

NAME

strchr, strrchr, strchrnul - locate character in string
LIBRARY

Standard C library (libc, -Ic)
SYNOPSIS

#include <string.h>
char *strchr(const char *s, int ¢);
char *strrchr(const char *s, int ¢);

DESCRIPTION
The strchr() function returns a pointer to the first occurrence of the character ¢
in the string s.
The strrchr() function returns a pointer to the last occurrence of the character ¢
in the string s.
The strchrnul() function is like strchr() except that if ¢ is not found in g, then
it returns a pointer to the null byte at the end of s, rather than NULL.
Here "character" means "byte"; these functions do not work with wide or multibyte
characters.

RETURN VALUE
The strchr() and strrchr() functions return a pointer to the matched character or
NULL if the character is not found. The terminating null byte is considered part
of the string, so that if ¢ is specified as "0, these functions return a pointer
to the terminator.

The strchrnul() function returns a pointer to the matched character, or a pointer
to the null byte at the end of s (i.e., ststrlen(s)) if the character is not found.

NAME
isalnum, isalpha, isascii, isblank, iscntrl, isdigit, isgraph, islower, isprint, ispunct, is-
space, isupper, isxdigit, isalnum_l, isalpha_l, isascii_|l, isblank_l, iscntrl_I, isdigit_l,

isgraph_|, islower_|, isprint_I, ispunct_|, isspace_|, isupper_|, isxdigit_| - character clas-
sification functions

LIBRARY
Standard C library (libc, -Ic)

SYNOPSIS
#include <ctype.h>
int isalnum(int c);
int isalpha(int ¢);
int iscntri(int ¢);
int isdigit(int c);
int isgraph(int c);
int islower(int c);
int isprint(int c);
int ispunct(int c);
int isspace(int ¢);
int isupper(int c);
int isxdigit(int c);
int isascii(int ¢);
int isblank(int c);
int isalnum_lI(int ¢, locale_t locale);
int isalpha_I(int ¢, locale_t locale);
int isblank_I(int ¢, locale_t locale);
int iscntri_I(int ¢, locale_t locale);
int isdigit_I(int ¢, locale_t locale);
int isgraph_I(int ¢, locale_t |ocale);
int islower_I(int c, locale_t locale);
int isprint_I(int ¢, locale_t locale);
int ispunct_I(int ¢, locale_t locale);
int isspace_I(int ¢, locale_t locale);
int isupper_I(int ¢, locale_t locale);
int isxdigit_I(int c, locale_t locale);
int isascii_l(int ¢, locale_t locale);

DESCRIPTION
These functions check whether ¢, which must have the value of an unsigned char or EOF, falls
into a certain character class according to the specified locale. The functions without the
"_|" suffix perform the check based on the current locale.
The functions with the "_I" suffix perform the check based on the locale specified by the lo-
cale object locale. The behavior of these functions is undefined if locale is the special lo-
cale object LC_GLOBAL_LOCALE (see duplocale(3)) or is not a valid locale object handle.
The list below explains the operation of the functions without the "_|" suffix; the functions
with the "_I" suffix differ only in using the locale object locale instead of the current lo-
cale.
isalnum()
checks for an alphanumeric character; it is equivalent to (isalpha(c) || isdigit(c)).
isalpha()
checks for an alphabetic character; in the standard "C" locale, it is equivalent to
(isupper(c) || islower(c)). In some locales, there may be additional characters for
which isalpha() is true—letters which are neither uppercase nor lowercase.

isascii()
checks whether ¢ is a 7-bit unsigned char value that fits into the ASCII character set.
isblank()

checks for a blank character; that is, a space or a tab.

iscntrl()
checks for a control character.
isdigit()
checks for a digit (0 through 9).
isgraph()
checks for any printable character except space.
islower()
checks for a lowercase character.
isprint()
checks for any printable character including space.
ispunct()
checks for any printable character which is not a space or an alphanumeric character.
isspace()
checks for white-space characters. In the "C" and "POSIX" locales, these are: space,
form-feed (\f'), newline ("\n'), carriage return ("\r'), horizontal tab ("\t'), and
vertical tab ("\v').

isupper()
checks for an uppercase letter.

isxdigit()
checks for hexadecimal digits, that is, one of
0123456789abcdefABCDEF.

RETURN VALUE
The values returned are nonzero if the character ¢ falls into the tested class, and zero if
not.

C Strings and Pointers

* Often accessed as (char *)

char str[20]; Q: How to print “cllo” given these
str = "hello”; two variables str and name?

char *name;

name = str; how many different ways can you
printf("%s”, str); come up with?

printf("%s”, name);

name |base addr str

str [we[v 1o w0]
[0] [1] [2] (3] (4] [s] [e] [7] [18][19]

C Strings and Pointers

char str[20], str2[30], *str3;
str[0] = ‘H’;

str[1] = 1",

str[2] = \0";

Q: How to initialize str2 and str3 to have the same
string value, “Hi”, as str?

(three separate strings, with same string value “Hi")

strstr: find string in a string

char *name, *ptr, str{20]; Q: draw the stack diagram
str = “Yo Ho"; and output of the print
ptr = strstr(str, “ho"); statement.

printf(“%s”, ptr);

ptr | addrstr[3]

S] 5
(0] [1] [2] [3] [4] [5] [6] (7] [18][19]

Try out

char *str2, *ptr, str[64];
strcpy(str, “Hi How Are you?”);

code to see if A’ is in the string str (make your code work for any value stored in str, not
just this example)

if so, create a copy of the string starting at the first "A" in str2.
if not concatenate (add to the end of) to str the string “ no As in here.”

compare str2 and str strings, and print out a message indicating which is greater than
which or if they are equal

strcpy, strlen, strcat, strcmp, strstr, strchr

