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OS: Turn undesirable into desirable

• Turn undesirable inconveniences: reality
– Complexity of hardware
– Single processor
– Limited memory

• Into desirable conveniences: illusions
– Simple, easy-to-use resources
– Multiple/unlimited number of processors
– Large/unlimited amount of memory



Kernel provides common functions

• Some functions useful to many programs
– I/O device control
– Memory allocation

• Place these functions in central place (kernel)
– Called by programs (system calls)
– Or accessed implicitly

• What should functions be?
– How many programs should benefit?
– Might kernel get too big?



Process Management: Summary

• A process is the unit of execution.
• Processes are represented as Process Control Blocks in the OS

– PCBs contain process state, scheduling and  memory management 
information, etc

• A process is either New, Ready, Waiting, Running, or Terminated.
• On a uniprocessor, there is at most one running process at a time.
• The program currently executing on the CPU is changed by 

performing a context switch
• Processes communicate either with message passing or shared 

memory

Lecture 4 – Slide 4



Process vs. Kernel

• Is the kernel itself a process?
– No, it supports processes and devices

• OS only runs when necessary…
– as an extension of a process making system call
– in response to a device issuing an interrupt
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Process vs. Kernel

• The kernel is the code that supports processes
– System calls: fork ( ), exit ( ), read ( ), write ( ), …
– System management: context switching, scheduling, 

memory management



Kernel Execution

• Great, the OS is going to somehow give us these nice 
abstractions.

• So…how / when should the kernel execute to make 
all this stuff happen?



Process vs. Kernel

• The kernel is the code that supports processes
– System calls: fork ( ), exit ( ), read ( ), write ( ), …
– System management: context switching, scheduling, 

memory management



Kernel vs. Userspace: Model
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Kernel vs. Userspace: Model
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this point).



Kernel vs. Userspace: Model
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Kernel vs. Userspace: Model

Text

Data

Stack

Process 1

Text
Data

Stack

Process 2

Text

Data

Stack

Process N

…

KernelSystem
Calls

write

read

fork
System

Management Scheduling

Context
Switching

OS OS

Heap
Heap

OS

Heap

Transition is expensive, 
but often necessary.



System Calls
• Programming interface to the services provided by the OS

• Typically written in a high-level language (C or C++)



Control over the CPU

• To context switch processes, kernel must get control:

1. Running process can give up control voluntarily
– To block, call yield () to give up CPU
– Process makes a blocking system call, e.g., read ()
– Control goes to kernel, which dispatches new process

2. CPU is forcibly taken away: preemption



CPU Preemption

1. While kernel is running, set a hardware timer.

2. When timer expires, a hardware interrupt is 
generated.  (device asking for attention)

3. Interrupt pauses process on CPU, forces control to 
go to OS kernel.

4. OS is free to perform a context switch.



Summary

• Processes cycled off and on CPU rapidly
– Mechanism: context switch
– Policy: CPU scheduling

• Processes created by fork()ing

• Other functions to manage processes:
– exec(): replace address space with new program
– exit(): terminate process
– wait(): reap child process, get status info

• Signals one mechanism to notify a process of something
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Making Programs Run Faster

• In the “old days” (1980’s - 2005):
– Algorithm too slow? Wait for HW to catch up.

• Modern CPUs exploit parallelism for speed:
– Executes multiple instructions at once
– Reorders instructions on the fly

• Today, can’t make a single core go much faster.
– Limits on clock speed, heat, energy consumption

• Use extra transistors to put multiple CPU cores on the chip.

• Programmer’s job to speed-up computation
– Humans bad at thinking in parallel



Parallel Abstraction

• To speed up a job, must divide it across multiple 
cores.

• A process contains both execution information and 
memory/resources.

• What if we want to separate the execution 
information to give us parallelism in our programs?



Which components of a process might we 
replicate to take advantage of multiple CPU 
cores?

A. The entire address space (memory)

B. Parts of the address space (memory)

C. OS resources (open files, etc.)

D. Execution state (PC, registers, etc.)

E. More than one of these (which?)



Which components of a process might we 
replicate to take advantage of multiple CPU 
cores?
A. The entire address space (memory – not duplicated)

B. Parts of the address space (memory - stack) 

C. OS resources (open files, etc – not duplicated.)

D. Execution state (PC, registers, etc.)

E. More than one of these (which?)

Don’t duplicate shared resources, 
duplicate resources where we need a private copy per thread: 
like execution state, and stack



Threads

• Modern OSes separate the concepts of processes 
and threads.
– The process defines the address space and general process 

attributes (e.g., open files)
– The thread defines a sequential execution stream within a 

process (PC, SP, registers)

• A thread is bound to a single process
– Processes, however, can have multiple threads
– Each process has at least one thread (e.g. main)



Processes versus Threads

• A process defines the address space, text, resources, etc.,

• A thread defines a single sequential execution stream within 
a process (PC, stack, registers).

• Threads extract the thread of control information from the 
process

• Threads are bound to a single process.

• Each process may have multiple threads of control within it.

– The address space of a process is shared among all its threads

– No system calls are required to cooperate among threads
Lecture 7 – Slide 26



Threads
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Why Use Threads?

• Separating threads and processes makes it easier to 
support parallel applications:
– Creating multiple paths of execution does not require 

creating new processes (less state to store, initialize –
Light Weight Process )

– Low-overhead sharing between threads in same 
process (threads share page tables, access same 
memory)

• Concurrency (multithreading) can be very useful 



Concurrency?

• Several computations or threads of control are 
executing simultaneously, and potentially interacting 
with each other.

• We can multitask!  Why does that help?
– Taking advantage of multiple CPUs / cores
– Overlapping I/O with computation
– Improving program structure



Recall: Processes

Text

Data

Stack

Process 1

Text

Data

Stack

Process 2

Text

Data

Stack

Process n

…

KernelSystem
Calls

write

read

fork
System

Management Scheduling

Context
Switching



Scheduling Threads

• We have basically two options
1. Kernel explicitly selects among threads in a process
2. Hide threads from the kernel, and have a user-level 

scheduler inside each multi-threaded process

• Why do we care? 
– Think about the overhead of switching between threads 
– Who decides which thread in a process should go first? 
– What about blocking system calls?



User-Level Threads
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Kernel-Level Threads
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If you call thread_create() on a modern 
OS (Linux/Mac/Windows), which type of 
thread would you expect to receive?  (Why? 
Which would you pick?)

A. Kernel threads

B. User threads

C. Some other sort of threads
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Kernel vs. User Threads

• Kernel-level threads 
– Integrated with OS (informed scheduling) 
– Slower to create, manipulate, synchronize

• Requires getting the OS involved, which means changing context 
(relatively expensive)

• User-level threads 
– Faster to create, manipulate, synchronize 
– Not integrated with OS (uninformed scheduling)
• If one thread makes a syscall, all of them get blocked 

because the OS doesn’t distinguish.



Threads & Sharing

• Code (text) shared by all threads in process
• Global variables and static objects are shared
– Stored in the static data segment, accessible by any thread

• Dynamic objects and other heap objects are shared
– Allocated from heap with malloc/free or new/delete

• Local variables should not be shared 
– Refer to data on the stack
– Each thread has its own stack
– Never pass/share/store a pointer to a local variable on 

another thread’s stack!!



Threads & Sharing

• Local variables should not be shared 
– Refer to data on the stack
– Each thread has its own stack
– Never pass/share/store a pointer to a local variable on 

another thread’s stack

…

function C

function D

…

function A

function B

Shared Heap
int *x;

Z

Thread 1’s stack Thread 2’s stack

Thread 2 can dereference x 
to access Z.Function B returns…



Threads & Sharing

• Local variables should not be shared 
– Refer to data on the stack
– Each thread has its own stack
– Never pass/share/store a pointer to a local variable on 

another thread’s stack

…

function C

function D

…

function A

function C

Shared Heap
int *x;

Thread 1’s stack Thread 2’s stack

Thread 2 can dereference x 
to access Z.Function B returns…

?



Threads & Sharing

• Local variables should not be shared 
– Refer to data on the stack
– Each thread has its own stack
– Never pass/share/store a pointer to a local variable on 

another thread’s stack

…

function C

function D

…

function A

function B

Shared Heap
int *x;

Thread 1’s stack Thread 2’s stack

Thread 2 can dereference x 
to access Z.

Z

Shared data on heap!



Thread-level Parallelism

• Speed up application by assigning portions to 
CPUs/cores that process in parallel

• Requires:
– partitioning responsibilities (e.g., parallel algorithm)
– managing their interaction

• Example: game of life (next lab)

One core: Three cores:



If one CPU core can run a program at a 
rate of X, how quickly will the program 
run on two cores?  Why?

A. Slower than one core (<X)
B. The same speed (X)
C. Faster than one core, but not double (X-2X)
D. Twice as fast (2X)
E. More than twice as fast(>2X)



If one CPU core can run a program at a 
rate of X, how quickly will the program 
run on two cores?  Why?

A. Slower than one core (<X) (if we try to parallelize serial 
applications!) 

B. The same speed (X) (some  applications are not parallelizable)
C. Faster than one core, but not double (X-2X): most of the time: 

(some communication overhead to coordinate/synchronization of 
the threads)

D. Twice as fast (2X)(class of problems called embarrassingly parallel 
programs. E.g. protein folding, SETI)

E. More than twice as fast(>2X) (rare: possible if you have more CPU 
+ more memory)



Parallel Speedup

• Performance benefit of parallel threads depends on 
many factors:
– algorithm divisibility
– communication overhead
– memory hierarchy and locality
– implementation quality

• For most programs, more threads means more 
communication, diminishing returns.



Summary

• Physical limits to how much faster we can make a 
single core run.
– Use transistors to provide more cores.
– Parallelize applications to take advantage.

• OS abstraction: thread
– Shares most of the address space with other threads in 

same process
– Gets private execution context (registers) + stack

• Coordinating threads is challenging!


