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Reading Quiz




oday

* Accessing things via an offset

— Arrays, Structs, Unions

* How complex structures are stored in memory
— Multi-dimensional arrays & Structs



So far: Primitive Data Types

 We've been using ints, floats, chars, pointers

* Simple to place these in memory:
— They have an unambiguous size
— They fit inside a register*

— The hardware can operate on them directly

(*There are special registers for floats and doubles that
use the IEEE floating point format.)



Composite Data Types

« Combination of one or more existing types into a
new type. (e.g., an array of multiple ints, or a struct)
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structs

* Treat a collection of values as a single type:

— Cis not an object oriented language, no classes

— A struct is like just the data part of a class

* Rules:
1. Define a new struct type outside of any function
2. Declare variables of the new struct type
3. Use dot notation to access the different field values

of the struct variable
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Struct Example

Suppose we want to represent a student type.

struct student {
char name[20];
int grad year;
float gpa;
}i
// Variable bob is of type struct student

struct student bob;

// Set name (string) with strecpy ()
strcpy (bob.name, “Robert Paulson”);
bob.grad year = 2019;

bob.gpa = 3.1;
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printf (“Name: %s, year: %d, GPA: %f”, bob.name,

bob.grad year, bob.gpa);



Recall: Arrays

e (C’s support for collections of values

— Array buckets store a single type of value

— Specify max capacity (num buckets) when you declare an

array variable (single memory chunk)
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Recall: Arrays

Static Allocation: Dynamic Allocation:

<type> <var name>[<num buckets>] <type> <var name>[<num buckets>]
int arr[5]; int * arr =

// an array of 5 integers malloc(sizeof(int)*5);

// an array of 5 integers
float rates[40];

// an array of 40 floats //initialize array

//free array

free(arr);
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Recall: Pointers as Arrays

int *1ptr = NULL;

iptr = malloc (4 * sizeof(int));

S EEEE— iptr[O]
iptr[1]
iptr[2]
iptr[3]

Slide 17



Pointers as Arrays

int *iptr = NULL;

iptr = malloc (4 * sizeof (1int));

1. Start from the base of iptr.

iptr([2] = 7; iptr[O]
iptr[1]

iptr[2]
iptr[3]
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Pointers as Arrays

int *iptr = NULL;

iptr = malloc(4 * sizeof(int));

iptz@ = /; 2.Skip forward by iptr(0]
the size of two ints. iptr[1]
iptr[2]

iptr[3]
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Pointers as Arrays

int *iptr = NULL;

iptr = malloc (4 * sizeof (1int));

iptr (2] = 7; iptr[O]
iptr[1]

3. Treat the result as an int.
(Access the memory location
like a typical dereference.)

iptr[3]
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Pointer Arithmetic

* Addition and subtraction work on pointers.

* Cautomatically increments by the size of the type
that’s pointed to.
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What is the memory address stored in iptr2?
int *1ptr = NULL;
iptr = malloc(4 * sizeof(int));

int *1ptr2 = 1iptr + 3;

. Mem. address in iptr + 12 bytes

A

B. Mem. address in iptr + 3 bytes
C. Mem. address in iptr + 4 bytes
D

. None of the above
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Pointer Arithmetic

int *1ptr = NULL;

iptr = malloc(4 * sizeof(int));

15t integer
24 integer
3" integer

4t integer
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Pointer Arithmetic

* Addition and subtraction work on pointers.

 Cautomatically increments by the size of the type
that’s pointed to.
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While Loop in C

iptr = malloc(..);
s = 0 W
while (1 < 4) {

sum += *1iptr;

iptr += 1; iptr[O]

i 4= 1 iptr[1]

' iptr[2]

}

moves +1 by size iptrl3]
of the data type!
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Let's translate the while loop to assembly

Assume %ecx = base address
of array

iptr = malloc(..)} <2ea3x = sum
sum = 0; $edx = loop index
while (i < 4) {
sum += *1ptr; movl $0 eax
iptr += 1; movl $0 edx
1 += 1; loop:
J [£f1]1]l instructions here]

cmpl $5, %edx

Jne loop
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While Loop in C

iptr = malloc(..);

s = 0 e

while (i < 4) {

sum += *1iptr;

iptr

:|.ptr += 1,’ 1st B iptr[0]
2nd ;

1 4= 1; = iptr[1]
3rd B iptr[2]

iptr[3]

Reminder: addition on a pointer advances by

that many of the type (e.g., ints), not bytes. Slide 30



Pointer Manipulation: Necessary?

* Problem: iptris changing!

e What if we wanted to free it?

iptr = malloc(..);
sum = 0: cannot call free on iptr
while (i < 4) { since it no longer
sum += *iptr; references the base
iptr += 1; address of the array!

1 += 1;
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Pointer Manipulation: Necessary?

* Problem: iptris changing!
 What if we wanted to free it?

 What if we wanted something like this:

iptr = malloc(..);

sum = 0;

while (i < 4) {
sum += iptr[0] + iptr[i];
iptr—+=1

1 += 1; \
} Changing the pointer would be

really inconvenient now!
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Base + Offset

 We know that arrays act as a pointer to the first
element. For bucket [N], we just skip forward N.

int val[5];

val[O] val[1] wval[2] wval[3] vall[4]

* “We're goofy computer scientists who count starting
from zero.”



Base + Offset

 We know that arrays act as a pointer to the first
element. For bucket [N], we just skip forward N.

int val[5];

val[O] val[1] wval[2] wval[3] vall[4]

o 4

fromzero”



Base + Offset

 We know that arrays act as a pointer to the first
element. For bucket [N], we just skip forward N.

int val[5];

|

val[0] val[1] val[2] val[3] val[4]

|

Base + Offset (stuff in [])

This is why we start counting from zero!

Skipping forward with an offset of zero ([0]) gives us the first bucket...
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Which expression would compute the
address of iptr[3]7?

A. 0x0824 +3*4

0x0824 +4 * 4

0x0824 + OxC S omoa

0x0828:

. More than one (which?)
0x082C:

0x0830:
None of these




Indexed Addressing Mode

We want to express accesses like iptr[N], where iptr
doesn’t change —it’s a base.

Displacement mode works, if we know which offset to use
at compile time:

— Variables on the stack: -4(%ebp)
— Function arguments: 8(%ebp)
— Accessing [5] of an integer array: 20(%base_register)

If we only know at run time?
— How do we express i(%ecx)?



Indexed Addressing Mode

e General form:

displacement(%base, %index, scale)

* Translation: Access the memory at address...

— base + (index * scale) + displacement

* Rules:
— Displacement can be any 1, 2, or 4-byte value
— Scale can be 1, 2, 4, or 8.
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Example

%ecx | 0x0824
%edx | 2

Suppose i is at %ebp - 8, and equals 2.

Registers:

User says:

iptr(i] = 9; S e

Translates to:

movl -8 (%ebp), %edx 0x0824:  iptr[0]
0x0828: iptr[1]
0x082C: iptr[2]
0x0830: iptr[3]
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Suppose i is at %ebp - 8, and equals 2.

User says:
iptr[1i] = 9;

Translates to:
movl -8 (%ebp),

Example

$edx

%ecx

0x0824

Registers:

%edx

2

0x0824:
0x0828:
0x082C:
0x0830:

iptr[O]
iptr[1]
iptr[2]
iptr[3]
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Example

Suppose i is at %ebp - 8, and equals 2.
%ecx | 0x0824

%edx | 2

Registers:

User says:

iptr(i] = 9; S e

Translates to:

movl -8 (%ebp), %$edx L ER
movl $9, (%ecx, %edx, 4) DS, iptr(1]
0x082C: iptr[2]
0x0830: iptr[3]
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Example

Suppose i is at %ebp - 8, and equals 2.

User says:

%ecx

0x0824

Registers:

%edx

2

iptr(i] = 9; S e

Translates to:
movl -8 (%ebp), %edx

movl $9, (%ecx, %edx, 4)

0x0824 + (2 * 4) + O
0x0824 + 8 = 0x082C 7

0x0824:
0x0828:

—> 0x082C:

0x0830:

iptr[O]
iptr[1]
iptr[2]
iptr[3]
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Allowed us to preserve ecx, and compute
Examp|e; an offset without changing the pointer to

the base of our array

Suppose i is at %ebp - 8, and equals 2.

User says:

%ecx

0x0824

Registers:

%edx

2

iptr(i] = 9; S e

Translates to:
movl -8 (%ebp), %edx

movl $9, (%ecx, %edx, 4)

0x0824 + (2 * 4) + O
0x0824 + 8 = 0x082C 7

0x0824:
0x0828:

—> 0x082C:

0x0830:

iptr[O]
iptr[1]
iptr[2]
iptr[3]
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What is the final state after this code”?

addl S4, %eax
movl (%eax), %eax
sall S1, %eax

mov| %edx, (%ecx, %eax, 2)

displacement(%base, %index, scale)
base + (index * scale) + displacement

(Initial state)

Registers:

Memory:

0x2464:
0x2468:
0x246C:
0x2470:
0x2474:

%eax

0x2464

%ecx

0x246C

%edx

7
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What is the final state after this code”?

addl S4, %eax (Initial state)

Registers:

movl (%eax), %eax

Memory:

0x2464

0x246C

7

sal $1, %ear ke

movl %edx, (%ecx, %eax, 2)
0x2464.

0x2468:
0x246C:
0x2470:
0x2474:
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Indexed Addressing Mode

e General form:

displacement(%base, %index, scale)

* You have seen these probably in your maze.
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wo-dimensional Arrays

 Why stop at an array of ints?
How about an array of arrays of ints?

int twodims|[3][4];
* “Give me three sets of four integers.”

* How should these be organized in memory?

Slide 57



int twodims[3][4];
1<3; 1++) A
1<4;

for (1=0;

for (7=0; J++) |

twodims[1][j] = 1+7;

twodims|[0]

twodims|[1]

twodims|[2]

[0]10]

wo-dimensional Arrays

[0][1]

[0]12]
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[0]13]

0 1 2 3
[1][0] [a][a] [3][2] [3]03]
1 2 3 4
[2][0] [2][3] [2][2] [2]I3]
2 3 4 5




int twodims[3][4];

for (1=0; 1<3;

for (3=0;

1<4;

i++) |

J++)

twodims[1] []J] =

twodims|[0]

twodims|[1]

twodims|[2]

wo-dimensional Arrays: Matrix

{
i+9;
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Memory Layout

e Matrix: 3 rows, 4 columns

0 1 2 3

2 3 4 5

Row Major Order:
all Row 0 buckets,
followed by

all Row 1 buckets

O0x£260
Oxf264
O0x£268
Oxf26c
O0x£270
Ox£274
O0x£278
Oxf27c
0x£280
Ox£284
O0x£288
Oxf28c

Ul WINPT WIDNDIERP]IWIDN]ER] O

twodim
twodim
twodim
twodim
twodim
twodim
twodim
twodim
twodim
twodim

twodim

[0]
[0]
[0]
[0]
[1]
[1]
[1]
[1]
[2]
[2]
[2]
[2]

twodim

w N PO WD RO W NN O
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Memory Layout

e Matrix: 3 rows, 4 columns

0 3
1 2 3
2 3 4 5

twodim[1] [3]:

base addr + row offset + col offset

twodim +

Oxf260 + 16 + 12

1*ROWSIZE*4 + 3*4

Oxf27c

O0x£260
Oxf264
O0x£268
Oxf26c
O0x£270
Ox£274
O0x£278
Oxf27c
0x£280
Ox£284
O0x£288
Oxf28c

Ul WINPT WIDNDIERP]IWIDN]ER] O

twodim
twodim
twodim
twodim
twodim
twodim
twodim
twodim
twodim
twodim

twodim

[0]
[0]
[0]
[0]
[1]
[1]
[1]
[1]
[2]
[2]
[2]
[2]

twodim

w N PO WD RO W NN O
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Memory Layout

e Matrix: 3 rows, 4 columns

0 3
1 2 3
2 3 4 5

twodim[1] [3]:

base addr + row offset + col offset

twodim +

Oxf260 + 16 + 12

1*ROWSIZE*4 + 3*4

Oxf27c

O0x£260
Oxf264
O0x£268
Oxf26c
0x£270
Ox£274
O0x£278
Oxf27c
0x£280
Ox£284
O0x£288
Oxf28c

Ul WINPT WIDNDIERP]IWIDN]ER] O

twodim
twodim
twodim
twodim
twodim
twodim
twodim
twodim
twodim
twodim

twodim

[0]
[0]
[0]
[0]
[1]
[1]
[1]
[1]
[2]
[2]
[2]
[2]

twodim

w N PO WD RO W NN O
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Memory Layout

e Matrix: 3 rows, 4 columns

0 3 0x£260 0 |twodim[0] [0]

1 2 3 0x£264 | 1 |twodim([0][1]

2 4 5 0xf268 | 2 |twodim[0][2]
Oxf26c 3 twodim[0] [3]

twodim[1] [3]: 0x£270 1 twodim[1] [0]
0x£274 2 | twodim[1] [1]

base addr + row offset + col offset 0x£278 3 fwodim[1] [2]
0xf27c| 4 |twodim[1][3]

twodim + 1*ROWSIZE*4 + 3*4 0% £280 > fwodim[2] [0
0x£260 + 16 + 12 = Oxf27c oot 3 |rwodimlzlil]
Oxf288 4 twodim[2] [2]

Oxf28c 5 twodim[2] [3]



It we declared int matrix[5][3];,
and the base of matrix is O0x3420, what is
the address of matrix[3][2]7

A. 0x3438 base addr + row offset + col offset
B. 0x3440 or
C. 0x3444 base addr
+ num cols * data size
D. 0x344C + col offset
E. None of these
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