
CS 31: Introduction to Computer Systems

22: Race Conditions & Synchronization
April 23, 2020

Recap

• To speed up a job, must divide it across multiple cores.

• Thread: abstraction for execution within process.
– Threads share process memory.
– Threads may need to communicate to achieve goal

• Thread communication:
– To solve task (e.g., neighbor GOL cells)
– To prevent bad interactions (synchronization)

If one CPU core can run a program at a
rate of X, how quickly will the program
run on two cores? Why?

A. Slower than one core (<X)
B. The same speed (X)
C. Faster than one core, but not double (X-2X)
D. Twice as fast (2X)
E. More than twice as fast(>2X)

If one CPU core can run a program at a
rate of X, how quickly will the program
run on two cores? Why?

A. Slower than one core (<X) (if we try to parallelize serial
applications!)

B. The same speed (X) (some applications are not parallelizable)
C. Faster than one core, but not double (X-2X): most of the time:

(some communication overhead to coordinate/synchronization of
the threads)

D. Twice as fast (2X)(class of problems called embarrassingly parallel
programs. E.g. protein folding, SETI)

E. More than twice as fast(>2X) (rare: possible if you have more CPU
+ more memory)

Parallel Speedup

• Performance benefit of parallel threads depends on
many factors:
– algorithm divisibility
– communication overhead
– memory hierarchy and locality
– implementation quality

• For most programs, more threads means more
communication, diminishing returns.

Threads

Thread 1
PC1

SP1

Thread 2

Thread 3

PC2

SP2PC3

SP3

Process 1

Text

Data

Stack 3

OS

Heap

Stack 2

Stack 1

They’re all
executing the same
program (shared
instructions in text),
though they may be
at different points
in the code.

Kernel-Level Threads

Text

Data

Process 1

Text

Data

Process 2

Text

Data

Process n

…

KernelSystem
Calls

write

read

fork

Stack 3
Stack 2
Stack 1

Stack 2

Stack 1
Stack 1

System Management

Thread +
Process

Scheduling

Thread
Context

Switching

Kernel Context
switching over
threads

Each process
has explicitly
mapped
regions for
stacks

Synchronization

• Synchronize: to (arrange events to) happen such that
two events do not overwrite each other’s work.

• Thread synchronization
– When one thread has to wait for another
– Events in threads that occur “at the same time”

• Uses of synchronization
– Prevent race conditions
– Wait for resources to become available (only one

thread has access at any time - deadlocks)

Synchronization:
Too Much Milk (TMM)

Lecture 8 – Slide-9

Milk

3.30

3.05 Look in fridge, no milk

3.10 Leave for the grocery store

3.15

3.20 Arrive at the grocery store

3.25 Buy Milk

3.35 Arrive home, put milk in
fridge

Arrive Home

3.00 Arrive home

3.40 Look in fridge, find milk

3.45 Cold Coffee (nom)

Time You Your Roommate

What mechanisms do
we need for two
independent threads to
communicate and get a
consistent view
(computer state)?

How many cartons of milk can we have in this
scenario? (Can we ensure this somehow?)

Lecture 8 – Slide-10

Milk

3.30

3.05 Look in fridge, no milk

3.10 Leave for the grocery store

3.15

3.20 Arrive at the grocery store

3.25 Buy Milk

3.35 Arrive home, put milk in
fridge

Arrive Home

3.00 Arrive home

3.40 Look in fridge, find milk

3.45 Cold Coffee (nom)

Time You Your Roommate

A. One carton
(you)

B. Two cartons
C. No cartons
D. Something

else

Synchronization:
Too Much Milk (TMM): One possible scenario

Lecture 8 – Slide-11

Milk

3.30 Arrive at grocery

3.05 Look in fridge, no milk

3.10 Leave for grocery Arrive Home

3.15 Look in fridge, no milk

3.20 Arrive at grocery Leave for grocery

3.25 Buy Milk

3.35 Arrive home, put milk in
fridge

3.00 Arrive home

3.40 Arrive home, put milk in
fridge

3.45 Oh No!

Time You Your Roommate

Milk

What mechanisms do
we need for two
independent threads to
communicate and get a
consistent view
(computer state)?

Synchronization:

Lecture 8 – Slide-12

Milk

3.30 Arrive at grocery

3.05 Look in fridge, no milk

3.10 Leave for grocery Arrive Home

3.15 Look in fridge, no milk

3.20 Arrive at grocery Leave for grocery

3.25 Buy Milk

3.35 Arrive home, put milk in
fridge

3.00 Arrive home

3.40 Arrive home, put milk in
fridge

3.45 Oh No!

Time You Your Roommate

Milk

What mechanisms do
we need for two
independent threads to
communicate and get a
consistent view
(computer state)?

Threads get scheduled in an arbitrary manner:
bad things may happen: ...or nothing may happen

Synchronization Example

• Coordination required:
– Which thread goes first?
– Threads in different regions must work together to

compute new value for boundary cells.
– Threads might not run at the same speed (depends on

the OS scheduler). Can’t let one region get too far
ahead.

– Context switches can happen at any time!

One core: Three cores:

Thread Ordering
(Why threads require care. Humans aren’t good at reasoning about this.)

• As a programmer you have no idea when threads will
run. The OS schedules them, and the schedule will vary
across runs.

• It might decide to context switch from one thread to
another at any time.

• Your code must be prepared for this!
– Ask yourself: “Would something bad happen if we context

switched here?”

• hard to debug this problem if it is not reproducible

Example: The Credit/Debit Problem

• Say you have $1000 in your bank account
– You deposit $100
– You also withdraw $100

• How much should be in your account?

• What if your deposit and withdrawal occur at the
same time, at different ATMs?

Credit/Debit Problem: Race Condition

Thread T0

Credit (int a) {
int b;

b = ReadBalance ();
b = b + a;
WriteBalance (b);

PrintReceipt (b);
}

Thread T1

Debit (int a) {
int b;

b = ReadBalance ();
b = b - a;
WriteBalance (b);

PrintReceipt (b);
}

Credit/Debit Problem: Race Condition

Thread T0

Credit (int a) {
int b;

b = ReadBalance ();
b = b + a;
WriteBalance (b);

PrintReceipt (b);
}

Thread T1

Debit (int a) {
int b;

b = ReadBalance ();
b = b - a;
WriteBalance (b);

PrintReceipt (b);
}

Say T0 runs first

Read $1000 into b

Credit/Debit Problem: Race Condition

Thread T0

Credit (int a) {
int b;

b = ReadBalance ();
b = b + a;
WriteBalance (b);

PrintReceipt (b);
}

Thread T1

Debit (int a) {
int b;

b = ReadBalance ();
b = b - a;
WriteBalance (b);

PrintReceipt (b);
}

Say T0 runs first

Read $1000 into b

Switch to T1

Read $1000 into b
Debit by $100
Write $900

CONTEXT SWITCH

Credit/Debit Problem: Race Condition

Thread T0

Credit (int a) {
int b;

b = ReadBalance ();
b = b + a;
WriteBalance (b);

PrintReceipt (b);
}

Thread T1

Debit (int a) {
int b;

b = ReadBalance ();
b = b - a;
WriteBalance (b);

PrintReceipt (b);
}

Say T0 runs first

Read $1000 into b

Switch to T1

Read $1000 into b
Debit by $100
Write $900

Switch back to T0

Read $1000 into b
Credit $100
Write $1100

Bank gave you $100!

What went wrong?

“Critical Section”

Thread T0

Credit (int a) {
int b;

b = ReadBalance ();
b = b + a;
WriteBalance (b);

PrintReceipt (b);
}

Thread T1

Debit (int a) {
int b;

b = ReadBalance ();
b = b - a;
WriteBalance (b);

PrintReceipt (b);
}

Bank gave you $100!

What went wrong?

Badness
if context
switch
here!

”Danger Will Robinson!

To Avoid Race Conditions

1. Identify critical sections

2. Use synchronization to enforce mutual exclusion
– Only one thread active in a critical section

Thread 0

- Critical -
- Section -

Thread 1

- Critical -
- Section -

Critical Section and Atomicity

• Sections of code executed by multiple threads
– Access shared variables, often making local copy
– Places where order of execution or thread interleaving

will affect the outcome
– Follows: read + modify + write of shared variable

• Must run atomically with respect to each other
– Atomicity: runs as an entire instruction or not at all.

Cannot be divided into smaller parts.

Which code region is a critical section?
Thread A

main ()

{ int a,b;

a = getShared();

b = 20;

a = a - b;

saveShared(a);

a += 1

return a;

}

Thread B

s = 40;

shared
memory

main ()

{ int a,b;

a = getShared();

b = 10;

a = a + b;

saveShared(a);

a += 1

return a;

}

A
C

B

D
E

Which code region is a critical section?

main ()

{ int a,b;

a = getShared();

b = 10;

a = a + b;

saveShared(a);

a += 1

return a;

}

Thread A

main ()

{ int a,b;

a = getShared();

b = 20;

a = a - b;

saveShared(a);

a += 1

return a;

}

Thread B

s = 40;

shared
memory

D

read + modify + write of shared variable

Large enough for correctness + Small enough to minimize slow down

Which values might the shared s variable
hold after both threads finish?

main ()

{ int a,b;

a = getShared();

b = 10;

a = a + b;

saveShared(a);

return a;

}

Thread A
main ()

{ int a,b;

a = getShared();

b = 20;

a = a - b;

saveShared(a);

return a;

}

Thread B

s = 40;

shared
memory

If A runs first

main ()

{ int a,b;

a = getShared();

b = 10;

a = a + b;

saveShared(a);

return a;

}

main ()

{ int a,b;

a = getShared();

b = 20;

a = a - b;

saveShared(a);

return a;

}

(s = 40)

s = 50

shared
memory

Thread A Thread B

B runs after A Completes

main ()

{ int a,b;

a = getShared();

b = 10;

a = a + b;

saveShared(a);

return a;

}

main ()

{ int a,b;

a = getShared();

b = 20;

a = a - b;

saveShared(a);

return a;

}

(s = 50)

s = 30;

shared
memory

Thread A Thread B

What about interleaving?

main ()

{ int a,b;

a = getShared();

b = 10;

a = a + b;

saveShared(a);

return a;

}

main ()

{ int a,b;

a = getShared();

b = 20;

a = a - b;

saveShared(a);

return a;

}

s = 40;

shared
memory

Thread A Thread B

One of the threads will overwrite the other’s changes.

Four Rules for Mutual Exclusion

1. No two threads can be inside their critical sections
at the same time (one of many but not more than
one).

2. No thread outside its critical section may prevent
others from entering their critical sections.

3. No thread should have to wait forever to enter its
critical section. (Starvation)

4. No assumptions can be made about speeds or
number of CPU’s.

Railroad Semaphore
- Help trains figure

out which track to
be on at any given
time.

Railroad Semaphore
- Help trains figure

out which track to
be on at any given
time.

O.S. Semaphore:
- Construct that the

OS provides to
processes.

- Make system calls
to modify their
value

Mutual Exclusion with Semaphores

T0
lock (mutex);

< critical section >

unlock (mutex);

T1
lock (mutex);

< critical section >

unlock (mutex);

mutex = 1; //lock and unlock mutex atomically.

Atomicity: run the entire instruction without interruption.

Mutual Exclusion with Semaphores

T0
lock (mutex);

< critical section >

unlock (mutex);

T1
lock (mutex);

< critical section >

unlock (mutex);

mutex = 1; //unlocked.

Atomicity: run the entire instruction without interruption.

T0: Wants to execute the critical section
T0: Reads the value of mutex,

Changes the value of mutex = 0 (acquires lock)
Enters critical section.

Mutual Exclusion with Semaphores

T0
lock (mutex);

< critical section >

unlock (mutex);

T1
lock (mutex);

< critical section >

unlock (mutex);

mutex = 0; //locked.

Atomicity: run the entire instruction without interruption.

T0: Wants to execute the critical section
T0: Reads the value of mutex,

Changes the value of mutex = 0 (acquires lock)
Enters critical section.

Atomic Execution

Mutual Exclusion with Semaphores

T0
lock (mutex);

< critical section >

unlock (mutex);

T1 (blocked)

lock (mutex);

< critical section >

unlock (mutex);

mutex = 0; //locked.

Atomicity: run the entire instruction without interruption.

T0: In the critical section
T1: Wants to enter the critical section.

Reads the value of mutex (mutex = 0)
Cannot enter critical section.
Blocked.

Mutual Exclusion with Semaphores

T0
lock (mutex);

< critical section >

unlock (mutex);

T1 (blocked)

lock (mutex);

< critical section >

unlock (mutex);

mutex = 0; //locked.

Atomicity: run the entire instruction without interruption.

T0: Completes execution of critical section
Updates mutex value = 1. (release lock)

Atomic Execution

Mutual Exclusion with Semaphores

T0
lock (mutex);

< critical section >

unlock (mutex);

T1 (blocked)

lock (mutex);

< critical section >

unlock (mutex);

mutex = 1; //unlocked.

Atomicity: run the entire instruction without interruption.

T0: Completes execution of critical section
Updates mutex value = 1. (release lock)

Mutual Exclusion with Semaphores

T0
lock (mutex);

< critical section >

unlock (mutex);

T1
lock (mutex);

< critical section >

unlock (mutex);

mutex = 1; //locked.

Atomicity: run the entire instruction without interruption.

T1: Can now acquire lock atomically and
Enter the critical section

Mutual Exclusion with Semaphores

• Use a “mutex” semaphore initialized to 1
• Only one thread can enter critical section at a time.
• Simple, works for any number of threads

T0
lock (mutex);

< critical section >

unlock (mutex);

T1
lock (mutex);

< critical section >

unlock (mutex);

mutex = 1; //lock and unlock mutex atomically.

Atomicity: runs as an entire instruction or not at all.

Synchronization: More than Mutexes

• “I want to block a thread until something specific
happens.”
– Condition variable: wait for a condition to be true

• “I want all my threads to sync up at the same point.”
– Barrier: wait for everyone to catch up.

Barriers

• Used to coordinate threads, but also other forms of
concurrent execution.

• Often found in simulations that have discrete rounds.
(e.g., game of life)

Barrier Example, N Threads

shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {

while (…) {
compute_sim_round()
barrier_wait(&b)

}

}

T1T0 T2 T3 T4

Barrier (0 waiting)

Time

Barrier Example, N Threads

shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {

while (…) {
compute_sim_round()
barrier_wait(&b)

}

}

Time

T1

T0 T2

T3

T4

Barrier (0 waiting)

Threads make progress computing
current round at different rates.

Barrier Example, N Threads

shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {

while (…) {
compute_sim_round()
barrier_wait(&b)

}

}

Time

Barrier (3 waiting)

Threads that make it to barrier must
wait for all others to get there.

T1

T0 T2

T3

T4

Barrier Example, N Threads

shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {

while (…) {
compute_sim_round()
barrier_wait(&b)

}

}

Time

Barrier (5 waiting)

Barrier allows threads to pass when
N threads reach it.

T1T0 T2 T3 T4

Matches

Barrier Example, N Threads

shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {

while (…) {
compute_sim_round()
barrier_wait(&b)

}

}

Barrier (0 waiting)

Threads compute next round, wait
on barrier again, repeat…

T1

T0 T2 T3

T4

Time

Synchronization: More than Mutexes

• “I want all my threads to sync up at the same point.”
– Barrier: wait for everyone to catch up.

• “I want to block a thread until something specific
happens.”
– Condition variable: wait for a condition to be true

• “I want my threads to share a critical section when
they’re reading, but still safely write.”
– Readers/writers lock: distinguish how lock is used

Synchronization: Beyond Mutexes
Message Passing

• Operating system mechanism for IPC
– send (destination, message_buffer)
– receive (source, message_buffer)

• Data transfer: in to and out of kernel message buffers
• Synchronization: can’t receive until message is sent

send (to, buf) receive (from, buf)

kernel

P1 P2

Additional Slides: Solution to the Race
Condition

Solution with mutexes

main ()

{ int a,b;

a = getShared();

b = 10;

a = a + b;

saveShared(a);

return a;

}

Thread A
main ()

{ int a,b;

a = getShared();

b = 20;

a = a - b;

saveShared(a);

return a;

}

Thread B

s = 40;

shared
memory

Using Locks

main ()

{ int a,b;

a = getShared();

b = 10;

a = a + b;

saveShared(a);

return a;

}

Thread A
main ()

{ int a,b;

a = getShared();

b = 20;

a = a - b;

saveShared(a);

return a;

}

Thread B

s = 40;

shared
memory

Using Locks

main ()

{ int a,b;

acquire(l);

a = getShared();

b = 10;

a = a + b;

saveShared(a);

release(l);

return a;

}

main ()

{ int a,b;

acquire(l);

a = getShared();

b = 20;

a = a - b;

saveShared(a);

release(l);

return a;

}
s = 40;
Lock l;

shared
memory

Thread A Thread B

Lock Held by:
Nobody

Using Locks

main ()

{ int a,b;

acquire(l);

a = getShared();

b = 10;

a = a + b;

saveShared(a);

release(l);

return a;

}

main ()

{ int a,b;

acquire(l);

a = getShared();

b = 20;

a = a - b;

saveShared(a);

release(l);

return a;

}
s = 40;
Lock l;

shared
memory

Thread A Thread B

Lock held by:
Thread A

Using Locks

main ()

{ int a,b;

acquire(l);

a = getShared();

b = 10;

a = a + b;

saveShared(a);

release(l);

return a;

}

main ()

{ int a,b;

acquire(l);

a = getShared();

b = 20;

a = a - b;

saveShared(a);

release(l);

return a;

}
s = 40;
Lock l;

shared
memory

Thread A Thread B

Lock held by:
Thread A

Using Locks

main ()

{ int a,b;

acquire(l);

a = getShared();

b = 10;

a = a + b;

saveShared(a);

release(l);

return a;

}

main ()

{ int a,b;

acquire(l);

a = getShared();

b = 20;

a = a - b;

saveShared(a);

release(l);

return a;

}
s = 40;
Lock l;

shared
memory

Thread A Thread B

Lock held by:
Thread A

Using Locks

main ()

{ int a,b;

acquire(l);

a = getShared();

b = 10;

a = a + b;

saveShared(a);

release(l);

return a;

}

main ()

{ int a,b;

acquire(l);

a = getShared();

b = 20;

a = a - b;

saveShared(a);

release(l);

return a;

}
s = 40;
Lock l;

shared
memory

Thread A Thread B

Lock Held by:
Nobody

Using Locks

main ()

{ int a,b;

acquire(l);

a = getShared();

b = 10;

a = a + b;

saveShared(a);

release(l);

return a;

}

main ()

{ int a,b;

acquire(l);

a = getShared();

b = 20;

a = a - b;

saveShared(a);

release(l);

return a;

}
s = 40;
Lock l;

shared
memory

Thread A Thread B

Lock held by:
Thread B

Using Locks

main ()

{ int a,b;

acquire(l);

a = getShared();

b = 10;

a = a + b;

saveShared(a);

release(l);

return a;

}

main ()

{ int a,b;

acquire(l);

a = getShared();

b = 20;

a = a - b;

saveShared(a);

release(l);

return a;

}
s = 40;
Lock l;

shared
memory

Thread A Thread B

Lock Held by:
Nobody

Using Locks

main ()

{ int a,b;

acquire(l);

a = getShared();

b = 10;

a = a + b;

saveShared(a);

release(l);

return a;

}

main ()

{ int a,b;

acquire(l);

a = getShared();

b = 20;

a = a - b;

saveShared(a);

release(l);

return a;

}

s = 40;
Lock l;

shared
memory

Thread A Thread B

Lock Held by:
Nobody

• No matter how we order threads or when we context switch,
result will always be 30, like we expected (and probably wanted).

