
CS 31: Introduction to Computer Systems

13-14: Arrays, Pointers
March 24



Recall: Arrays
• C’s support for collections of values
– Array buckets store a single type of value

– Specify max capacity (num buckets) when you declare an 
array variable (single memory chunk)

Slide 2



Recall: Arrays

Static Allocation:

<type> <var_name>[<num buckets>]

int arr[5];  
// an array of 5 integers

float rates[40]; 
// an array of 40 floats

Slide 3

Dynamic Allocation:

<type> <var_name>[<num buckets>]

int * arr = 
malloc(sizeof(int)*5);
// an array of 5 integers

//initialize array 
//free array

free(arr);



Recall: Pointers as Arrays

Heap (or Stack)

iptr[0]

iptr[1]

iptr[2]

iptr[3]

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));

Slide 4



Pointers as Arrays

Heap

iptr[0]

iptr[1]

iptr[2]

iptr[3]

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));

iptr[2] = 7;

1. Start from the base of iptr.

Slide 5



Pointers as Arrays

Heap

iptr[0]

iptr[1]

iptr[2]

iptr[3]

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));

iptr[2] = 7;

1. Start from the base of iptr.

2. Skip forward by 
the size of two ints.

Slide 6



Pointers as Arrays

Heap

iptr[0]

iptr[1]

7

iptr[3]

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));

iptr[2] = 7;

1. Start from the base of iptr.

2. Skip forward by 
the size of two ints.

3. Treat the result as an int.
(Access the memory location
like a typical dereference.)

Slide 7



Pointer Arithmetic

• Addition and subtraction work on pointers.

• C automatically increments by the size of the type 
that’s pointed to.

Slide 8



Pointer Arithmetic

Heap

1st integer

2nd integer

3rd integer

4th integer

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));

Slide 9



Pointer Arithmetic

Heap

1st integer

2nd integer

3rd integer

4th integer

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));

int *iptr2 = iptr + 3;

Skip ahead by 3 times the size of iptr’s
type (integer, size: 4 bytes).

Slide 10



Pointer Arithmetic

• Addition and subtraction work on pointers.

• C automatically increments by the size of the type 
that’s pointed to.

Slide 11



Base + Offset

• We know that arrays act as a pointer to the first 
element.  For bucket [N], we just skip forward N.

• “We’re goofy computer scientists who count starting 
from zero.”

int val[5];

val[0] val[1] val[2] val[3] val[4]

Slide 12



Base + Offset

• We know that arrays act as a pointer to the first 
element.  For bucket [N], we just skip forward N.

• “We’re goofy computer scientists who count starting 
from zero.”

int val[5];

val[0] val[1] val[2] val[3] val[4]

Slide 13



Base + Offset

• We know that arrays act as a pointer to the first 
element.  For bucket [N], we just skip forward N.

int val[5];
val[0] val[1] val[2] val[3] val[4]

Base Offset (stuff in [])

This is why we start counting from zero!
Skipping forward with an offset of zero ([0]) gives us the first bucket… Slide 14



What is the memory address stored in iptr2?

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));
int *iptr2 = iptr + 3;

A. Mem. address in iptr + 12 bytes
B. Mem. address in iptr + 3 bytes
C. Mem. address in iptr + 4 bytes
D. None of the above

Slide 15



Which expression would compute the 
address of iptr[3]?

A. 0x0824 + 3 * 4

B. 0x0824 + 4 * 4

C. 0x0824 + 0xC

D. More than one (which?)

E. None of these

Heap

0x0824: iptr[0]

0x0828:            iptr[1]

0x082C:            iptr[2]

0x0830:            iptr[3]

Slide 16



What is the memory address stored in iptr2?

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));
int *iptr2 = iptr + 3;

A. Mem. address in iptr + 12 bytes (3 buckets of size 
int)

B. Mem. address in iptr + 3 bytes
C. Mem. address in iptr + 4 bytes
D. None of the above

Slide 17



Which expression would compute the 
address of iptr[3]?

A. 0x0824 + 3 * 4

B. 0x0824 + 4 * 4

C. 0x0824 + 0xC

D. More than one (which?)

E. None of these

Heap

0x0824: iptr[0]

0x0828:            iptr[1]

0x082C:            iptr[2]

0x0830:            iptr[3]

Slide 18



Which expression would compute the 
address of iptr[3]?

A. 0x0824 + 3 * 4 (requires an extra multiplication step)

B. 0x0824 + 4 * 4

C. 0x0824 + 0xC

D. More than one (which?)

E. None of these

Heap

0x0824: iptr[0]

0x0828:            iptr[1]

0x082C:            iptr[2]

0x0830:            iptr[3]

What if this isn’t known at compile 
time?

Slide 19



Two-dimensional Arrays

int twodims[3][4];
for(i=0; i<3; i++) {
for(j=0; j<4; j++) {

twodims[i][j] = i+j;
}

}
0 1 2 3

1 2 3 4

2 3 4 5

twodims[0]

twodims[1]

twodims[2]

[0][0] [0][1] [0][2] [0][3]

[1][0] [1][1] [1][2] [1][3]

[2][0] [2][1] [2][2] [2][3]

Slide 20



Two-dimensional Arrays: Matrix

int twodims[3][4];
for(i=0; i<3; i++) {
for(j=0; j<4; j++) {

twodims[i][j] = i+j;
}

}
0 1 2 3twodims[0]

1 2 3 4twodims[1]

2 3 4 5twodims[2]

Slide 21



Memory Layout

Matrix: 3 rows, 4 columns

0 1 2 3
1 2 3 4
2 3 4 5

0xf260 0 twodim[0][0]

0xf264 1 twodim[0][1]

0xf268 2 twodim[0][2]

0xf26c 3 twodim[0][3]

0xf270 1 twodim[1][0]

0xf274 2 twodim[1][1]

0xf278 3 twodim[1][2]

0xf27c 4 twodim[1][3]

0xf280 2 twodim[2][0]

0xf284 3 twodim[2][1]

0xf288 4 twodim[2][2]

0xf28c 5 twodim[2][3]

Row Major Order:
all Row 0 buckets,
followed by
all Row 1 buckets

Slide 22



Memory Layout
Matrix: 3 rows, 4 columns

0 1 2 3
1 2 3 4
2 3 4 5

twodim[1][3]:

Find the memory index:
[row #][col #] =  (row #) * ROWSIZE + col #

=   1 * 4 + 3 
=   7

0xf260 0 twodim[0][0]

0xf264 1 twodim[0][1]

0xf268 2 twodim[0][2]

0xf26c 3 twodim[0][3]

0xf270 1 twodim[1][0]

0xf274 2 twodim[1][1]

0xf278 3 twodim[1][2]

0xf27c 4 twodim[1][3]

0xf280 2 twodim[2][0]

0xf284 3 twodim[2][1]

0xf288 4 twodim[2][2]

0xf28c 5 twodim[2][3]

Slide 23



Memory Layout
Matrix: 3 rows, 4 columns

0 1 2 3
1 2 3 4
2 3 4 5

twodim[1][3]:

Converting mem index into a memory address:
= base_address + mem_index * sizeof(data)

base address = 0xf260 (hex) 
mem index * sizeof(data) = 7*4 = 28 (decimal)

= 1c (hex)

= 0xf260 + 1c = 0xf27c

0xf260 0 twodim[0][0]

0xf264 1 twodim[0][1]

0xf268 2 twodim[0][2]

0xf26c 3 twodim[0][3]

0xf270 1 twodim[1][0]

0xf274 2 twodim[1][1]

0xf278 3 twodim[1][2]

0xf27c 4 twodim[1][3]

0xf280 2 twodim[2][0]

0xf284 3 twodim[2][1]

0xf288 4 twodim[2][2]

0xf28c 5 twodim[2][3]

Slide 24

You do not need to convert mem 
index into an address for the lab!



Memory Layout
Matrix: 3 rows, 4 columns

0 1 2 3
1 2 3 4
2 3 4 5

twodim[1][3]:

Converting mem index into a memory address:
= base_address + mem_index * sizeof(data)

base address = 0xf260 (hex) 
mem index * sizeof(data) = 7*4 = 28 (decimal)

= 1c (hex)

= 0xf260 + 1c = 0xf27c

0xf260 0 twodim[0][0]

0xf264 1 twodim[0][1]

0xf268 2 twodim[0][2]

0xf26c 3 twodim[0][3]

0xf270 1 twodim[1][0]

0xf274 2 twodim[1][1]

0xf278 3 twodim[1][2]

0xf27c 4 twodim[1][3]

0xf280 2 twodim[2][0]

0xf284 3 twodim[2][1]

0xf288 4 twodim[2][2]

0xf28c 5 twodim[2][3]

Slide 25

You do not need to convert mem 
index into an address for the lab



If we declared int matrix[5][3];, 
and the base of matrix is 0x3420, what is 
the address of matrix[3][2]?

A. 0x3438

B. 0x3440

C. 0x3444
D. 0x344C

E. None of these

Slide 26

Find the memory index:
[row #][col #] =  (row #) * ROWSIZE + col #

Find the memory address:
base_address + mem_index * sizeof (datatype)



If we declared int matrix[5][3];, 
and the base of matrix is 0x3420, what is 
the address of matrix[3][2]?

A. 0x3438

B. 0x3440

C. 0x3444
D. 0x344C

E. None of these

Slide 27

Find the memory index:
[row #][col #] =  (row #) * ROWSIZE + col #

Find the memory address:
base_address + mem_index * sizeof (datatype)

Mem_index = 3*3+2 = 11
Mem. address = 0x3420 + 11*4 (2c) = 0x344c



If we declared int matrix[5][3];, 
and the base of matrix is 0x3420, what is 
the address of matrix[3][2]?

A. 0x3438
B. 0x3440
C. 0x3444
D. 0x344C
E. None of these

Slide 28

Find the memory index:
[row #][col #] =  (row #) * ROWSIZE + col #

Find the memory address:
base_address + mem_index * sizeof (datatype)

Mem_index = 3*3+2 = 11
Mem. address = 0x3420 + 11*4 (2c) = 0x344c



Composite Data Types

• Combination of one or more existing types into a new 
type.  (e.g., an array of multiple ints, or a struct)

• Example: a queue
– Might need a value (int) plus a link to the next item 

(pointer)

struct queue_node{
int value;
struct queue_node *next;

}

Slide 29



Structs

• Laid out contiguously by field
– In order of field declaration.

struct student{                
int age; 
float gpa; 
int id; 

};

struct student s;

…   Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

Slide 30



Structs

• Struct fields accessible as a base + displacement
– Compiler knows (constant) displacement of each field

struct student{                
int age; 
float gpa; 
int id; 

};

struct student s;

…   Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

Slide 31



Structs

• Laid out contiguously by field
– In order of field declaration.
– May require some padding, for alignment.

struct student{                
int age; 
float gpa; 
int id; 

};

struct student s;

…   Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

Slide 32



Data Alignment:

• Where (which address) can a field be located?

• char (1 byte): can be allocated at any address:
0x1230, 0x1231, 0x1232, 0x1233, 0x1234, …

• short (2 bytes): must be aligned on 2-byte addresses:
0x1230, 0x1232, 0x1234, 0x1236, 0x1238, …

• int (4 bytes): must be aligned on 4-byte addresses:
0x1230, 0x1234, 0x1238, 0x123c, 0x1240, …

Slide 33



Why do we want to align data on multiples of 
the data size?

A. It makes the hardware faster.

B. It makes the hardware simpler.

C. It makes more efficient use of memory space.

D. It makes implementing the OS easier.

E. Some other reason.

Slide 34



Why do we want to align data on multiples of 
the data size?

A. It makes the hardware faster.

B. It makes the hardware simpler.

C. It makes more efficient use of memory space.

D. It makes implementing the OS easier.

E. Some other reason.

Slide 35



Data Alignment: Why?

• Simplify hardware
– e.g., only read ints from multiples of 4
– Don’t need to build wiring to access 4-byte chunks at 

any arbitrary location in hardware

• Inefficient to load/store single value across alignment 
boundary (1 vs. 2 loads)

• Simplify OS:
– Prevents data from spanning virtual pages
– Atomicity issues with load/store across boundary

Slide 36



Structs

• Laid out contiguously by field
– In order of field declaration.
– May require some padding, for alignment

struct student{                
char name[11];
short age;
int id;

};

Slide 37



Structs

struct student{                
char name[11];
short age;
int id;

};

• Size of data: 17 bytes
• Size of struct: 20 bytes

Memory …   

0x1234 s.name[0]

0x1235 s.name[1]

… … …

0x123d s.name[9]

0x123e s.name[10]

0x123f padding

0x1240 s.age

0x1231 s.age

0x1232 padding

0x1233 padding

0x1234 s.id

0x1235 s.id

0x1236 s.id

0x1237 s.id

0x1238 …

padding

padding

Use sizeof() when allocating 
structs with malloc()!

Slide 38



Alternative Layout

struct student{
int id;
short age;
char name[11];

};

Same fields, declared in 
a different order.

Slide 39



Alternative Layout

struct student{
int id;
short age;
char name[11];

};

• Size of data: 17 bytes
• Size of struct: 17 bytes!

Memory …   

0x1234 s.id

0x1235 s.id

0x1236 s.id

0x1237 s.id

0x1238 s.age

0x1239 s.age

0x1240 s.name[0]

0x1231 s.name[1]

0x1232 s.name[2]

… … …

0x1234 s.name[9]

0x1235 s.name[10]

0x1236 …

In general, this isn’t a big deal on a 
day-to-day basis.  Don’t go out and 
rearrange all your struct declarations. Slide 40



How much space do we need to store one of 
these structures?

struct student{                
char name[15];
int id;
short age;

};

A.17 bytes
B.20 bytes
C.21 bytes
D.22 bytes
E.24 bytes

Slide 41



Cool, so we can get rid of this padding by 
being smart about declarations?

A. Yes (why?)

B. No (why not?)

Slide 42



Cool, so we can get rid of this padding by 
being smart about declarations?

• Answer: Maybe.

• Rearranging helps, but often padding after the struct
can’t be eliminated.
struct T1 { struct T2 {

char c1; int x;
char c2; char c1;
int x;             char c2;

}; };

T2: x c1 c2 2bytesT1: c1 c2 2bytes x

Slide 43



“External” Padding

• Array of Structs
Field values in each bucket must be properly aligned:

struct T2 arr[3];

Buckets must be on a 4-byte aligned address

0

x c1 c2 2bytes

1

x c1 c2 2bytes

2

x c1 c2 2bytesarr:

x x + 8 x + 12

Slide 44



A note on struct syntax…

struct student {
int id;
short age;
char name[11];

};
struct student s;

s.id = 406432;
s.age = 20;
strcpy(s.name, “Alice”);

Slide 45



A note on struct syntax…

struct student {
int id;
short age;
char name[11];

};
struct student *s = malloc(sizeof(struct student));

(*s).id = 406432;
(*s).age = 20;
strcpy((*s).name, “Alice”);

s->id = 406432;
s->age = 20;
strcpy(s->name, “Alice”);

Not a struct, but a 
pointer to a struct!

This works, but is very ugly.

Access the struct field from a pointer with ->
Does a dereference and gets the field.

Slide 46



Arrays of Structs

struct student classroom[50];

strcpy(classroom[0].name, “Alice”);
classroom[0].grad_year = 2019;
classroom[0].gpa = 4.0;

strcpy(classroom[1].name, “Bob”);
classroom[1].grad_year = 2020;
classroom[1].gpa = 3.1

strcpy(classroom[2].name, “Cat”);
classroom[2].grad_year = 2021;
classroom[2].gpa = 3.4

Slide 47



Struct: Layout in Memory

Slide 48

‘A’ ‘l’ ‘i’ ‘c
’

‘e
’

‘\0
’

… ‘B’ ‘o
’

‘b
’

‘\0’ … ‘C’ ‘a’ ‘t
’

‘\
0’

…

2019 2020 2021

4.0 3.1 3.4

classroom:

[0] [1] [2]



Stack Padding

• Memory alignment applies elsewhere too.

int x;         vs.     double y;
char ch[5];            int x;
short s;               short s;
double y;              char ch[5];

Slide 49



Unions

• Declared like a struct, but only contains one field, 
rather than all of them.

• Struct: field 1 and field 2 and field 3 …
• Union: field 1 or field 2 or field 3 …

• Intuition: you know you only need to store one of N 
things, don’t waste space.

Slide 50



Unions
struct my_struct {

char ch[2];
int i;
short s;

}

union my_union {
char ch[2];
int i;
short s;

}

ch

padding

i

s

my_struct in memory

Same 
memory 
used for all 
fields!

my_union in memory
Slide 51



Unions
my_union u;

u.i = 7;

union my_union {
char ch[2];
int i;
short s;

}
7
7
7
7

Same 
memory 
used for all 
fields!

my_union in memory
Slide 52



Unions
my_union u;

u.i = 7;

u.s = 2;

union my_union {
char ch[2];
int i;
short s;

}
2
2
7
7

Same 
memory 
used for all 
fields!

my_union in memory
Slide 53



Unions
my_union u;

u.i = 7;

u.s = 2;

u.ch[0] = ‘a’;

Reading i or s here would be bad!

union my_union {
char ch[2];
int i;
short s;

}
a
2
7
7

Same 
memory 
used for all 
fields!

my_union in memory
Slide 54



Unions
union my_union {

char ch[2];
int i;
short s;

}
5
5
5
5

Same 
memory 
used for all 
fields!

my_union in memory

my_union u;

u.i = 7;

u.s = 2;

u.ch[0] = ‘a’;

Reading i or s here would be bad!

u.i = 5;

Slide 55



Unions
union my_union {

char ch[2];
int i;
short s;

}
5
5
5
5

Same 
memory 
used for all 
fields!

my_union in memory

• You probably won’t use 
these often.

• Use when you need 
mutually exclusive types.

• Can save memory.

Slide 56



Strings

• Strings are character arrays

• Layout is the same as:
– char name[10];

• Often accessed as (char *)

name[0]
name[1]
name[2]
name[3]
name[4]
name[5]
name[6]
name[7]
name[8]
name[9]

Slide 57



String Functions

• C library has many built-in functions that operate on 
char *’s:
– strcpy, strdup, strlen, strcat, strcmp, strstr

char name[10];
strcpy(name, “CS 31”);

name[0]
name[1]
name[2]
name[3]
name[4]
name[5]
name[6]
name[7]
name[8]
name[9]

Slide 58



String Functions

• C library has many built-in functions that operate on 
char *’s:
– strcpy, strdup, strlen, strcat, strcmp, strstr

char name[10];
strcpy(name, “CS 31”);

• Null terminator (\0) ends string.
– We don’t know/care what comes after

C name[0]
S name[1]

name[2]
3 name[3]
1 name[4]
\0 name[5]
? name[6]
? name[7]
? name[8]
? name[9]

Slide 59



String Functions

• C library has many built-in functions that operate on 
char *’s:
– strcpy, strdup, strlen, strcat, strcmp, strstr

• Seems simple on the surface.
– That null terminator is tricky, strings error-prone.
– Strings used everywhere!

Slide 60


