CS 31: Introduction to Computer Systems

13-14: Arrays and Pointers
March 5

JALRLL 1 : :::::::
SWARTHMORE COLLEGE

Reading Quiz

oday

* Accessing things via an offset

— Arrays, Structs, Unions

* How complex structures are stored in memory
— Multi-dimensional arrays & Structs

So far: Primitive Data Types

 We've been using ints, floats, chars, pointers

* Simple to place these in memory:
— They have an unambiguous size
— They fit inside a register*

— The hardware can operate on them directly

(*There are special registers for floats and doubles that
use the IEEE floating point format.)

Composite Data Types

« Combination of one or more existing types into a
new type. (e.g., an array of multiple ints, or a struct)

Slide 12

structs

* Treat a collection of values as a single type:

— Cis not an object oriented language, no classes

— A struct is like just the data part of a class

* Rules:
1. Define a new struct type outside of any function
2. Declare variables of the new struct type
3. Use dot notation to access the different field values

of the struct variable

Slide 13

Struct Example

Suppose we want to represent a student type.

struct student {
char name[20];
int grad year;
float gpa;
}i
// Variable bob is of type struct student

struct student bob;

// Set name (string) with strecpy ()
strcpy (bob.name, “Robert Paulson”);
bob.grad year = 2019;

bob.gpa = 3.1;

Slide 14

printf (“Name: %s, year: %d, GPA: %f”, bob.name,

bob.grad year, bob.gpa);

Recall: Arrays

e (C’s support for collections of values

— Array buckets store a single type of value

— Specify max capacity (num buckets) when you declare an

array variable (single memory chunk)

Slide 15

Recall: Arrays

Static Allocation: Dynamic Allocation:

<type> <var name>[<num buckets>] <type> <var name>[<num buckets>]
int arr[5]; int * arr =

// an array of 5 integers malloc(sizeof(int)*5);

// an array of 5 integers
float rates[40];

// an array of 40 floats //initialize array

//free array

free(arr);

Slide 16

Recall: Pointers as Arrays

int *1ptr = NULL;

iptr = malloc (4 * sizeof(int));

S EEEE— iptr[O]
iptr[1]
iptr[2]
iptr[3]

Slide 17

Pointers as Arrays

int *iptr = NULL;

iptr = malloc (4 * sizeof (1int));

1. Start from the base of iptr.

iptr([2] = 7; iptr[O]
iptr[1]

iptr[2]
iptr[3]

Slide 18

Pointers as Arrays

int *iptr = NULL;

iptr = malloc(4 * sizeof(int));

iptz@ = /; 2.Skip forward by iptr(0]
the size of two ints. iptr[1]
iptr[2]

iptr[3]

Slide 19

Pointers as Arrays

int *iptr = NULL;

iptr = malloc (4 * sizeof (1int));

iptr (2] = 7; iptr[O]
iptr[1]

3. Treat the result as an int.
(Access the memory location
like a typical dereference.)

iptr[3]

Slide 20

Pointer Arithmetic

* Addition and subtraction work on pointers.

* Cautomatically increments by the size of the type
that’s pointed to.

Slide 21

What is the memory address stored in iptr2?
int *1ptr = NULL;
iptr = malloc(4 * sizeof(int));

int *1ptr2 = 1iptr + 3;

. Mem. address in iptr + 12 bytes

A

B. Mem. address in iptr + 3 bytes
C. Mem. address in iptr + 4 bytes
D

. None of the above

Slide 22

Pointer Arithmetic

int *1ptr = NULL;

iptr = malloc(4 * sizeof(int));

15t integer
24 integer
3" integer

4t integer

Slide 24

Pointer Arithmetic

* Addition and subtraction work on pointers.

 Cautomatically increments by the size of the type
that’s pointed to.

Slide 26

While Loop in C

iptr = malloc(..);
s = 0 W
while (1 < 4) {

sum += *1iptr;

iptr += 1; iptr[O]

i 4= 1 iptr[1]

' iptr[2]

}

moves +1 by size iptrl3]
of the data type!

Slide 27

Let's translate the while loop to assembly

Assume %ecx = base address
of array

iptr = malloc(..)} <2ea3x = sum
sum = 0; $edx = loop index
while (i < 4) {
sum += *1ptr; movl $0 eax
iptr += 1; movl $0 edx
1 += 1; loop:
J [£f1]1]l instructions here]

cmpl $5, %edx

Jne loop

Slide 28

While Loop in C

iptr = malloc(..);

s = 0 e

while (i < 4) {

sum += *1iptr;

iptr

:|.ptr += 1,’ 1st B iptr[0]
2nd ;

1 4= 1; = iptr[1]
3rd B iptr[2]

iptr[3]

Reminder: addition on a pointer advances by

that many of the type (e.g., ints), not bytes. Slide 30

Pointer Manipulation: Necessary?

* Problem: iptris changing!

e What if we wanted to free it?

iptr = malloc(..);
sum = 0: cannot call free on iptr
while (i < 4) { since it no longer
sum += *iptr; references the base
iptr += 1; address of the array!

1 += 1;

Slide 31

Pointer Manipulation: Necessary?

* Problem: iptris changing!
 What if we wanted to free it?

 What if we wanted something like this:

iptr = malloc(..);

sum = 0;

while (i < 4) {
sum += iptr[0] + iptr[i];
iptr—+=1

1 += 1; \
} Changing the pointer would be

really inconvenient now!

Slide 32

Base + Offset

 We know that arrays act as a pointer to the first
element. For bucket [N], we just skip forward N.

int val[5];

val[O] val[1] wval[2] wval[3] vall[4]

* “We're goofy computer scientists who count starting
from zero.”

Base + Offset

 We know that arrays act as a pointer to the first
element. For bucket [N], we just skip forward N.

int val[5];

val[O] val[1] wval[2] wval[3] vall[4]

o 4

fromzero”

Base + Offset

 We know that arrays act as a pointer to the first
element. For bucket [N], we just skip forward N.

int val[5];

|

val[0] val[1] val[2] val[3] val[4]

|

Base + Offset (stuff in [])

This is why we start counting from zero!

Skipping forward with an offset of zero ([0]) gives us the first bucket...

Slide 35

Which expression would compute the
address of iptr[3]7?

A. 0x0824 +3*4

0x0824 +4 * 4

0x0824 + OxC S omoa

0x0828:

. More than one (which?)
0x082C:

0x0830:
None of these

Indexed Addressing Mode

We want to express accesses like iptr[N], where iptr
doesn’t change —it’s a base.

Displacement mode works, if we know which offset to use
at compile time:

— Variables on the stack: -4(%ebp)
— Function arguments: 8(%ebp)
— Accessing [5] of an integer array: 20(%base_register)

If we only know at run time?
— How do we express i(%ecx)?

Indexed Addressing Mode

e General form:

displacement(%base, %index, scale)

* Translation: Access the memory at address...

— base + (index * scale) + displacement

* Rules:
— Displacement can be any 1, 2, or 4-byte value
— Scale can be 1, 2, 4, or 8.

Slide 40

Example

%ecx | 0x0824
%edx | 2

Suppose i is at %ebp - 8, and equals 2.

Registers:

User says:

iptr(i] = 9; S e

Translates to:

movl -8 (%ebp), %edx 0x0824: iptr[0]
0x0828: iptr[1]
0x082C: iptr[2]
0x0830: iptr[3]

Slide 41

Suppose i is at %ebp - 8, and equals 2.

User says:
iptr[1i] = 9;

Translates to:
movl -8 (%ebp),

Example

$edx

%ecx

0x0824

Registers:

%edx

2

0x0824:
0x0828:
0x082C:
0x0830:

iptr[O]
iptr[1]
iptr[2]
iptr[3]

Slide 42

Example

Suppose i is at %ebp - 8, and equals 2.
%ecx | 0x0824

%edx | 2

Registers:

User says:

iptr(i] = 9; S e

Translates to:

movl -8 (%ebp), %$edx L ER
movl $9, (%ecx, %edx, 4) DS, iptr(1]
0x082C: iptr[2]
0x0830: iptr[3]

Slide 43

Example

Suppose i is at %ebp - 8, and equals 2.

User says:

%ecx

0x0824

Registers:

%edx

2

iptr(i] = 9; S e

Translates to:
movl -8 (%ebp), %edx

movl $9, (%ecx, %edx, 4)

0x0824 + (2 * 4) + O
0x0824 + 8 = 0x082C 7

0x0824:
0x0828:

—> 0x082C:

0x0830:

iptr[O]
iptr[1]
iptr[2]
iptr[3]

Slide 44

Allowed us to preserve ecx, and compute
Examp|e; an offset without changing the pointer to

the base of our array

Suppose i is at %ebp - 8, and equals 2.

User says:

%ecx

0x0824

Registers:

%edx

2

iptr(i] = 9; S e

Translates to:
movl -8 (%ebp), %edx

movl $9, (%ecx, %edx, 4)

0x0824 + (2 * 4) + O
0x0824 + 8 = 0x082C 7

0x0824:
0x0828:

—> 0x082C:

0x0830:

iptr[O]
iptr[1]
iptr[2]
iptr[3]

Slide 45

What is the final state after this code”?

addl S4, %eax
movl (%eax), %eax
sall S1, %eax

mov| %edx, (%ecx, %eax, 2)

displacement(%base, %index, scale)
base + (index * scale) + displacement

(Initial state)

Registers:

Memory:

0x2464:
0x2468:
0x246C:
0x2470:
0x2474:

%eax

0x2464

%ecx

0x246C

%edx

7

Slide 46

What is the final state after this code”?

addl S4, %eax (Initial state)

Registers:

movl (%eax), %eax

Memory:

0x2464

0x246C

7

sal $1, %ear ke

movl %edx, (%ecx, %eax, 2)
0x2464.

0x2468:
0x246C:
0x2470:
0x2474:

Slide 47

Indexed Addressing Mode

e General form:

displacement(%base, %index, scale)

* You have seen these probably in your maze.

Slide 56

wo-dimensional Arrays

 Why stop at an array of ints?
How about an array of arrays of ints?

int twodims|[3][4];
* “Give me three sets of four integers.”

* How should these be organized in memory?

Slide 57

int twodims[3][4];
1<3; 1++) A
1<4;

for (1=0;

for (7=0; J++) |

twodims[1][j] = 1+7;

twodims|[0]

twodims|[1]

twodims|[2]

[0]10]

wo-dimensional Arrays

[0][1]

[0]12]

Slide 58

[0]13]

0 1 2 3
[1][0] [a][a] [3][2] [3]03]
1 2 3 4
[2][0] [2][3] [2][2] [2]I3]
2 3 4 5

int twodims[3][4];

for (1=0; 1<3;

for (3=0;

1<4;

i++) |

J++)

twodims[1] []J] =

twodims|[0]

twodims|[1]

twodims|[2]

wo-dimensional Arrays: Matrix

{
i+9;

Slide 59

Memory Layout

e Matrix: 3 rows, 4 columns

0 1 2 3

2 3 4 5

Row Major Order:
all Row 0 buckets,
followed by

all Row 1 buckets

O0x£260
Oxf264
O0x£268
Oxf26c
O0x£270
Ox£274
O0x£278
Oxf27c
0x£280
Ox£284
O0x£288
Oxf28c

Ul WINPT WIDNDIERP]IWIDN]ER] O

twodim
twodim
twodim
twodim
twodim
twodim
twodim
twodim
twodim
twodim

twodim

[0]
[0]
[0]
[0]
[1]
[1]
[1]
[1]
[2]
[2]
[2]
[2]

twodim

w N PO WD RO W NN O

Slide 60

Memory Layout

e Matrix: 3 rows, 4 columns

0 3
1 2 3
2 3 4 5

twodim[1] [3]:

base addr + row offset + col offset

twodim +

Oxf260 + 16 + 12

1*ROWSIZE*4 + 3*4

Oxf27c

O0x£260
Oxf264
O0x£268
Oxf26c
O0x£270
Ox£274
O0x£278
Oxf27c
0x£280
Ox£284
O0x£288
Oxf28c

Ul WINPT WIDNDIERP]IWIDN]ER] O

twodim
twodim
twodim
twodim
twodim
twodim
twodim
twodim
twodim
twodim

twodim

[0]
[0]
[0]
[0]
[1]
[1]
[1]
[1]
[2]
[2]
[2]
[2]

twodim

w N PO WD RO W NN O

Slide 61

Memory Layout

e Matrix: 3 rows, 4 columns

0 3
1 2 3
2 3 4 5

twodim[1] [3]:

base addr + row offset + col offset

twodim +

Oxf260 + 16 + 12

1*ROWSIZE*4 + 3*4

Oxf27c

O0x£260
Oxf264
O0x£268
Oxf26c
0x£270
Ox£274
O0x£278
Oxf27c
0x£280
Ox£284
O0x£288
Oxf28c

Ul WINPT WIDNDIERP]IWIDN]ER] O

twodim
twodim
twodim
twodim
twodim
twodim
twodim
twodim
twodim
twodim

twodim

[0]
[0]
[0]
[0]
[1]
[1]
[1]
[1]
[2]
[2]
[2]
[2]

twodim

w N PO WD RO W NN O

Slide 62

Slide 63

Memory Layout

e Matrix: 3 rows, 4 columns

0 3 0x£260 0 |twodim[0] [0]

1 2 3 0x£264 | 1 |twodim([0][1]

2 4 5 0xf268 | 2 |twodim[0][2]
Oxf26c 3 twodim[0] [3]

twodim[1] [3]: 0x£270 1 twodim[1] [0]
0x£274 2 | twodim[1] [1]

base addr + row offset + col offset 0x£278 3 fwodim[1] [2]
0xf27c| 4 |twodim[1][3]

twodim + 1*ROWSIZE*4 + 3*4 0% £280 > fwodim[2] [0
0x£260 + 16 + 12 = Oxf27c oot 3 |rwodimlzlil]
Oxf288 4 twodim[2] [2]

Oxf28c 5 twodim[2] [3]

It we declared int matrix[5][3];,
and the base of matrix is O0x3420, what is
the address of matrix[3][2]7

A. 0x3438 base addr + row offset + col offset
B. 0x3440 or
C. 0x3444 base addr
+ num cols * data size
D. 0x344C + col offset
E. None of these

Slide 64

