
CS 31: Introduction to Computer Systems

15-16: Storage and Memory
March 26-31, 2020

Transition

• First half of course: hardware focus
– How the hardware is constructed
– How the hardware works
– How to interact with hardware / ISA

• Up next: performance and software systems
– Memory performance
– Operating systems
– Standard libraries (strings, threads, etc.)

Slide 2

Efficiency
• How to Efficiently Run Programs

• Good algorithm is critical…

• Many systems concerns to account for too!
– The memory hierarchy and its effect

on program performance
– OS abstractions for running programs efficiently
– Support for parallel programming

Slide 3

Suppose you’re designing a new computer
architecture. Which type of memory would
you use? Why?

A. low-capacity (~1 MB), fast, expensive

B. medium-capacity (a few GB), medium-speed,
moderate cost

C. high-capacity (100’s of GB), slow, cheap

D. something else (it must exist)

Slide 4

Suppose you’re designing a new computer
architecture. Which type of memory would
you use? Why?

A. low-capacity (~1 MB), fast, expensive

B. medium-capacity (a few GB), medium-speed,
moderate cost

C. high-capacity (100’s of GB), slow, cheap

D. something else (it must exist)

Slide 5trade-off between capacity and speed

Classifying Memory

• Broadly, two types of memory:
1. Primary storage: CPU instructions can access any

location at any time (assuming OS permission)
2. Secondary storage: CPU can’t access this directly

Slide 6

Random Access Memory (RAM)

• Any location can be accessed directly by CPU
– Volatile Storage: lose power à lose contents

• Static RAM (SRAM)
– Latch-Based Memory (e.g. RS latch), 1 bit per latch
– Faster and more expensive than DRAM

• “On chip”: Registers, Caches

• Dynamic RAM (DRAM)
– Capacitor-Based Memory, 1 bit per capacitor

• “Main memory”: Not part of CPU

Slide 7

Memory Technologies

• Static RAM (SRAM)
– 0.5ns – 2.5ns, $2000 – $5000 per GB

• Dynamic RAM (DRAM)
– 50ns – 100ns, $20 – $75 per GB

(Main memory, “RAM”)

We’ve talked a lot about registers (SRAM) and we’ll
cover caches (SRAM) soon.
Let’s look at main memory (DRAM) now.

Slide 8

Dynamic Random Access Memory (DRAM)

CPSC31 Fall 2013, newhall

DRAM
Memory
Chips

Capacitor based:

– cheaper and slower than SRAM

– capacitors are leaky (lose charge over time)

– Dynamic: value needs to be refreshed (every 10-100ms)

Example: DIMM (Dual In-line Memory Module):

Bus Interface

Slide 9

Connecting CPU and Memory

• Components are connected by a bus:
• A bus is a collection of parallel wires that carry

address, data, and control signals.
• Buses are typically shared by multiple devices.

Memory Module Slots

ALU

Register
Register
Register
Register

CPU

Memory Bus

CPU Cache

Slide 10

How Memory Read Works

(1) CPU places address A on the memory bus.
Load operation: movl(A), %eax

Memory Module Slots

ALU

Register
Register
Register
Register

CPU

Memory Bus
CPU Cache

A
Slide 11

Hey memory,
please locate
the value at
address A

Read (cont.)
(2) Main Memory reads address A from

memory, fetches value at that address
and puts it on the bus

Memory Module Slots

ALU

Register
Register
Register
Register

CPU

Memory Bus
CPU Cache

Value
Slide 12

Sending the
value back to
the CPU

Read (cont.)

(3) CPU reads value from the bus,
• copies it into register %eax,
• a copy also goes into the on-chip cache memory

Memory Module Slots

ALU

Register
Register
Register
Register

CPU

Memory Bus

CPU Cache

Value

Slide 13

Load operation: movl(A), %eax

Write
1. CPU writes A to bus, memory reads it
2. CPU writes value to bus, memory reads it
3. Memory stores value, y, at address A

Memory Module Slots

ALU

Register
Register
Register
Register

CPU

Memory Bus

CPU Cache

value, A
Slide 14

Hey memory,
store value at
address A

Secondary Storage

• Disk, Tape Drives, Flash Solid State Drives, …

• Non-volatile: retains data without a charge

• Instructions CANNOT directly access data on
secondary storage
– No way to specify a disk location in an instruction
– Operating System moves data to/from memory

Slide 15

Secondary Storage
Memory Module Slots

ALU

Register
Register
Register
Register

CPU

Memory Bus

I/O
Controller

USB
Controller

IDE
Controller

SATA
Controller …

I/O Bus (e.g., PCI)

Secondary Storage Devices

CPU Cache

Slide 16

path is much longer

What’s Inside A Disk Drive?
Spindle

Arm

Actuator

Platters

Controller Electronics
(includes processor & memory) bus

connector

Image from Seagate Technology

R/W head

Data Encoded as
points of
magnetism on
Platter surfaces

Device Driver (part of OS code)
interacts with Controller to R/W to disk

Slide 17

Reading and Writing to Disk

disk surface

spins at a fixed

rotational rate

~7200 rotations/min

disk arm sweeps across

surface to position

read/write head over a

specific track.

Data blocks located in some Sector of some Track on some Surface

1. Disk Arm moves to correct track (seek time)

2. Wait for sector spins under R/W head (rotational latency)

3. As sector spins under head, data are Read or Written

(transfer time)
sector

Slide 18

Memory Technology

• Static RAM (SRAM)

– 0.5ns – 2.5ns, $2000 – $5000 per GB

• Dynamic RAM (DRAM)
– 50ns – 100ns, $20 – $75 per GB

• Magnetic disk
– 5ms – 15ms, $0.20 – $2 per GB

Like walking:

Down the hall

Across campus

To Seattle

1 ms == 1,000,000 ns

Solid-state disks (flash): 100 us – 1 ms, $2 - $10 per GB

Slide 19

The Memory Hierarchy

Larger
Slower
Cheaper
per byte

Local secondary storage (disk)
~100 M cycles to access

On
Chip

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM)

~100 cycles to access: 50 – 100ns

CPU
instrs

can
directly
access

Registers
1 cycle to access = sub ns

Cache(s)
(SRAM)

~10’s of cycles to access: few ns

Slide 20

The Memory Hierarchy

Local secondary storage (disk)

Larger
Slower
Cheaper
per byte

Remote secondary storage
(tapes, Web servers / Internet)

~100 M cycles to access

On
Chip

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM)

~100 cycles to access

CPU
instrs

can
directly
access

slower
than local

disk to access

Registers
1 cycle to access

Cache(s)
(SRAM)

~10’s of cycles to access

Flash SSD / Local network

Slide 21

Abstraction Goal

• Reality: There is no one type of memory to rule them
all!

• Abstraction: hide the complex/undesirable details of
reality.

• Illusion: We have the speed of SRAM, with the
capacity of disk, at reasonable cost.

Slide 22

Motivating Story / Analogy

• You work at a video rental store (remember Blockbuster?)

• You have a huge warehouse of movies
– 10-15 minutes to find movie, bring to customer
– Customers don’t like waiting…

• You have a small office in the front with shelves, you
choose what goes on shelves
– < 30 seconds to find movie on shelf

Slide 23

The Video Store Hierarchy

Large Warehouse

On
Shelf

Storage

Front Office
Shelves

~10 minutes to find movie

~30 seconds to find movie

Goal: strategically put
movies on office shelf
to reduce trips to
warehouse.

Slide 24

Quick vote: Which movie should we place on
the shelf for tonight?

A. Eternal Sunshine of the Spotless Mind

B. The Godfather

C. Rocky

D. Spirited Away

E. There’s no way for us to know.

Slide 25

Problem: Prediction

• We can’t know the future…

• So… are we out of luck?
What might we look at to help us decide?

• The past is often a pretty good predictor…

Slide 26

Repeat Customer: Bob

• Has rented “Eternal Sunshine of the Spotless Mind”
ten times in the last two weeks.

• You talk to him:
– He just broke up with his girlfriend
– Swears it will be the last time he rents the movie (he’s

said this the last six times)

Slide 27

Quick vote: Which movie should we place on
the shelf for tonight?

A. Eternal Sunshine of the Spotless Mind

B. The Godfather

C. Rocky

D. Spirited Away

E. There’s no way for us to know.

Slide 28

Repeat Customer: Alice

• Alice rented Rocky a month ago

• You talk to her:
– She’s really likes Sylvester Stalone

• Over the next few weeks she rented:
– Rocky II, Rocky III, Rocky IV

Slide 29

Quick vote: Which movie should we place on
the shelf for tonight?

A. Eternal Sunshine of the Spotless Mind

B. The Godfather

C. Pulp Fiction

D. Rocky V

E. There’s no way for us to know.

Slide 30

Critical Concept: Locality

• Locality: we tend to repeatedly access recently
accessed items, or those that are nearby.

• Temporal locality: An item accessed recently is likely
to be accessed again soon. (Bob)

• Spatial locality: We’re likely to access an item that’s
nearby others we just accessed. (Alice)

Slide 31

In the following code, how many examples
are there of temporal / spatial locality?
Where are they?

int i;
int num = read_int_from_user();
int *array = create_random_array(num);
for (i = 0; i < num; i++) {
printf(“At index %d, value: %d”, i, array[i]);

}

A. 1 temporal, 1 spatial
B. 1 temporal, 2 spatial
C. 2 temporal, 1 spatial
D. 2 temporal, 2 spatial
E. Some other number

Slide 32

In the following code, how many examples
are there of temporal / spatial locality?
Where are they? (some of them)

int i;
int num = read_int_from_user();
int *array = create_random_array(num);
for (i = 0; i < num; i++) {

printf(“At index %d, value: %d”, i, array[i]);
}
• Temporal

– Array base access: for every iteration
– i, num: access i and num on every iteration
– printf: access the same instructions multiple times
– printf: format string

• Spatial
– printf: params to function call, and instructions come one after another
– array elements
– input parameters to a function call
– instructions in the code above exhibit spatial locality

Slide 33

Big Picture

Local secondary storage (disk)

Remote secondary storage
(tapes, Web servers / Internet)

Main memory
(DRAM)

Cache(s)
(SRAM)

Flash SSD / Local network

Registers

For memory exhibiting locality
(stuff we’re using / likely to use):

Work hard to keep them up here!

Bulk storage down here.

Slide 34

Move this up on
demand.

Big Picture

Local secondary storage (disk)

Remote secondary storage
(tapes, Web servers / Internet)

Main memory
(DRAM)

Cache(s)
(SRAM)

Flash SSD / Local network

Registers

Faster than memory. (On-chip hardware)

Holds a subset of memory.

Faster than disk.

Holds a subset of disk.

Faster than cache.

Holds a VERY small amount.

Slide 35

Cache

• In general: a storage location that holds a subset of a
larger memory, faster to access

• CPU cache: an SRAM on-chip storage location that
holds a subset of DRAM main memory (10-50x faster
to access)

• Goal: choose the right subset, based on past locality,
to achieve our abstraction

When I say “cache”,
assume this for now.

Slide 36

Cache Basics

• CPU real estate
dedicated to cache

• Usually two levels:
– L1: smallest, fastest
– L2: larger, slower

• Same rules apply:
– L1 subset of L2

ALURegs

L2 Cache

L1

Main Memory

Memory Bus

CPU

Slide 37

Cache Basics

• CPU real estate
dedicated to cache

• Usually two levels:
– L1: smallest, fastest
– L2: larger, slower

• We’ll assume one cache
(same principles)

ALURegs

Cache

Main Memory

Memory Bus

CPU

Cache is a subset of main memory.
(Not to scale, memory much bigger!)

Slide 38

Cache Basics: Read from memory

• In parallel:
– Issue read to memory
– Check cache

ALURegs

Cache

Main Memory

Memory Bus

CPU

In cache?

Request data

Slide 39

Cache Basics: Read from memory

• In parallel:
– Issue read to memory
– Check cache

• Data in cache (hit):
– Good, send to register
– Cancel/ignore memory

ALURegs

Cache

Main Memory

Memory Bus

CPU

In cache?

Slide 40

Cache Basics: Read from memory

• In parallel:
– Issue read to memory
– Check cache

• Data in cache (hit):
– Good, send to register
– Cancel/ignore memory

• Data not in cache (miss):
1. Load cache from memory

(might need to evict data)
2. Send to register

ALURegs

Cache

Main Memory

Memory Bus

CPU

In cache?

1.
(~200 cycles)

2.

Slide 41

Cache Basics: Write to memory

• Assume data already cached
– Otherwise, bring it in like read

1. Update cached copy.

2. Update memory?

ALURegs

Cache

Main Memory

Memory Bus

CPU

Data

Slide 42

When should we copy the written data from
cache to memory? Why?

A. Immediately update the data in memory when we
update the cache.

B. Update the data in memory when we evict the data
from the cache.

C. Update the data in memory if the data is needed
elsewhere (e.g., another core).

D. Update the data in memory at some other time.
(When?)

Slide 43

When should we copy the written data from
cache to memory? Why?

A. Immediately update the data in memory when we
update the cache. (“Write-through”)

B. Update the data in memory when we evict the data
from the cache. (“Write-back”)

C. Update the data in memory if the data is needed
elsewhere (e.g., another core).

D. Update the data in memory at some other time.
(When?)

Slide 44

Cache Basics: Write to memory

• Both options (write-through, write-back) viable

• write-though: write to memory immediately
– simpler, accesses memory more often (slower)

• write-back: only write to memory on eviction
– complex (cache inconsistent with memory)
– potentially reduces memory accesses (faster)

Slide 45

Cache Basics: Write to memory

• Both options (write-through, write-back) viable

• write-though: write to memory immediately
– simpler, accesses memory more often (slower)

• write-back: only write to memory on eviction
– complex (cache inconsistent with memory)
– potentially reduces memory accesses (faster)

Sells better.
Servers/Desktops/Laptops Slide 46

Bonus slides: Cache Coherence
• Keeping multiple cores’

memory consistentALURegs

Cache

Main Memory

Memory Bus

CPU

ALURegs

Cache

CPU

Bonus slides: Cache Coherence

• Keeping multiple cores’
memory consistent

• If one core updates data
– Copy data directly from

one cache to the other.
– Avoid (slower) memory

• Lots of HW complexity
here. (beyond 31)

ALURegs

Cache

Main Memory

Memory Bus

CPU

ALURegs

Cache

CPU

Up next:

• Cache details

• How cache is organized
– finding data
– storing data

• How cached subset is chosen (eviction)

Slide 49

Abstraction Goal

• Reality: There is no one type of memory to rule them
all!

• Abstraction: hide the complex/undesirable details of
reality.

• Illusion: We have the speed of SRAM, with the
capacity of disk, at reasonable cost.

The Memory Hierarchy

Local secondary storage (disk)

Larger
Slower
Cheaper
per byte

Remote secondary storage
(tapes, Web servers / Internet)

~100 M cycles to access

On
Chip

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM)

~100 cycles to access

CPU
instrs

can
directly
access

slower
than local

disk to access

Registers
1 cycle to access

Cache(s)
(SRAM)

~10’s of cycles to access

Flash SSD / Local network

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1980 1985 1990 1995 2000 2003 2005 2010

ns
 (1

0-
9

se
c)

Year

Disk seek time
Flash SSD access time
DRAM access time
SRAM access time
CPU cycle time
Effective CPU cycle time

52

Data Access Time over Years
Over time, gap widens between DRAM, disk, and CPU speeds.

Disk

DRAM

CPU

SSD

SRAM

multicore

Really want to
avoid going to
disk for data

Want to
avoid going to
Main Memory
for data

Recall

• A cache is a smaller, faster memory, that holds a
subset of a larger (slower) memory

• We take advantage of locality to keep data in cache
as often as we can!

• When accessing memory, we check cache to see if it
has the data we’re looking for.

Why we miss…

• Compulsory (cold-start) miss:
– First time we use data, load it into cache.

• Capacity miss:
– Cache is too small to store all the data we’re using.

• Conflict miss:
– To bring in new data to the cache, we evicted other

data that we’re still using.

Cache Design

• Lot’s of characteristics to consider:
– Where should data be stored in the cache?

Main Memory Main Memory

Cache Cache

Cache Design

• Lot’s of characteristics to consider:
– Where should data be stored in the cache?
– What size data chunks should we store? (block size)

Main Memory Main Memory

Cache Cache

Cache Design

• Lot’s of characteristics to consider:
– Where should data be stored in the cache?
– What size data chunks should we store? (block size)

• Goals:
– Maximize hit rate
– Maximize (temporal & spatial) locality benefits
– Reduce cost/complexity of design

Suppose the CPU asks for data, it’s not in
cache.We need to move in into cache from
memory. Where in the cache should it be
allowed to go?

A. In exactly one place.

B. In a few places.

C. In most places, but not all.

D. Anywhere in the cache.

ALURegs

Cache

Main Memory

Memory Bus

CPU

? ?

?

A larger block size (caching memory in larger
chunks) is likely to exhibit…

A. Better temporal locality

B. Better spatial locality

C. Fewer misses (better hit rate)

D. More misses (worse hit rate)

E. More than one of the above. (Which?)

Block Size Implications
• Small blocks
– Room for more blocks
– Fewer conflict misses

• Large blocks
– Fewer trips to memory
– Longer transfer time
– Fewer cold-start misses

Main Memory Main Memory

Cache Cache

Trade-offs

• There is no single best design for all purposes!

• Common systems question: which point in the design
space should we choose?

• Given a particular scenario:
– Analyze needs
– Choose design that fits the bill

Real CPUs

• Goals: general purpose processing
– balance needs of many use cases
– middle of the road: jack of all trades, master of none

• Some associativity, medium size blocks:
– 8-way associative (memory in one of eight places)
– 16 or 32 or 64-byte blocks

What should we use to determine whether or
not data is in the cache?

A. The memory address of the data.

B. The value of the data.

C. The size of the data.

D. Some other aspect of the data.

What should we use to determine whether or
not data is in the cache?

A. The memory address of the data.
– Memory address is how we identify the data.

B. The value of the data.
– If we knew this, we wouldn’t be looking for it!

C. The size of the data.

D. Some other aspect of the data.

Recall: Memory Reads

CPU places address A on the memory bus.
Load operation: movl (A), %eax

Memory Module Slots

ALU

Register
Register
Register
Register

CPU

Memory Bus

CPU Cache

A

Recall: Memory Reads
Memory retrieves value and sends it across bus.

CPU reads value from the bus, and copies it into register
%eax, a copy also goes into the on-chip cache memory.

Memory Module Slots

ALU

Register
Register
Register
Register

CPU

Memory Bus

CPU Cache

Value

Value

Memory Address Tells Us…

• Is the block containing the byte(s) you want already
in the cache?

• If not, where should we put that block?
– Do we need to kick out (“evict”) another block?

• Which byte(s) within the block do you want?

Memory Addresses

• Like everything else: series of bits (32 or 64)

• Keep in mind:
– N bits gives us 2N unique values.

• 32-bit address:
– 10110001011100101101010001010110

Divide into regions, each with distinct meaning.

A. In exactly one place. (“Direct-mapped”)
– Every location in memory is directly mapped to one

place in the cache. Easy to find data.

B. In a few places. (“Set associative”)
– A memory location can be mapped to (2, 4, 8)

locations in the cache. Middle ground.

C. In most places, but not all.

D. Anywhere in the cache. (“Fully associative”)
– No restrictions on where memory can be placed in the

cache. Fewer conflict misses, more searching.

Direct-Mapped

• One place data can be.

• Example: let’s assume some parameters:
– 1024 cache locations (every block mapped to one)
– Block size of 8 bytes

Direct-Mapped

Line V D Tag Data (8 Bytes)
0
1

2

3
4

… …
1020

1021
1022

1023

Metadata

Cache Metadata

• Valid bit: is the entry valid?
– If set: data is correct, use it if we ‘hit’ in cache
– If not set: ignore ‘hits’, the data is garbage

• Dirty bit: has the data been written?
– Used by write-back caches
– If set, need to update memory before eviction

Direct-Mapped

• Address division:
– Identify byte in block

• How many bits?

– Identify which row (line)
• How many bits?

Line V D Tag Data (8 Bytes)
0
1

2

3
4

… …
1020

1021
1022

1023

Direct-Mapped

• Address division:
– Identify byte in block

• How many bits? 3

– Identify which row (line)
• How many bits? 10

Line V D Tag Data (8 Bytes)
0
1

2

3
4

… …
1020

1021
1022

1023

Direct-Mapped

• Address division: Line V D Tag Data (8 Bytes)
0
1

2

3
4

… …
1020

1021
1022

1023

Index:
Which line (row) should we check?
Where could data be?

Tag (19 bits) Index (10 bits) Byte offset (3 bits)

Direct-Mapped

• Address division: Line V D Tag Data (8 Bytes)
0
1

2

3
4

… …
1020

1021
1022

1023

Index:
Which line (row) should we check?
Where could data be?

Tag (19 bits) Index (10 bits) Byte offset (3 bits)

4

Direct-Mapped

• Address division: Line V D Tag Data (8 Bytes)
0

1

2

3

4 1 4217

… …

1020

1021

1022

1023

In parallel, check:

Tag:
Does the cache hold the data we’re
looking for, or some other block?

Valid bit:
If entry is not valid, don’t trust garbage in
that line (row).

Tag (19 bits) Index (10 bits) Byte offset (3 bits)

4217 4

If tag doesn’t match,
or line is invalid, it’s a miss!

Direct-Mapped

• Address division: Line V D Tag Data (8 Bytes)
0
1

2

3
4 1 4217

… …
1020

1021
1022

1023

Byte offset tells us which subset of block
to retrieve.

Tag (19 bits) Index (10 bits) Byte offset (3 bits)

4217 4

0 1 2 3 4 5 6 7

Direct-Mapped

• Address division: Line V D Tag Data (8 Bytes)
0
1

2

3
4 1 4217

… …
1020

1021
1022

1023

Byte offset tells us which subset of block
to retrieve.

Tag (19 bits) Index (10 bits) Byte offset (3 bits)

4217 4 2

0 1 2 3 4 5 6 7

V D Tag Data

…

=

Tag Index Byte offset

0: miss
1: hit

Select Byte(s)

Data

Input: Memory Address

Direct-Mapped Example

• Suppose our addresses are 16 bits long.

• Our cache has 16 entries, block size of 16 bytes
– 4 bits in address for the index
– 4 bits in address for byte offset
– Remaining bits (8): tag

Direct-Mapped Example

• Let’s say we access
memory at address:
– 0110101100110100

• Step 1:
– Partition address into

tag, index, offset

Line V D Tag Data (16 Bytes)

0

1

2

3

4

5

…

15

Direct-Mapped Example

• Let’s say we access
memory at address:
– 01101011 0011 0100

• Step 1:
– Partition address into

tag, index, offset

Line V D Tag Data (16 Bytes)

0

1

2

3

4

5

…

15

Direct-Mapped Example

• Let’s say we access
memory at address:
– 01101011 0011 0100

• Step 2:
– Use index to find line

(row)
– 0011 -> 3

Line V D Tag Data (16 Bytes)

0

1

2

3

4

5

…

15

Line V D Tag Data (16 Bytes)

0

1

2

3

4

5

…

15

Direct-Mapped Example

• Let’s say we access
memory at address:
– 01101011 0011 0100

• Step 2:
– Use index to find line

(row)
– 0011 -> 3

Line V D Tag Data (16 Bytes)

0

1

2

3

4

5

…

15

Direct-Mapped Example

• Let’s say we access
memory at address:
– 01101011 0011 0100

• Note:
– ANY address with 0011

(3) as the middle four
index bits will map to this
cache line.

– e.g. 11111111 0011 0000

So, which data is here?

Data from address
0110101100110100
OR
1111111100110000?

Use tag to store high-order bits.
Let’s us determine which data is
here! (many addresses map here)

Line V D Tag Data (16 Bytes)

0

1

2

3 01101011

4

5

…

15

Direct-Mapped Example

• Let’s say we access
memory at address:
– 01101011 0011 0100

• Step 3:
– Check the tag

– Is it 01101011 (hit)?

– Something else (miss)?

– (Must also ensure valid)

Eviction

• If we don’t find what we’re looking for (miss), we need to
bring in the data from memory.

• Make room by kicking something out.
– If line to be evicted is dirty, write it to memory first.

• Another important systems distinction:
– Mechanism: An ability or feature of the system.

What you can do.
– Policy: Governs the decisions making for using the

mechanism. What you should do.

Eviction

• For direct-mapped cache:
– Mechanism: overwrite bits in cache line, updating

• Valid bit
• Tag
• Data

– Policy: not many options for direct-mapped
• Overwrite at the only location it could be!

Eviction: Direct-Mapped

• Address division: Line V D Tag Data (8 Bytes)
0

1

2

3

4

… …

1020 1 0 1323 57883

1021

1022

1023

Find line:

Tag doesn’t match, bring in from memory.

If dirty, write back first!

Tag (19 bits) Index (10 bits) Byte offset (3 bits)

3941 1020

Eviction: Direct-Mapped

• Address division: Line V D Tag Data (8 Bytes)
0
1

2

3
4

… …
1020 1 0 1323 57883

1021
1022

1023

Tag (19 bits) Index (10 bits) Byte offset (3 bits)

3941 1020

Main Memory

1. Send address to
read main memory.

Eviction: Direct-Mapped

• Address division: Line V D Tag Data (8 Bytes)
0
1

2

3
4

… …
1020 1 0 3941 92

1021
1022

1023

Tag (19 bits) Index (10 bits) Byte offset (3 bits)

3941 1020

Main Memory

1. Send address to
read main memory.

2. Copy data from memory.
Update tag.

Suppose we had 8-bit addresses, a
cache with 8 lines, and a block size of 4
bytes.
• How many bits would we use for:
– Tag?
– Index?
– Offset?

How would the cache change if we performed
the following memory operations?

Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01110000 (Value: 7)
Read 10101010 (Value: 12)
Write 01101100 (Value: 2)

Line V D Tag Data (4 Bytes)

0
1 0 111 17

1
1 0 011 9

2
0 0 101 15

3
1 1 001 8

4
1 0 011 4

5
0 0 111 6

6
0 0 101 32

7
1 0 110 3

Memory address

How would the cache change if we performed
the following memory operations?

Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01110000 (Value: 7)
Read 10101010 (Value: 12)
Write 01101100 (Value: 2)

Line V D Tag Data (4 Bytes)

0
1 0 111 17

1
1 0 011 010 9 5

2
0 0 101 15

3
1 1 001 8

4
1 0 011 4

5
0 0 111 6

6
0 0 101 32

7
1 0 110 3

Memory address

How would the cache change if we performed
the following memory operations?

Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01110000 (Value: 7)
Read 10101010 (Value: 12)
Write 01101100 (Value: 2)

Line V D Tag Data (4 Bytes)

0
1 0 111 17

1
1 0 011 010 9 5

2
0 0 101 15

3
1 1 001 8

4
1 0 011 4

5
0 0 111 6

6
0 0 101 32

7
1 0 110 3

Memory address

No change necessary.

How would the cache change if we performed
the following memory operations?

Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01110000 (Value: 7)
Read 10101010 (Value: 12)
Write 01101100 (Value: 2)

Line V D Tag Data (4 Bytes)

0
1 0 111 17

1
1 0 011 010 9 5

2
0 0 101 15

3
1 1 001 8

4
1 0

1
011 4 7

5
0 0 111 6

6
0 0 101 32

7
1 0 110 3

Memory address

How would the cache change if we performed
the following memory operations?

Read 01000100 (Value: 5)

Read 11100010 (Value: 17)

Write 01110000 (Value: 7)

Read 10101010 (Value: 12)

Write 01101100 (Value: 2)

Line V D Tag Data (4 Bytes)

0
1 0 111 17

1
1 0 011 010 9 5

2
0
1

0 101 101 15 12

3
1 1 001 8

4
1 0

1
011 4 7

5
0 0 111 6

6
0 0 101 32

7
1 0 110 3

Memory address

Note: tag happened to
match, but line was invalid.

How would the cache change if we performed
the following memory operations?

Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01110000 (Value: 7)
Read 10101010 (Value: 12)
Write 01101100 (Value: 2)

Line V D Tag Data (4 Bytes)

0
1 0 111 17

1
1 0 011 010 9 5

2
0
1

0 101 101 15 12

3
1 1

1
001 011 8 2

4
1 0

1
011 4 7

5
0 0 111 6

6
0 0 101 32

7
1 0 110 3

Memory address

1. Write dirty line to memory.
2. Load new value, set it to 2,

mark it dirty (write).

Associativity

• Problem: suppose we’re only using a small amount of
data (e.g., 8 bytes, 4-byte block size)

• Bad luck: (both) blocks map to same cache line
– Constantly evicting one another

– Rest of cache is going unused!

• Associativity: allow a set blocks to be stored at the
same index. Goal: reduce conflict misses.

Comparison

Direct-mapped
• Tag tells you if you found

the correct data.
• Offset specifies which byte

within block.
• Middle bits (index) tell you

which 1 line to check.

• (+) Low complexity, fast.
• (-) Conflict misses.

N-way set associative
• Tag tells you if you found

the correct data.
• Offset specifies which byte

within block.
• Middle bits (set) tell you

which N lines to check.

• (+) Fewer conflict misses.
• (-) More complex, slower,

consumes more power.

Comparison: 1024 Lines
(For the same cache size, in bytes.)

Direct-mapped
• 1024 indices (10 bits)

2-way set associative
• 512 sets (9 bits)

– Tag slightly (1 bit) larger.
V D Tag Data (8 Bytes)

…

Set # V D Tag Data (8 Bytes)
0
1

2
3

4

… …
508

509
510

511

2-Way Set Associative

V D Tag Data (8 Bytes)

1 0 3941

…

Set # V D Tag Data (8 Bytes)
0
1

2

3
4 1 1 4063

… …
508

509
510

511

Tag (20 bits) Set (9 bits) Byte offset (3 bits)

3941 4
Same capacity as previous example:
1024 rows with 1 entry vs. 512 rows with 2 entries

2-Way Set Associative

V D Tag Data (8 Bytes)

1 0 3941

…

Set # V D Tag Data (8 Bytes)
0
1

2

3
4 1 1 4063

… …
508

509
510

511

Tag (20 bits) Set (9 bits) Byte offset (3 bits)

3941 4

Check all locations in the set, in parallel.

2-Way Set Associative

V D Tag Data (8 Bytes)

1 0 3941

…

Set # V D Tag Data (8 Bytes)
0
1

2

3
4 1 1 4063

… …
508

509
510

511

Tag (20 bits) Set (9 bits) Byte offset (3 bits)

3941 4

0 1 2 3 4 5 6 70 1 2 3 4 5 6 7

Multiplexer Select correct value.

4-Way Set Associative Cache

Clearly, more
complexity here!

Eviction

• Mechanism is the same…
– Overwrite bits in cache line: update tag, valid, data

• Policy: choose which line in the set to evict
– Pick a random line in set
– Choose an invalid line first
– Choose the least recently used block

• Has exhibited the least locality, kick it out!
Common combo
in practice.

Least Recently Used (LRU)

• Intuition: if it hasn’t been used in a while, we have
no reason to believe it will be used soon.

• Need extra state to keep track of LRU info.

V D Tag Data (8 Bytes)

1 0 3941

…

Set # LRU V D Tag Data (8 Bytes)
0 0

1 1
2 1

3 0
4 1 1 1 4063

… …

Least Recently Used (LRU)

• Intuition: if it hasn’t been used in a while, we have
no reason to believe it will be used soon.

• Need extra state to keep track of LRU info.

• For perfect LRU info:
– 2-way: 1 bit

– 4-way: 8 bits

– N-way: N * log2 N bits

Another reason why associativity
often maxes out at 8 or 16.

These are metadata bits, not
“useful” program data storage.

(Approximations make it not
quite as bad.)

How would the cache change if we performed
the following memory operations? (2-way set)
Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01100100 (Value: 7)
Read 01000110 (Value: 5)
Write 01100000 (Value: 2)

V D Tag Data (4 Bytes)
1 0 001 17

1 0 010 5
… …

Set # LRU V D Tag Data (4 Bytes)
0 1 0 0 111 4

1 0 1 1 111 9
2 … …

3
4

5

6
7

LRU of 0 means the left line in
the set was least recently used.
1 means the right line was used
least recently.

Cache Conscious Programming

• Knowing about caching and designing code around it
can significantly effect performance

(ex) 2D array accesses

Algorithmically, both O(N * M).

Is one faster than the other?

for(i=0; i < N; i++) {
for(j=0; j< M; j++) {

sum += arr[i][j];
}}

for(j=0; j < M; j++) {
for(i=0; i< N; i++) {

sum += arr[i][j];
}}

Cache Conscious Programming

• Knowing about caching and designing code around it
can significantly effect performance

(ex) 2D array accesses

Algorithmically, both O(N * M).

Is one faster than the other?

for(i=0; i < N; i++) {
for(j=0; j< M; j++) {

sum += arr[i][j];
}}

for(j=0; j < M; j++) {
for(i=0; i< N; i++) {

sum += arr[i][j];
}}

A. is faster. B. is faster.

C. Both would exhibit
roughly equal performance.

Cache Conscious Programming

The first nested loop is more efficient if the cache block size
is larger than a single array bucket
(for arrays of basic C types, it will be).

(ex) 1 miss every 4 buckets vs. 1 miss every bucket

for(i=0; i < N; i++) {
for(j=0; j< M; j++) {

sum += arr[i][j];
}}

for(j=0; j < M; j++) {
for(i=0; i< N; i++) {

sum += arr[i][j];
}}

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

. . .

.

.

.

1 . . .

2

3

4

.

.

.

Program Efficiency and Memory
• Be aware of how your program accesses data
– Sequentially, in strides of size X, randomly, …
– How data is laid out in memory

• Will allow you to structure your code to run much
more efficiently based on how it accesses its data

• Don’t go nuts…
– Optimize the most important parts, ignore the rest
– “Premature optimization is the root of all evil.” -Knuth

Amdahl’s Law
Idea: an optimization can improve total runtime at
most by the fraction it contributes to total runtime

If program takes 100 secs to run, and you optimize a
portion of the code that accounts for 2% of the runtime,
the best your optimization can do is improve the runtime
by 2 secs.

Amdahl’s Law tells us to focus our optimization efforts
on the code that matters:

Speed-up what is accounting for the largest portion of
runtime to get the largest benefit. And, don’t waste
time on the small stuff.

Up Next:

• Operating systems, Processes
• Virtual Memory

