CS31 Worksheet: Week 6: Functions and the Stack

How would we implement pushing a new variable (x) to the
top of the stack in x86_647?

A. Increment rsp
Store x at (rsp)

B. Store x at (rsp) (top of the stack)
Increment rsp function 2
C. Decrement rsp
Store x at (rsp) rbp

(bottom of stack

D. Storex at (rsp) frame)
Decrement rsp.

function 1

E. Copyrsptorbp main
Store x at rbp

OXFFFFFFFF

Lower Mem. Addresses

How would we implement popping a new variable (x) off the
top of the stack in x86_647

rsp. kpmrg
(top of the stack) _

function 2
rbp
(bottom of stack function 1
frame)
main

OXFFFFFFFF

Lower Mem. Addresses

x86 Calling Conventions: Function Call

callee

caller’s %rbp value

v

caller stack frame

caller stack frame

I

Initial state

callee

callee stack frame
caller’s %rbp value :

caller’s %rbp value

caller stack frame
hp caller stack frame

sub $SIZE, %rsp
(allocate space for callee’s locals)

(establish callee’s frame pointer)

Given the figure above, can you describe in figures, and words the sequence of instructions to return
from a function call?

	CS31 Worksheet: Week 6: Functions and the Stack

