
CS 31: Introduction to Computer Systems

19-20: Operating Systems & Processes
April 14-16, 2020

Abstraction

User / Programmer
Wants low complexity

Applications
Specific functionality

Software library
Reusable functionality

Complex devices
Compute & I/O

Operating system
Manage resources

Slide 2

Abstraction

Operating system
Manage resources

Slide 3

OS Big Picture Goals

• OS is an extra code layer between user programs and
hardware.

• Goal: Make life easier for users and programmers.

• How can the OS do that?

Key OS Responsibilities

1. Hardware gatekeeping and protection

2. Simplifying abstractions for programs (e.g., files)

3. Resource sharing (memory, CPU)

The Kernel

• All programs depend on it
– Loads and runs them
– Exports system calls to programs

• Works closely with hardware
– Accesses devices
– Responds to interrupts

• Allocates basic resources
– CPU time, memory space
– Controls I/O devices: display, keyboard, disk, network

OS: Turn undesirable into desirable

• Turn undesirable inconveniences: reality
– Complexity of hardware
– Single processor
– Limited memory

• Into desirable conveniences: illusions
– Simple, easy-to-use resources
– Multiple/unlimited number of processors
– Large/unlimited amount of memory

Resource Sharing

Reality
• Multiple processes
• Small number of CPUs
• Finite memory

Abstraction
• Process is all alone
• Process is always running
• Process has all the memory

P1

P2

P3

time

CPU: Time Memory: Space

P1
P2

P3

Main Abstraction: The Process

• Abstraction of a running program
– “a program in execution”

• Dynamic
– Has state, changes over time
– Whereas a program is static

• Basic operations
– Start/end
– Suspend/resume

Managing Processes

• Given a process, how do we make it execute the
program we want?

• Model: fork() a new process, execute program

In creating a process, the fork() function…

A. is called once and returns once.

B. is called twice and returns once.

C. is called once and returns twice.

D. is called twice and returns twice.

Creating a Process

• One process can create other processes to do work.

– The creator is called the parent and the new process is
the child

– The parent defines (or donates) resources and privileges
to its children

– A parent can either wait for the child to complete, or
continue in parallel

Lecture 4 – Slide 12

fork()

• System call (function provided by OS kernel)

• Creates a duplicate of the requesting process
– Process is cloning itself:

• CPU context
• Memory “address space”

OS

Stack

Text
Data
Heap

OS

Stack

Text
Data
Heap

OS

Stack

Text
Data
Heap

(Almost) identical clones

fork() return value

• The two processes are identical in every way, except
for the return value of fork().
– The child gets a return value of 0.
– The parent gets a return value of child’s PID.

1.pid_t pid = fork(); // both continue after call
2. printf(“A”) //P&C
if (pid == 0) { //P &C

printf("hello from child\n"); à Child
} else { à parent

pid_t pid_2 = fork();
printf("hello from parent\n");

}Which process executes next? Child? Parent? Some other process?

Up to OS to decide. No guarantees. Don’t rely on particular behavior!

How many hello’s will be printed?

fork();

printf(“hello”);

if (fork()) {

printf(“hello”);

}

fork();

printf(“hello”);

A.6
B.8
C.12
D.16
E.18

How many hello’s will be printed?

fork();

printf(“hello”);

if (fork()) {

printf(“hello”);

}

fork();

printf(“hello”);

P C

How many hello’s will be printed?

fork();

printf(“hello”);

if (fork()) {

printf(“hello”);

}

fork();

printf(“hello”);

h h

How many hello’s will be printed?

fork();

printf(“hello”);

if (fork()) {//child=0

printf(“hello”);

}

fork();

printf(“hello”);

h h

How many hello’s will be printed?

fork();

printf(“hello”);

if (fork()) {//child=0

printf(“hello”);

}

fork();

printf(“hello”);

h h

h h

How many hello’s will be printed?

fork();

printf(“hello”);

if (fork()) {//child=0

printf(“hello”);

}

fork();

printf(“hello”);

h h

h h

How many hello’s will be printed?

fork();

printf(“hello”);

if (fork()) {//child=0

printf(“hello”);

}

fork();

printf(“hello”);

h h

h h

h h h h h hh h

Print statements = 12

Common fork() usage: Shell

• A “shell” is the program controlling your terminal
(e.g., bash).

• It fork()’s to create new processes, but we don’t
want a clone (another shell).

• We want the child to execute some other program:
exec() family of functions.

exec()

• Family of functions (execl, execlp, execv, …).

• Replace the current process with a new one.

• Loads program from disk:
– Old process is overwritten in memory.
– Does not return unless error.

Common fork() usage: Shell

1. fork()child process.

2. exec()desired program to replace child’s address
space.

2. wait()for child process to terminate.

3. repeat…

The parent and child each do
something different next.

Common fork() usage: Shell

1. fork()child process.

Shell

fork()

Shell
(p)

Shell
(c)

Common fork() usage: Shell

2. parent: wait()for child to finish

Shell

fork()

Shell
(p)

Shell
(c)

wait()

Common fork() usage: Shell

2. child: exec()user-requested program

Shell

fork()

Shell
(p)

Shell
(c)

wait() exec()

Common fork() usage: Shell

2. child: exec()user-requested program

Shell

fork()

Shell
(p)

Shell
new
prog

wait() exec()

Runs to completion

Common fork() usage: Shell

3. child program terminates, cycle repeats

Shell

fork()

Shell
(p)

Shell
new
prog

wait() exec()

Runs to completion

Child terminates

Common fork() usage: Shell

3. child program terminates, cycle repeats

Shell

fork()

Shell
(p)

Shell
new
prog

wait() exec()

Runs to completion

Child terminatesShell
(p)

Original parent
shell resumes

Process Termination

• On process termination, the OS reclaims all
resources assigned to the process.

• In Unix

– a process can terminate itself using the exit system
call.

– a process can terminate a child using the kill system
call.

Lecture 4 – Slide 31

Process Termination

• When does a process die?
– It calls exit(int status);
– It returns (an int) from main
– It receives a termination signal (from the OS or another

process)

• Key observation: the dying process produces status
information.

• Who looks at this?
• The parent process!

Reaping Children
(Bet you didn’t expect to see THAT title on a slide when you signed up for CS 31?)

• wait(): parents reap their dead children
– Given info about why child died, exit status, etc.

• Two variants:
– wait(): wait for and reap next child to exit
– waitpid(): wait for and reap specific child

• This is how the shell determines whether or not the
program you executed succeeded.

Common fork() usage: Shell

1. fork()child process.

2. exec()desired program to replace child’s address
space.

3. wait()for child process to terminate.
– Check child’s result, notify user of errors.

4. repeat…

Recall: Kernel Maintains Process Table

• List of processes and their states
– Also sometimes called “process control block (PCB)”

• Other state info includes
– contents of CPU context
– areas of memory being used
– other information

Process ID (PID) State Other info
1534 Ready Saved context, …

34 Running Memory areas used, …

487 Ready Saved context, …

9 Blocked Condition to unblock, …

Values of registers in
use by process

What should happen if dead child
processes are never reaped? (That is,
the parent has not wait()ed on them?)

A. The OS should remove them from the process table
(process control block / PCB).

B. The OS should leave them in the process table
(process control block / PCB).

C. The neglected processes seek
revenge as undead in the afterlife.

“Zombie” Processes

• Zombie: A process that has terminated but not been
reaped by parent. (AKA defunct process)

• Does not respond to signals (can’t be killed)

• OS keeps their entry in process table:
– Parent may still reap them, want to know status
– Don’t want to re-use the process ID yet

Basically, they’re kept around for bookkeeping purposes, but that’s much less exciting...

Process Management: Summary

• A process is the unit of execution.
• Processes are represented as Process Control Blocks in the OS

– PCBs contain process state, scheduling and memory management
information, etc

• A process is either New, Ready, Waiting, Running, or Terminated.
• On a uniprocessor, there is at most one running process at a time.
• The program currently executing on the CPU is changed by

performing a context switch
• Processes communicate either with message passing or shared

memory

Lecture 4 – Slide 39

Signals

• How does a parent process know that a child has
exited (and that it needs to call wait)?

• Signals: inter-process notification mechanism
– Info that a process (or OS) can send to a process.

• Please terminate yourself (SIGTERM)
• Stop NOW (SIGKILL)
• Your child has exited (SIGCHLD)
• You’ve accessed an invalid memory address (SIGSEGV)
• Many more (SIGWINCH, SIGUSR1, SIGPIPE, …)

Signal Handlers

• By default, processes react to signals according to the
signal type:
– SIGKILL, SIGSEGV, (others): process terminates
– SIGCHLD, SIGUSR1: process ignores signal

• You can define “signal handler” functions that execute
upon receiving a signal.
– Drop what program was doing, execute handler, go back to

what it was doing.
– Example: got a SIGCHLD? Enter handler, call wait()
– Example: got a SIGUSR1? Reopen log files.

• Some signals (e.g., SIGKILL) cannot be handled.

Key OS Responsibilities

1. Simplifying abstractions for programs

2. Resource sharing

3. Hardware gatekeeping and protection

If you were asked to design a layer between
user programs and the hardware, what
might your layer provide?

• What sort of services might the programs you’ve
written need?

• (Discuss with your neighbors.)

OS: Turn undesirable into desirable

• Turn undesirable inconveniences: reality
– Complexity of hardware
– Single processor
– Limited memory

• Into desirable conveniences: illusions
– Simple, easy-to-use resources
– Multiple/unlimited number of processors
– Large/unlimited amount of memory

Virtualization

• Rather than exposing real hardware, introduce a
“virtual”, abstract notion of the resource

• Multiple virtual processors
– By rapidly switching CPU use

• Multiple virtual memories
– By memory partitioning and re-addressing

• Virtualized devices
– By simplifying interfaces, and using other resources to

enhance function

Kernel provides common functions

• Some functions useful to many programs
– I/O device control
– Memory allocation

• Place these functions in central place (kernel)
– Called by programs (system calls)
– Or accessed implicitly

• What should functions be?
– How many programs should benefit?
– Might kernel get too big?

Resource Sharing

Reality
• Multiple processes
• Small number of CPUs
• Finite memory

Abstraction
• Process is all alone
• Process is always running
• Process has all the memory

P1

P2

P3

time

CPU: Time Memory: Space

P1
P2

P3

Resource: CPU

• Many processes, limited number of CPUs.

• Each process needs to make progress over time.
Insight: processes don’t know how quickly they
should be making progress.

• Illusion: every process is making progress in parallel.

Timesharing: Sharing the CPUs

• Abstraction goal: make every process think it’s running
on the CPU all the time.
– Alternatively: If a process was removed from the CPU and

then given it back, it shouldn’t be able to tell

• Reality: put a process on CPU, let it run for a short time
(~10 ms), switch to another, … (context switching)

Resource: Memory

• Abstraction goal: make every process
think it has the same memory layout.
– MUCH simpler for compiler if the stack

always starts at 0xFFFFFFFF, etc.

Operating system

Stack

Text
Data

Heap

Memory

• Abstraction goal: make every process
think it has the same memory layout.
– MUCH simpler for compiler if the stack

always starts at 0xFFFFFFFF, etc.

• Reality: there’s only so much memory
to go around, and no two processes
should use the same (physical) memory
addresses (unless they’re sharing).

Process 1

Process 3

Process 3

OS

Process 2

Process 1

OS (with help from hardware) will keep track
of who’s using each memory region.

Virtual Memory: Sharing Storage

• Like CPU cache, memory is a cache for disk.

• Processes never need to know where their memory
truly is, OS translates virtual addresses into physical
addresses for them.

P1 P2 P3

P1
P2

P3

Kernel Execution

• Great, the OS is going to somehow give us these nice
abstractions.

• So…how / when should the kernel execute to make
all this stuff happen?

The operating system kernel…

A. Executes as a process.

B. Is always executing, in support of other processes.

C. Should execute as little as possible.

D. More than one of the above. (Which ones?)

E. None of the above.

Process vs. Kernel

• Is the kernel itself a process?
– No, it supports processes and devices

• OS only runs when necessary…
– as an extension of a process making system call
– in response to a device issuing an interrupt

Process vs. Kernel

• The kernel is the code that supports processes
– System calls: fork (), exit (), read (), write (), …
– System management: context switching, scheduling,

memory management

Kernel Execution

• Great, the OS is going to somehow give us these nice
abstractions.

• So…how / when should the kernel execute to make
all this stuff happen?

Process vs. Kernel

• The kernel is the code that supports processes
– System calls: fork (), exit (), read (), write (), …
– System management: context switching, scheduling,

memory management

Kernel vs. Userspace: Model

Text

Data

Stack

Process 1

Text
Data

Stack

Process 2

Text

Data

Stack

Process N

…

KernelSystem
Calls

write

read

fork
System

Management Scheduling

Context
Switching

OS OS

Heap
Heap

OS

Heap

Kernel vs. Userspace: Model

Text

Data

Stack

Process 1

Text
Data

Stack

Process 2

Text

Data

Stack

Process N

…

KernelSystem
Calls

write

read

fork
System

Management Scheduling

Context
Switching

OS OS

Heap
Heap

OS

Heap

Code:

Data:

Code:

Code +
Data:

Kernel vs. Userspace: Model

Text

Data

Stack

Process 1

Text
Data

Stack

Process 2

Text

Data

Stack

Process N

…

KernelSystem
Calls

write

read

fork
System

Management Scheduling

Context
Switching

OS OS

Heap
Heap

OS

Heap
Makes system call.
OS accesses device,
assigns resource, etc.

Kernel vs. Userspace: Model

Text

Data

Stack

Process 1

Text
Data

Stack

Process 2

Text

Data

Stack

Process N

…

KernelSystem
Calls

write

read

fork
System

Management Scheduling

Context
Switching

OS OS

Heap
Heap

OS

Heap

OS has control. It will
take care of process’s
request, but it might
take a while.
It can context switch
(and usually does at
this point).

Kernel vs. Userspace: Model

Text

Data

Stack

Process 1

Text
Data

Stack

Process 2

Text

Data

Stack

Process N

…

KernelSystem
Calls

write

read

fork
System

Management Scheduling

Context
Switching

OS OS

Heap
Heap

OS

Heap

OS returns control to
a process (not usually
the same one).

Kernel vs. Userspace: Model

Text

Data

Stack

Process 1

Text
Data

Stack

Process 2

Text

Data

Stack

Process N

…

KernelSystem
Calls

write

read

fork
System

Management Scheduling

Context
Switching

OS OS

Heap
Heap

OS

Heap

Transition is expensive,
but often necessary.

System Calls
• Programming interface to the services provided by the OS

• Typically written in a high-level language (C or C++)

Control over the CPU

• To context switch processes, kernel must get control:

1. Running process can give up control voluntarily
– To block, call yield () to give up CPU
– Process makes a blocking system call, e.g., read ()
– Control goes to kernel, which dispatches new process

2. CPU is forcibly taken away: preemption

CPU Preemption

1. While kernel is running, set a hardware timer.

2. When timer expires, a hardware interrupt is
generated. (device asking for attention)

3. Interrupt pauses process on CPU, forces control to
go to OS kernel.

4. OS is free to perform a context switch.

Summary

• Processes cycled off and on CPU rapidly
– Mechanism: context switch
– Policy: CPU scheduling

• Processes created by fork()ing

• Other functions to manage processes:
– exec(): replace address space with new program
– exit(): terminate process
– wait(): reap child process, get status info

• Signals one mechanism to notify a process of something

