
CS 31: Introduction to Computer Systems

20-21: Operating Systems & Processes
April 9-11, 2020

Direct-Mapped Example

• Suppose our addresses are 16 bits long.

• Our cache has 16 entries, block size of 16 bytes
– 4 bits in address for the index
– 4 bits in address for byte offset
– Remaining bits (8): tag

Slide 2

Direct-Mapped Example

• Let’s say we access
memory at address:
– 0110101100110100

• Step 1:
– Partition address into

tag, index, offset

Slide 3

Line V D Tag Data
(16 Bytes)

0

1

2

3

4

5

…

15

Direct-Mapped Example

• Let’s say we access
memory at address:
– 01101011 0011 0100

• Step 1:
– Partition address into

tag, index, offset

Slide 4

Line V D Tag Data
(16 Bytes)

0

1

2

3

4

5

…

15

Direct-Mapped Example

• Let’s say we access
memory at address:
– 01101011 0011 0100

• Step 2:
– Use index to find line

(row)
– 0011 -> 3

Line V D Tag Data
(16 Bytes)

0

1

2

3

4

5

…

15

Slide 5

Line V D Tag Data
(16 Bytes)

0

1

2

3

4

5

…

15

Direct-Mapped Example

• Let’s say we access
memory at address:
– 01101011 0011 0100

• Step 2:
– Use index to find line

(row)
– 0011 -> 3

Slide 6

Line V D Tag Data
(16 Bytes)

0

1

2

3 01101011

4

5

…

15

Direct-Mapped Example

• Let’s say we access
memory at address:
– 01101011 0011 0100

• Step 3:
– Check the tag
– Is it 01101011 (hit)?
– Something else (miss)?
– (Must also ensure valid)

Slide 7

How would the cache change if we performed
the following memory operations?

Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01110000 (Value: 7)
Read 10101010 (Value: 12)
Write 01101100 (Value: 2)

Line V D Tag Data (4
Bytes)

0 1 0 111 17

1 1 0 011 010 9 5

2 0
1

0 101 101 15 12

3 1 1
1

001 011 8 2

4 1 0
1

011 4 7

5 0 0 111 6

6 0 0 101 32

7 1 0 110 3

Memory address

1. Write dirty line to memory.
2. Load new value, set it to 2,

mark it dirty (write).

Slide 8

Associativity

• Problem: suppose we’re only using a small amount of
data (e.g., 8 bytes, 4-byte block size)

• Bad luck: (both) blocks map to same cache line
– Constantly evicting one another

– Rest of cache is going unused!

• Associativity: allow a set blocks to be stored at the
same index. Goal: reduce conflict misses.

Slide 9

A. In exactly one place. (“Direct-mapped”)
– Every location in memory is directly mapped to one

place in the cache. Easy to find data.

B. In a few places. (“Set associative”)
– A memory location can be mapped to (2, 4, 8)

locations in the cache. Middle ground.

C. In most places, but not all.

D. Anywhere in the cache. (“Fully associative”)
– No restrictions on where memory can be placed in the

cache. Fewer conflict misses, more searching.

Slide 10

Comparison

Direct-mapped
• Tag tells you if you found

the correct data.
• Offset specifies which byte

within block.
• Middle bits (index) tell you

which 1 line to check.

• (+) Low complexity, fast.
• (-) Conflict misses.

N-way set associative
• Tag tells you if you found

the correct data.
• Offset specifies which byte

within block.
• Middle bits (set) tell you

which N lines to check.

• (+) Fewer conflict misses.
• (-) More complex, slower,

consumes more power.

Slide 11

Comparison: 1024 Lines
(For the same cache size, in bytes.)

Direct-mapped
• 1024 indices (10 bits)

2-way set associative
• 512 sets (9 bits)

– Tag slightly (1 bit) larger.
V D Tag Data (8 Bytes)

…

Set # V D Tag Data (8 Bytes)
0
1

2
3

4

… …
508

509
510

511

Slide 12

2-Way Set Associative

V D Tag Data (8 Bytes)

1 0 3941

…

Set # V D Tag Data (8 Bytes)
0
1

2

3
4 1 1 4063

… …
508

509
510

511

Tag (20 bits) Set (9 bits) Byte offset (3 bits)

3941 4

Same capacity as previous example:
1024 rows with 1 entry vs.
512 rows with 2 entries

Slide 13

2-Way Set Associative

V D Tag Data (8 Bytes)

1 0 3941

…

Set # V D Tag Data (8 Bytes)
0
1

2

3
4 1 1 4063

… …
508

509
510

511

Tag (20 bits) Set (9 bits) Byte offset (3 bits)

3941 4

Check all locations in the set, in parallel.

Slide 14

2-Way Set Associative

V D Tag Data (8 Bytes)

1 0 3941

…

Set # V D Tag Data (8 Bytes)
0
1

2

3
4 1 1 4063

… …
508

509
510

511

Tag (20 bits) Set (9 bits) Byte offset (3 bits)

3941 4

0 1 2 3 4 5 6 70 1 2 3 4 5 6 7

Multiplexer Select correct value.

Slide 15

4-Way Set Associative Cache

Clearly, more
complexity here!

Slide 16

Eviction

• Mechanism is the same…
– Overwrite bits in cache line: update tag, valid, data

• Policy: choose which line in the set to evict
– Pick a random line in set
– Choose an invalid line first
– Choose the least recently used block
• Has exhibited the least locality, kick it out!

Common
combo in
practice.

Slide 17

Least Recently Used (LRU)

• Intuition: if it hasn’t been used in a while, we have
no reason to believe it will be used soon.

• Need extra state to keep track of LRU info.

V D Tag Data (8 Bytes)

1 0 3941

…

Set # LRU V D Tag Data (8 Bytes)
0 0

1 1

2 1

3 0

4 1 1 1 4063

… …

Slide 18

Least Recently Used (LRU)

• Intuition: if it hasn’t been used in a while, we have
no reason to believe it will be used soon.

• Need extra state to keep track of LRU info.

Another reason why associativity often maxes out at 8 or 16.

These are metadata bits, not
“useful” program data storage.

(Approximations make it not quite as bad.)

Slide 19

How would the cache change if we performed the
following memory operations? (2-way set)

Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01100100 (Value: 7)
Read 01000110 (Value: 5)
Write 01100000 (Value: 2)

V D Tag Data (4 Bytes)
1 0 001 17

1 0 010 5
… …

Set # LRU V D Tag Data (4 Bytes)
0 1 0 0 111 4

1 0 1 1 111 9
2 … …

3
4

5

6
7

LRU of 0 means the left line in
the set was least recently used.
1 means the right line was used
least recently.

Slide 20

How would the cache change if we performed the
following memory operations? (2-way set)

Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01100100 (Value: 7)
Read 01000110 (Value: 5)
Write 01100000 (Value: 2)

V D Tag Data (4 Bytes)
1 0 001 17

1 0 010 5
… …

Set # LRU V D Tag Data (4 Bytes)
0 1 0 0 111 4

1 0 1 1 111 9
2 … …

3
4

5

6
7

LRU of 0 means the left line in
the set was least recently used.
1 means the right line was used
least recently.

Slide 21

How would the cache change if we performed the
following memory operations? (2-way set)

Read 01000100 (Value: 5)

Read 11100010 (Value: 17)

Write 01100100 (Value: 7)

Read 01000110 (Value: 5)

Write 01100000 (Value: 2)

V D Tag Data (4 Bytes)
1 0 001 17

1 0 010 5
… …

Set # LRU V D Tag Data (4 Bytes)
0 1 0 0 111 4

1 0 1 1 111 9

2 … …

3

4

5

6

7

LRU of 0 means the left line in
the set was least recently used.
1 means the right line was used
least recently.

Slide 22

We have a match. LRU bit
stays the same

How would the cache change if we performed the
following memory operations? (2-way set)

Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01100100 (Value: 7)
Read 01000110 (Value: 5)
Write 01100000 (Value: 2)

V D Tag Data (4 Bytes)
1 0 001 17

1 0 010 5
… …

Set # LRU V D Tag Data (4 Bytes)
0 1 0 0 111 4

1 0 1 1 111 9
2 … …

3
4

5

6
7

LRU of 0 means the left line in
the set was least recently used.
1 means the right line was used
least recently.

Slide 23

How would the cache change if we performed the
following memory operations? (2-way set)

Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01100100 (Value: 7)
Read 01000110 (Value: 5)
Write 01100000 (Value: 2)

V D Tag Data (4 Bytes)
1 0 001 17

1 0 010 5

… …

Set # LRU V D Tag Data (4 Bytes)
0 1 0 0 111 4

1 0 1 1 111 9

2 … …

3

4

5

6

7

LRU of 0 means the left line in
the set was least recently used.
1 means the right line was used
least recently.

Slide 24

Valid bit is 0, evict the left.

How would the cache change if we performed the
following memory operations? (2-way set)

Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01100100 (Value: 7)
Read 01000110 (Value: 5)
Write 01100000 (Value: 2)

V D Tag Data (4 Bytes)
1 0 001 17

1 0 010 5

… …

Set # LRU V D Tag Data (4 Bytes)
0 1 0 1 0 111 4 17

1 0 1 1 111 9

2 … …

3

4

5

6

7

LRU of 0 means the left line in
the set was least recently used.
1 means the right line was used
least recently.

Slide 25

Valid bit is 0, evict the left.
LRU stays the same

How would the cache change if we performed the
following memory operations? (2-way set)

Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01100100 (Value: 7)
Read 01000110 (Value: 5)
Write 01100000 (Value: 2)

V D Tag Data (4 Bytes)
1 0 001 17

1 0 010 5
… …

LRU of 0 means the left line in
the set was least recently used.
1 means the right line was used
least recently.

Slide 26

Set # LRU V D Tag Data (4 Bytes)
0 1 0 1 0 111 4 17

1 0 1 1 111 9
2 … …

3
4

5

6
7

How would the cache change if we performed the
following memory operations? (2-way set)

Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01100100 (Value: 7)
Read 01000110 (Value: 5)
Write 01100000 (Value: 2)

V D Tag Data (4 Bytes)
1 0 001 17

1 0 010 5

… …

LRU of 0 means the left line in
the set was least recently used.
1 means the right line was used
least recently.

Slide 27

Tag does not match and we have a miss!
Valid bit is set for both. Which do we
evict?

Set # LRU V D Tag Data (4 Bytes)
0 1 0 1 0 111 4 17

1 0 1 1 111 9

2 … …

3

4

5

6

7

How would the cache change if we performed the
following memory operations? (2-way set)

Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01100100 (Value: 7)
Read 01000110 (Value: 5)
Write 01100000 (Value: 2)

V D Tag Data (4 Bytes)
1 0 001 17

1 0 010 5

… …

Set # LRU V D Tag Data (4 Bytes)
0 1 0 1 0 111 4 17

1 0 1 1 111 9

2 … …

3

4

5

6

7

LRU of 0 means the left line in
the set was least recently used.
1 means the right line was used
least recently.

Slide 28

Tag does not match and we have a miss!
LRU is the one on the left. More expected
locality on the right. But it has a dirty bit set.

How would the cache change if we performed the
following memory operations? (2-way set)

Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01100100 (Value: 7)
Read 01000110 (Value: 5)
Write 01100000 (Value: 2)

V D Tag Data (4 Bytes)
1 0 001 17

1 0 010 5

… …

LRU of 0 means the left line in
the set was least recently used.
1 means the right line was used
least recently.

Slide 29

Are we done?

Set # LRU V D Tag Data (4 Bytes)
0 1 0 1 0 111 4 17

1 0 1 1 0 1 111 011 9 7

2 … …

3

4

5

6

7

How would the cache change if we performed the
following memory operations? (2-way set)

Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01100100 (Value: 7)
Read 01000110 (Value: 5)
Write 01100000 (Value: 2)

V D Tag Data (4 Bytes)
1 0 001 17

1 0 010 5

… …

Set # LRU V D Tag Data (4 Bytes)
0 1 0 1 0 111 4 17

1 0 1 1 1 0 1 111 011 9 7

2 … …

3

4

5

6

7

LRU of 0 means the left line in
the set was least recently used.
1 means the right line was used
least recently.

Slide 30

Set the LRU bit!

How would the cache change if we performed the
following memory operations? (2-way set)

Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01100100 (Value: 7)
Read 01000110 (Value: 5)
Write 01100000 (Value: 2)

V D Tag Data (4 Bytes)
1 0 001 17

1 0 010 5

… …

Set # LRU V D Tag Data (4 Bytes)
0 1 0 1 0 111 4 17

1 0 1 1 1 0 1 111 011 9 7

2 … …

3

4

5

6

7

LRU of 0 means the left line in
the set was least recently used.
1 means the right line was used
least recently.

Slide 31

Set the LRU bit!

How would the cache change if we performed the
following memory operations? (2-way set)

Read 01000100 (Value: 5)

Read 11100010 (Value: 17)

Write 01100100 (Value: 7)

Read 01000110 (Value: 5)

Write 01100000 (Value: 2)

V D Tag Data (4 Bytes)
1 0 001 17

1 0 010 5

… …

Set # LRU V D Tag Data (4 Bytes)
0 1 0 1 0 111 4 17

1 0 1 0 1 1 0 1 111 011 9 7

2 … …

3

4

5

6

7

LRU of 0 means the left line in the set was
least recently used. 1 means the right line
was used least recently.

Slide 32

We have a hit on the right.
Update LRU bit. Avoids conflict misses
from prev. instruction that would have
occurred in a direct mapped cache!

How would the cache change if we performed the
following memory operations? (2-way set)

Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01100100 (Value: 7)
Read 01000110 (Value: 5)
Write 01100000 (Value: 2)

V D Tag Data (4 Bytes)
1 0 001 17

1 0 010 5
… …

Set # LRU V D Tag Data (4 Bytes)
0 1 0 1 0 111 4 17

1 0 1 0 1 1 0 1 111 011 9 7
2 … …

3
4

5

6
7

LRU of 0 means the left line in
the set was least recently used.
1 means the right line was used
least recently.

Slide 33

How would the cache change if we performed the
following memory operations? (2-way set)

Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01100100 (Value: 7)
Read 01000110 (Value: 5)
Write 01100000 (Value: 2)

V D Tag Data (4 Bytes)
1 0 001 17

1 0 010 5

… …

Set # LRU V D Tag Data (4 Bytes)
0 1 0 1 0 111 4 17

1 0 1 0 1 1 0 1 111 011 9 7

2 … …

3

4

5

6

7

LRU of 0 means the left line in
the set was least recently used.
1 means the right line was used
least recently.

Slide 34

Tag is incorrect on both sides.
Valid bit set for both, but right has LRU set.

How would the cache change if we performed the
following memory operations? (2-way set)

Read 01000100 (Value: 5)

Read 11100010 (Value: 17)

Write 01100100 (Value: 7)

Read 01000110 (Value: 5)

Write 01100000 (Value: 2)

V D Tag Data (4 Bytes)
1 0 1 001 011 17 2

1 0 010 5

… …

Set # LRU V D Tag Data (4 Bytes)
0 1 0 0 1 0 111 4 17

1 0 1 0 1 1 0 1 111 011 9 7

2 … …

3

4

5

6

7

LRU of 0 means the left line in
the set was least recently used.
1 means the right line was used
least recently.

Slide 35

Update the right-hand side, set dirty bit,
set LRU to zero.

Cache Conscious Programming

• Knowing about caching and designing code around it
can significantly effect performance

(ex) 2D array accesses

Algorithmically, both O(N * M).

Is one faster than the other?

for(i=0; i < N; i++) {
for(j=0; j< M; j++) {

sum += arr[i][j];
}}

for(j=0; j < M; j++) {
for(i=0; i< N; i++) {

sum += arr[i][j];
}}

Slide 36

Cache Conscious Programming

• Knowing about caching and designing code around it
can significantly effect performance

(ex) 2D array accesses

Algorithmically, both O(N * M).

Is one faster than the other?

for(i=0; i < N; i++) {
for(j=0; j< M; j++) {

sum += arr[i][j];
}}

for(j=0; j < M; j++) {
for(i=0; i< N; i++) {

sum += arr[i][j];
}}

A. is faster. B. is faster.

C. Both would exhibit
roughly equal performance.

Slide 37

Cache Conscious Programming

The first nested loop is more efficient if the cache block size
is larger than a single array bucket
(for arrays of basic C types, it will be).

(ex) 1 miss every 4 buckets vs. 1 miss every bucket

for(i=0; i < N; i++) {
for(j=0; j< M; j++) {

sum += arr[i][j];
}}

for(j=0; j < M; j++) {
for(i=0; i< N; i++) {

sum += arr[i][j];
}}

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

. . .

.

.

.

1 . . .

2

3

4

.

.

.

Slide 38

Program Efficiency and Memory
• Be aware of how your program accesses data
– Sequentially, in strides of size X, randomly, …
– How data is laid out in memory

• Will allow you to structure your code to run much
more efficiently based on how it accesses its data

• Don’t go nuts…
– Optimize the most important parts, ignore the rest
– “Premature optimization is the root of all evil.” -Knuth

Slide 39

Amdahl’s Law
Idea: an optimization can improve total runtime at
most by the fraction it contributes to total runtime

If program takes 100 secs to run, and you optimize a
portion of the code that accounts for 2% of the runtime,
the best your optimization can do is improve the runtime
by 2 secs.

Amdahl’s Law tells us to focus our optimization efforts
on the code that matters:

Speed-up what is accounting for the largest portion of
runtime to get the largest benefit. And, don’t waste
time on the small stuff.

Slide 40

Up Next:

• Operating systems, Processes

Slide 41

Abstraction

User / Programmer
Wants low complexity

Applications
Specific functionality

Software library
Reusable functionality

Complex devices
Compute & I/O

Operating system
Manage resources

Slide 42

Abstraction

Operating system
Manage resources

Slide 43

OS Big Picture Goals

• OS is an extra code layer between user programs and
hardware.

• Goal: Make life easier for users and programmers.

• How can the OS do that?

Key OS Responsibilities

1. Hardware gatekeeping and protection

2. Simplifying abstractions for programs (e.g., files)

3. Resource sharing (memory, CPU)

OS: Turn undesirable into desirable

• Turn undesirable inconveniences: reality
– Complexity of hardware
– Single processor
– Limited memory

Before Operating Systems

• One program executed at a time…

Today: Multiprogramming

Multiprogramming: have multiple programs available to
the machine, even if you only have one CPU core that
can execute them.

Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

Multiprogramming

Lecture 6 – Slide 49

….Wait Wait(for some resource) Job 1 Running

….Wait Wait
Job 2 Running

….Wait Wait Job 3 Running

CPU Time
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

…. Combined

How many programs do you think are running
on a typical desktop?

A. 1-10

B. 20-40

C. 40-80

D. 80-160

E. 160+

Running multiple programs

• Benefits: when I/O issued, CPU not needed
– Allow another program to run
– Requires yielding and sharing memory

• Challenges: what if one running program…
– Monopolizes CPU, memory?
– Reads/writes another’s memory?
– Uses I/O device being used by another?

More than 200 processes running on a typical desktop!

OS: Turn undesirable into desirable

• Turn undesirable inconveniences: reality
– Complexity of hardware
– Single processor
– Limited memory

• Into desirable conveniences: illusions
– Simple, easy-to-use resources
– Multiple/unlimited number of processors
– Large/unlimited amount of memory

Virtualization

• Rather than exposing real hardware, introduce a
“virtual”, abstract notion of the resource

• Multiple virtual processors
– By rapidly switching CPU use

• Multiple virtual memories
– By memory partitioning and re-addressing

• Virtualized devices
– By simplifying interfaces, and using other resources to

enhance function

Focus on the OS ‘kernel’

• “Operating system” has many interpretations
– E.g., all software on machine minus applications (user

or even limited to 3rd party)

• Our focus is the kernel
– What’s necessary for everything else to work
– Low-level resource control
– Originally called the nucleus in the 60’s

The Kernel

• All programs depend on it
– Loads and runs them
– Exports system calls to programs

• Works closely with hardware
– Accesses devices
– Responds to interrupts

• Allocates basic resources
– CPU time, memory space
– Controls I/O devices: display, keyboard, disk, network

Tron

Kernel provides common functions

• Some functions useful to many programs
– I/O device control
– Memory allocation

• Place these functions in central place (kernel)
– Called by programs (system calls)
– Or accessed implicitly

• What should functions be?
– How many programs should benefit?
– Might kernel get too big?

OS Kernel

• Big Design Issue: How do we make the OS efficient, reliable, and
extensible?

• General OS Philosophy: The design and implementation of an OS

involves a constant tradeoff between simplicity and performance.

• As a general rule, strive for simplicity.

– except when you have a strong reason to believe that you need to make a
particular component complicated to achieve acceptable performance

– (strong reason = simulation or evaluation study)

Lecture 3 – Slide 57

Main Abstraction: The Process

• Abstraction of a running program
– “a program in execution”

• Dynamic
– Has state, changes over time
– Whereas a program is static

• Basic operations
– Start/end
– Suspend/resume

Basic Resources for Processes

• To run, process needs some basic resources:
– CPU
• Processing cycles (time)
• To execute instructions

– Memory
• Bytes or words (space)
• To maintain state

– Other resources (e.g., I/O)
• Network, disk, terminal, printer, etc.

Machine State of a Process

• CPU or processor context
– PC (program counter)
– SP (stack pointer)
– General purpose registers

• Memory
– Code
– Global Variables
– Stack of activation records / frames
– Other (registers, memory, kernel-related state)

Must keep track of these
for every running process !

Resource Sharing

Reality
• Multiple processes
• Small number of CPUs
• Finite memory

Abstraction
• Process is all alone
• Process is always running
• Process has all the memory

P1

P2

P3

time

CPU: Time Memory: Space

P1
P2

P3

Resource: CPU

• Many processes, limited number of CPUs.

• Each process needs to make progress over time.
Insight: processes don’t know how quickly they
should be making progress.

• Illusion: every process is making progress in parallel.

Timesharing: Sharing the CPUs

• Abstraction goal: make every process think it’s running
on the CPU all the time.
– Alternatively: If a process was removed from the CPU and

then given it back, it shouldn’t be able to tell

• Reality: put a process on CPU, let it run for a short time
(~10 ms), switch to another, … (context switching)

How is Timesharing Implemented?

• Kernel keeps track of progress of each process
• Characterizes state of process’s progress
– Running: actually making progress, using CPU
– Ready: able to make progress, but not using CPU
– Blocked: not able to make progress, can’t use CPU

• Kernel selects a ready process, lets it run
– Eventually, the kernel gets back control
– Selects another ready process to run, …

Process State Diagram

• State transitions
– Dispatch: allocate the CPU to a process
– Preempt: take away CPU from process
– Sleep: process gives up CPU to wait for event
– Wakeup: event occurred, make process ready

Ready Running

Blocked

dispatch

preempt

sleepwake up

Kernel Maintains Process Table

• List of processes and their states
– Also sometimes called “process control block (PCB)”

• Other state info includes
– contents of CPU context
– areas of memory being used
– other information

Process ID (PID) State Other info
1534 Ready Saved context, …

34 Running Memory areas used, …

487 Ready Saved context, …

9 Blocked Condition to unblock, …

Values of registers in
use by process

Multiprogramming

• Given a running process

– At some point, it needs a resource, e.g., I/O device

– If resource is busy (or slow), process can’t proceed

– “Voluntarily” gives up CPU to another process

• Mechanism: Context switching

Context Switching

• Allocating CPU from one process to another
– First, save context of currently running process
– Next, load context of next process to run

Context Switching

• Allocating CPU from one process to another
– First, save context of currently running process
– Next, load context of next process to run

• Loading the context
– Load general registers, stack pointer, etc.
– Load program counter (must be last instruction!)

How a Context Switch Occurs

• Process makes system call (TRAP) or is interrupted
– These are the only ways of entering the kernel

• In hardware
– Switch from user to kernel mode: amplifies power
– Go to fixed kernel location: interrupt/syscall handler

• In software (in the kernel code)
– Save context of last-running process
– Conditionally

• Select new process from those that are ready
• Restore context of selected process

– OS returns control to a process from interrupt/syscall

Why shouldn’t processes control context
switching?

A. It would cause too much overhead.

B. They could refuse to give up the CPU.

C. They don’t have enough information about other
processes.

D. Some other reason(s).

Time Sharing / Multiprogramming

• Given a running process

– At some point, it needs a resource, e.g., I/O device

– If resource is busy (or slow), process can’t proceed

– “Voluntarily” gives up CPU to another process

• Mechanism: Context switching

• Policy: CPU scheduling

Managing Processes

• Given a process, how do we make it execute the
program we want?

• Model: fork() a new process, execute program

Creating a Process

• One process can create other processes to do work.
– The creator is called the parent and the new process is

the child

– The parent defines (or donates) resources and privileges
to its children

– A parent can either wait for the child to complete, or
continue in parallel

Lecture 4 – Slide 75

fork()

• System call (function provided by OS kernel)

• Creates a duplicate of the requesting process
– Process is cloning itself:

• CPU context
• Memory “address space”

OS

Stack

Text
Data
Heap

OS

Stack

Text
Data
Heap

OS

Stack

Text
Data
Heap

(Almost) identical clones

fork() return value

• The two processes are identical in every way, except
for the return value of fork().
– The child gets a return value of 0.
– The parent gets a return value of child’s PID.

pid_t pid = fork(); // both continue after call
if (pid == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

Which process executes next? Child? Parent? Some other process?

Up to OS to decide. No guarantees. Don’t rely on particular behavior!

How many hello’s will be printed?

fork();
printf(“hello”);
if (fork()) {

printf(“hello”);
}
fork();
printf(“hello”);

A.6
B.8
C.12
D.16
E.18

How many hello’s will be printed?

fork();
printf(“hello”);
if (fork()) {

printf(“hello”);
}
fork();
printf(“hello”);

Common fork() usage: Shell

• A “shell” is the program controlling your terminal
(e.g., bash).

• It fork()’s to create new processes, but we don’t
want a clone (another shell).

• We want the child to execute some other program:
exec() family of functions.

exec()

• Family of functions (execl, execlp, execv, …).

• Replace the current process with a new one.

• Loads program from disk:
– Old process is overwritten in memory.
– Does not return unless error.

Common fork() usage: Shell

1. fork()child process.

2. exec()desired program to replace child’s address
space.

2. wait()for child process to terminate.

3. repeat…

The parent and child each do
something different next.

Common fork() usage: Shell

1. fork()child process.

Shell

fork()

Shell
(p)

Shell
(c)

Common fork() usage: Shell

2. parent: wait()for child to finish

Shell

fork()

Shell
(p)

Shell
(c)

wait()

Common fork() usage: Shell

2. child: exec()user-requested program

Shell

fork()

Shell
(p)

Shell
(c)

wait() exec()

Common fork() usage: Shell

2. child: exec()user-requested program

Shell

fork()

Shell
(p)

Shell
new
prog

wait() exec()

Runs to completion

Common fork() usage: Shell

3. child program terminates, cycle repeats

Shell

fork()

Shell
(p)

Shell
new
prog

wait() exec()

Runs to completion

Child terminates

Common fork() usage: Shell

3. child program terminates, cycle repeats

Shell

fork()

Shell
(p)

Shell
new
prog

wait() exec()

Runs to completion

Child terminatesShell
(p)

Original parent
shell resumes

Process Termination

• On process termination, the OS reclaims all
resources assigned to the process.

• In Unix
– a process can terminate itself using the exit system

call.

– a process can terminate a child using the kill system
call.

Lecture 4 – Slide 89

Process Termination

• When does a process die?
– It calls exit(int status);
– It returns (an int) from main
– It receives a termination signal (from the OS or another

process)

• Key observation: the dying process produces status
information.

• Who looks at this?
• The parent process!

Reaping Children
(Bet you didn’t expect to see THAT title on a slide when you signed up for CS 31?)

• wait(): parents reap their dead children
– Given info about why child died, exit status, etc.

• Two variants:
– wait(): wait for and reap next child to exit
– waitpid(): wait for and reap specific child

• This is how the shell determines whether or not the
program you executed succeeded.

Common fork() usage: Shell

1. fork()child process.

2. exec()desired program to replace child’s address
space.

3. wait()for child process to terminate.
– Check child’s result, notify user of errors.

4. repeat…

What should happen if dead child
processes are never reaped? (That is,
the parent has not wait()ed on them?)

A. The OS should remove them from the process table
(process control block / PCB).

B. The OS should leave them in the process table
(process control block / PCB).

C. The neglected processes seek
revenge as undead in the afterlife.

“Zombie” Processes

• Zombie: A process that has terminated but not been
reaped by parent. (AKA defunct process)

• Does not respond to signals (can’t be killed)

• OS keeps their entry in process table:
– Parent may still reap them, want to know status
– Don’t want to re-use the process ID yet

Basically, they’re kept around for bookkeeping purposes, but that’s much less exciting...

Process Management: Summary

• A process is the unit of execution.
• Processes are represented as Process Control Blocks in the OS

– PCBs contain process state, scheduling and memory management
information, etc

• A process is either New, Ready, Waiting, Running, or Terminated.
• On a uniprocessor, there is at most one running process at a time.
• The program currently executing on the CPU is changed by

performing a context switch
• Processes communicate either with message passing or shared

memory

Lecture 4 – Slide 96

Signals

• How does a parent process know that a child has
exited (and that it needs to call wait)?

• Signals: inter-process notification mechanism
– Info that a process (or OS) can send to a process.

• Please terminate yourself (SIGTERM)

• Stop NOW (SIGKILL)

• Your child has exited (SIGCHLD)

• You’ve accessed an invalid memory address (SIGSEGV)

• Many more (SIGWINCH, SIGUSR1, SIGPIPE, …)

Signal Handlers

• By default, processes react to signals according to the
signal type:
– SIGKILL, SIGSEGV, (others): process terminates
– SIGCHLD, SIGUSR1: process ignores signal

• You can define “signal handler” functions that execute
upon receiving a signal.
– Drop what program was doing, execute handler, go back to

what it was doing.
– Example: got a SIGCHLD? Enter handler, call wait()
– Example: got a SIGUSR1? Reopen log files.

• Some signals (e.g., SIGKILL) cannot be handled.

Summary

• Processes cycled off and on CPU rapidly
– Mechanism: context switch
– Policy: CPU scheduling

• Processes created by fork()ing

• Other functions to manage processes:
– exec(): replace address space with new program
– exit(): terminate process
– wait(): reap child process, get status info

• Signals one mechanism to notify a process of something

Kernel Execution

• Great, the OS is going to somehow give us these nice
abstractions.

• So…how / when should the kernel execute to make
all this stuff happen?

Process vs. Kernel

• The kernel is the code that supports processes
– System calls: fork (), exit (), read (), write (), …
– System management: context switching, scheduling,

memory management

Kernel vs. Userspace: Model

Text

Data

Stack

Process 1

Text
Data

Stack

Process 2

Text

Data

Stack

Process N

…

KernelSystem
Calls

write

read

fork
System

Management Scheduling

Context
Switching

OS OS

Heap
Heap

OS

Heap

Kernel vs. Userspace: Model

Text

Data

Stack

Process 1

Text
Data

Stack

Process 2

Text

Data

Stack

Process N

…

KernelSystem
Calls

write

read

fork
System

Management Scheduling

Context
Switching

OS OS

Heap
Heap

OS

Heap

Code:

Data:

Code:

Code +
Data:

Kernel vs. Userspace: Model

Text

Data

Stack

Process 1

Text
Data

Stack

Process 2

Text

Data

Stack

Process N

…

KernelSystem
Calls

write

read

fork
System

Management Scheduling

Context
Switching

OS OS

Heap
Heap

OS

Heap
Makes system call.
OS accesses device,
assigns resource, etc.

Kernel vs. Userspace: Model

Text

Data

Stack

Process 1

Text

Data

Stack

Process 2

Text

Data

Stack

Process N

…

KernelSystem
Calls

write

read

fork

System
Management Scheduling

Context
Switching

OS OS

Heap
Heap

OS

Heap

OS has control. It will
take care of process’s
request, but it might
take a while.

It can context switch
(and usually does at
this point).

Kernel vs. Userspace: Model

Text

Data

Stack

Process 1

Text
Data

Stack

Process 2

Text

Data

Stack

Process N

…

KernelSystem
Calls

write

read

fork
System

Management Scheduling

Context
Switching

OS OS

Heap
Heap

OS

Heap

OS returns control to
a process (not usually
the same one).

Kernel vs. Userspace: Model

Text

Data

Stack

Process 1

Text
Data

Stack

Process 2

Text

Data

Stack

Process N

…

KernelSystem
Calls

write

read

fork
System

Management Scheduling

Context
Switching

OS OS

Heap
Heap

OS

Heap

Transition is expensive,
but often necessary.

System Calls
• Programming interface to the services provided by the OS

• Typically written in a high-level language (C or C++)

Standard C Library Example

• C program invoking printf() library call, which
calls write() system call

API – System Call – OS Relationship

Control over the CPU

• To context switch processes, kernel must get control:

1. Running process can give up control voluntarily
– To block, call yield () to give up CPU
– Process makes a blocking system call, e.g., read ()
– Control goes to kernel, which dispatches new process

2. CPU is forcibly taken away: preemption

CPU Preemption

1. While kernel is running, set a hardware timer.

2. When timer expires, a hardware interrupt is
generated. (device asking for attention)

3. Interrupt pauses process on CPU, forces control to
go to OS kernel.

4. OS is free to perform a context switch.

