
CS 31: Introduction to Computer Systems

07-08: ISAs and Assembly
February 11, 13, 18

Reading Quiz

Slide 2

Last class

• Digital Circuits and building a CPU

Slide 12

Digital Circuits - Building a CPU
Three main classifications of HW circuits:
1. ALU: implement arithmetic & logic functionality

(ex) adder to add two values together

2. Storage: to store binary values
(ex) Register File: set of CPU registers

3. Control: support/coordinate instruction execution
(ex) fetch the next instruction to execute

HW Circuits
Logic Gates
Transistor

Slide 13

Today

• How to directly interact with hardware

• Instruction set architecture (ISA)
– Interface between programmer and CPU
– Established instruction format (assembly lang)

• Assembly programming (IA-32 or x86)

Slide 14

Abstraction

User / Programmer
Wants low complexity

Applications
Specific functionality

Software library
Reusable functionality

Complex devices
Compute & I/O

Operating system
Manage resources

Slide 15

Abstraction

Applications
Specific functionality

Complex devices
Compute & I/O

Operating system
Manage resources

Last week: Circuits, Hardware Implementation

This week: Machine Interface

Slide 16

Hardware: Control, Storage, ALU circuitry
Slide 17

Program Counter (PC): Address 0

0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

Let the ALU do

its thing.

(e.g., Add)

• acts on instruction

bits to execute

individual instructions

• PC value used to

determine next

instruction to execute

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A

L

U

How a computer runs a program:

• We know: How HW Executes Instructions:
• This Week: Instructions and ISA
– Program Encoding: C code to assembly code
– Learn IA32 Assembly programming

Program
Operating System

Computer Hardware

18

Interaction
Between
Programs
and HW

Compilation Steps (.c to a.out)

text

executable
binary

C program (p1.c)

Executable code (a.out)

Usually compile to a.out in
a single step: gcc –m32 p1.c

-m32 tells gcc to compile for
32-bit Intel machines

Compiler (gcc –m32)

Reality is more complex:
there are intermediate steps!

Slide 19

Compile

Compilation Steps (.c to a.out)

text

text

executable
binary

Compiler (gcc –m32 -S)

C program (p1.c)

Assembly program (p1.s)

Executable code (a.out)

You can see the results of
intermediate compilation
steps using different gcc flagsCS75

Slide 20

Compilation Steps (.c to a.out)

text

text

binary

executable
binary

Compiler (gcc –m32 -S)

Assembler (gcc -c (or as = gcc’s assembler))

Linker (gcc (or ld))

C program (p1.c)

Assembly program (p1.s)

Object code (p1.o)

Executable code (a.out)

Library obj. code
(libc.a)

Other object files
(p2.o, p3.o, …)

You can see the results of
intermediate compilation
steps using different gcc flags

Slide 21

machine code instructions

Machine Code

Binary (0’s and 1’s) Encoding of ISA Instructions
– some bits: encode the instruction (opcode bits)
– others encode operand(s)

(ex) 01001010 opcode operands
01 001 010
ADD %r1 %r2

– different bits fed
through different
CPU circuitry:

MUXRegister #0

Register #1

Register #2
. . . MUX

A
L
U

01 | 001 | 010

22

0:

1:

2:

3:

4:

…

N-1:

(Memory)

Assembly Code

text

text

binary

executable
binary

Compiler (gcc –m32 -S)

Assembler (gcc -c (or as = gcc’s assembler))

Linker (gcc (or ld))

C program (p1.c)

Assembly program (p1.s)

Object code (p1.o)

Executable code (a.out)

Human Readable Form
of Machine Code

Slide 23

machine code instructions

What is “assembly”?

Assembly is the
“human readable”
form of the
instructions a
machine can
understand.

push %ebp
mov %esp, %ebp
sub $16, %esp
movl $10, -8(%ebp)
movl $20, -4(%ebp)
movl -4(%ebp), $eax
addl $eax, -8(%ebp)
movl -8(%ebp), %eax
leave

objdump –d a.out

Object / Executable / Machine Code

Assembly
push %ebp
mov %esp, %ebp
sub $16, %esp
movl $10, -8(%ebp)
movl $20, -4(%ebp)
movl -4(%ebp), $eax
addl $eax, -8(%ebp)
movl -8(%ebp), %eax
leave

Machine Code (Hexadecimal)
55
89 E5
83 EC 10
C7 45 F8 0A 00 00 00
C7 45 FC 14 00 00 00
8B 45 FC
01 45 F8
B8 45 F8
C9

Slide 25

Almost a 1-to-1 mapping to Machine Code
Hides some details like num bytes in instructions

Object / Executable / Machine Code

Assembly
push %ebp
mov %esp, %ebp
sub $16, %esp
movl $10, -8(%ebp)
movl $20, -4(%ebp)
movl -4(%ebp), $eax
addl $eax, -8(%ebp)
movl -8(%ebp), %eax
leave

Machine Code (Hexadecimal)
55
89 E5
83 EC 10
C7 45 F8 0A 00 00 00
C7 45 FC 14 00 00 00
8B 45 FC
01 45 F8
B8 45 F8
C9

int main() {
int a = 10;
int b = 20;

a = a + b;

return a;
}

Slide 26

Compilation Steps (.c to a.out)

text

text

binary

executable
binary

Compiler (gcc –m32 -S)

Assembler (gcc -c (or as))

Linker (gcc (or ld))

C program (p1.c)

Assembly program (p1.s)

Object code (p1.o)

Executable code (a.out)

High-level language

CPU-specific format
(011010…)

Interface for speaking
to CPU

Slide 27

Instruction Set Architecture (ISA)

Interface between lowest software level and the
hardware.

Slide 28

I/O systemCPU / Processor

Digital Circuits
Logic Gates

Compiler
Operating
System

Application / Program

Instruction Set
Architecture

OS is a program
running on the machine

Instruction Set Architecture (ISA)

• ISA is Interface between CPU and Compiler:
– Compiler translates program source code to

machine code of a target ISA
– (e.g.) C program à gcc à ISA machine code (0’s and

1’s)

29

ISA and Compiler

• ISA is Interface between CPU and Compiler:
– Compiler translates program source code to

machine code of a target ISA
– (e.g.) C program à gcc à ISA machine code (0’s and

1’s)

30

text file C program (p1.c)
Usually compile to a.out in
a single step: gcc –m32 p1.c

Compiler (gcc –m32)

executable
binary file

Executable code (a.out)
IA32 machine code
instructions

-m32 tells gcc to compile for
32-bit Intel machines
(a specific ISA)

If you had to build an instruction set architecture for your
ALU what should you be able to express?

32-bit Register #0WE
Data in

32-bit Register #1WE
Data in

32-bit Register #2WE
Data in

32-bit Register #3WE
Data in

…

MUX

MUX

Register File

A
L
U

Program Counter (PC): Address 0 0:
1:
2:
3:
4:
…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

Result might be:
Memory
Register
PC

Slide 31

01 | 001 | 010

Instruction Set Architecture (ISA)

• Interface between lowest software level and the
hardware.

• Defines specification of the language for controlling
CPU state:
– Provides a set of instructions
– Makes CPU registers available
– Allows access to main memory
– Exports control flow (change what executes next)

Slide 32

How many of these ISAs have you used?
(Don’t worry if you’re not sure. Try to guess based on
the types of CPUs/devices you interact with.)

• Intel IA-32 (80x86)
• ARM
• MIPS
• PowerPC
• IBM Cell
• Motorola 68k

• AMD-64 (x86-64)
• VAX
• SPARC
• Alpha
• IBM 360

A. 0
B. 1-2
C. 3-4

D. 5-6
E. 7+

Slide 33

Instruction Set Architecture (ISA)

Interface between lowest software level and the
hardware.

Slide 34

I/O systemCPU / Processor

Digital Circuits
Logic Gates

Compiler
Operating
System

Application / Program

Instruction Set
Architecture

OS is a program
running on the machine

Instruction Set Architecture (ISA)

• The agreed-upon interface between all software that
runs on the machine and the hardware that executes
it.

Slide 35

High-level language

Hardware
Implementation

Instruction Set
Architecture

ISA Characteristics

• Above ISA: High-level language (C, Python, …)
– Hides ISA from users
– Allows a program to run on any machine

(after translation by human and/or compiler)

Slide 36

High-level language

Hardware Implementation
ISA

text file C program (p1.c)
Usually compile to a.out in
a single step: gcc –m32 p1.c

Compiler (gcc –m32)

executable
binary file

Executable code (a.out)
IA32 machine code
instructions

-m32 tells gcc to compile for
32-bit Intel machines
(a specific ISA)

Instruction Translation

int sum(int x, int y)
{

int res;
res = x+y;
return res;

}

sum.c (High-level C)

sum:
pushl %ebp
movl %esp,%ebp
subl $24, %esp
movl 12(%ebp),%eax
addl 8(%ebp),%eax
movl %eax, -12(%ebp)
leave
ret

sum.s (Assembly)

sum.s from sum.c:
gcc –m32 –S sum.c

Instructions to set up the
stack frame and get
argument values

An add instruction to
compute sum

Instructions to return from
function

Slide 37

ISA Design Questions

int sum(int x, int y)
{

int res;
res = x+y;
return res;

}

sum.c (High-level C)

sum:
pushl %ebp
movl %esp,%ebp
subl $24, %esp
movl 12(%ebp),%eax
addl 8(%ebp),%eax
movl %eax, -12(%ebp)
leave
ret

sum.s (Assembly)

sum.s from sum.c:
gcc –m32 –S sum.c

What should these instructions
do?

What is/isn’t allowed by
hardware?

How complex should they be?

Example: supporting
multiplication.

Slide 38

C statement: A = A*B

Simple instructions:

LOAD A, eax
LOAD B, ebx
PROD eax, ebx
STORE ebx, A

Powerful instructions:

MULT B, A

Translation:
Load the values ‘A’ and ‘B’ from memory into registers,
compute the product, store the result in memory
where ‘A’ was.

Slide 39

Which would you use if you were designing
an ISA for your CPU? (Why?)

Simple instructions:

LOAD A, eax
LOAD B, ebx
PROD eax, ebx
STORE ebx, A

Powerful instructions:

MULT B, A

A. Simple
B. Powerful
C. Something else

Slide 40

RISC versus CISC (Historically)

• Complex Instruction Set Computing (CISC)
– Large, rich instruction set
– More complicated instructions built into hardware
– Multiple clock cycles per instruction
– Easier for humans to reason about

• Reduced Instruction Set Computing (RISC)
– Small, highly optimized set of instructions
– Memory accesses are specific instructions
– One instruction per clock cycle
– Compiler: more work, more potential optimization

Slide 41

So . . . Which System “Won”?

• Most ISAs (after mid/late 1980’s) are RISC

• The ubiquitous Intel x86 is CISC
– Tablets and smartphones (ARM) taking over?

• x86 breaks down CISC assembly into multiple, RISC-like,
machine language instructions

• Distinction between RISC and CISC is less clear
– Some RISC instruction sets have more instructions than

some CISC sets

Slide 42

ISA Examples

Slide 43

• Intel IA-32 (80x86): CISC
• ARM: RISC
• MIPS: RISC
• PowerPC: RISC
• IBM Cell: RISC
• Motorola 68k: CISC

• AMD-64 (x86-64) RISC/CISC
• VAX: CISC
• SPARC: RISC
• Alpha: RISC
• IBM 360: CISC

ISA Characteristics

• Above ISA: High-level language (C, Python, …)
– Hides ISA from users
– Allows a program to run on any machine

(after translation by human and/or compiler)

• Below ISA: Hardware implementing ISA can change
(faster, smaller, …)
– ISA is like a CPU “family”

Slide 44

High-level language

Hardware Implementation
ISA

Intel x86 Family (IA-32)

Intel i386 (1985)
• 12 MHz - 40 MHz
• ~300,000 transistors
• Component size: 1.5 µm

Intel Core i9 9900k (2018)
• ~4,000 MHz
• ~7,000,000,000 transistors
• Component size: 14 nm

Everything in this family uses the same ISA (Same instructions)!
Slide 45

IA32 Assembly Code

Human Readable Form of Machine Code
– CS lab machines are 64 bit version of this ISA

can also run the 32-bit version (IA32)
– 32-bit architecture: 32 bits for addresses
– Can address 232 bytes of memory
– Can compile C to IA32 assembly on our system:

gcc –m32 -S code.c # open code.s in vim to view

46

Instruction Set Architecture (ISA)

• ISA Defines :

1. Set & Encoding of instructions: ADD, OR,

2. Processor state (memory, register, flags values)

3. State machine: transitions from 1 processor state to
another as a result of instruction execution

47

Assembly Programmer’s View of State
CPU

Memory

Addresses

Data

Instructions

Registers:
PC: Program counter (%eip)
Condition codes (%EFLAGS)
General Purpose (%eax - %ebp)

Memory:
• Byte addressable array
• Program code and data
• Execution stack

name value
%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%eip next instr
addr (PC)

%EFLAGS cond. codes

address value

0x00000000

0x00000001

…

Program:
data
instrs
stack

0xffffffff

32-bit Registers

BUS

Slide 48

Processor State in Registers

• Information about
currently executing
program
• Temporary data

(%eax - %edi)
• Location of runtime stack

(%ebp, %esp)
• Location of current code

control point (%eip, …)
• Status of recent tests

%EFLAGS
(CF, ZF, SF, OF)

%eip

General purpose
registers

Current stack top

Current stack frame

Program Counter (PC)

CF ZF SF OF Condition codes

%eax
%ecx
%edx
%ebx
%esi
%edi
%esp
%ebp

Slide 49

General purpose Registers
Six are for instruction operands
Can store 4 byte data or address value
The low-order 2 bytes %ax is the low-order 16 bits of %eax
Two low-order 1 bytes %al is the low-order 8 bits of %eax
May see their use in ops involving shorts or chars

Register
name

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%eip

%EFLAGS

bits:
31

16 15
8

7
0

%eax %ax %ah %al

%ecx %cx %ch %cl

%edx %dx %dh %dl

%ebx %bx %bh %bl

%esi %si

%edi %di

%esp %sp

%ebp %bp Slide 50

General purpose Registers

• Six are for instruction operands
• Can store 4 byte data or address value

Register
name

Register
value

%eax 3
%ecx 5
%edx 8
%ebx
%esi
%edi
%esp

%ebp

%eip

%EFLAGS

Takeaway: the instructions in IA32
assembly will refer to these register
names when selecting ALU
operands and locations to store
results.

Slide 51

Types of IA32 Instructions

• Data movement
– Move values between registers and memory
– Example: movl

• Load: move data from memory to register

• Store: move data from register to memory

Slide 52

Data Movement

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A

L

U

Program Counter (PC): Memory address of next instr
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

Move values between memory and registers or between two registers.

Slide 53

Types of IA32 Instructions

• Data movement
– Move values between registers and memory

• Arithmetic
– Uses ALU to compute a value
– Example: addl

Slide 54

Arithmetic

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A

L

U

Program Counter (PC): Memory address of next instr
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

Use ALU to compute a value, store result in register / memory.

Slide 55

Types of IA32 Instructions

• Data movement
– Move values between registers and memory

• Arithmetic
– Uses ALU to compute a value

• Control
– Change PC based on ALU condition code state
– Example: jmp

Slide 56

Control

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Program Counter (PC): Memory address of next instr
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

Change PC based on ALU condition code state.

Slide 57

Types of IA32 Instructions

• Data movement
– Move values between registers and memory

• Arithmetic
– Uses ALU to compute a value

• Control
– Change PC based on ALU condition code state

• Stack / Function call (We’ll cover these in detail later)
– Shortcut instructions for common operations

Slide 58

Addressing Modes

• Data movement and arithmetic instructions:
– Must tell CPU where to find operands, store result

• You can refer to a register by using %:
– %eax

• addl %ecx, %eax
– Add the contents of registers ecx and eax, store result

in register eax.

Slide 59

Addressing Mode: Immediate

• Refers to a constant value, starts with $

• movl $10, %eax
– Put the constant value 10 in register eax.

Slide 60

Addressing Mode: Memory

• Accessing memory requires you to specify which
address you want.
– Put address in a register.
– Access with () around register name.

• movl (%ecx), %eax
– Use the address in register ecx to access memory,

store result in register eax

Slide 61

Addressing Mode: Memory

• movl (%ecx), %eax
– Use the address in register ecx to access memory,

store result in register eax

(Memory)

name value

%eax 0

%ecx 0x1A68

…

CPU Registers
0x0:
0x4:
0x8:
0xC:

…
0x1A64
0x1A68 42
0x1A6C
0x1A70

…
0xFFFFFFFF:

Slide 62

Addressing Mode: Memory

• movl (%ecx), %eax
– Use the address in register ecx to access memory,

store result in register eax

name value

%eax 0

%ecx 0x1A68

…

CPU Registers
0x0:

0x4:

0x8:

0xC:

…

0x1A64

0x1A68 42

0x1A6C

0x1A70

…

0xFFFFFFFF:

(Memory)

1. Index into memory using the
address in ecx.

Slide 63

0x0:

0x4:

0x8:

0xC:

…

0x1A64

0x1A68 42

0x1A6C

0x1A70

…

0xFFFFFFFF:

Addressing Mode: Memory

• movl (%ecx), %eax
– Use the address in register ecx to access memory,

store result in register eax

name value

%eax 42

%ecx 0x1A68

…

CPU Registers (Memory)

1. Index into memory using the
address in ecx.

2. Copy value at that
address to eax.

Slide 64

Addressing Mode: Displacement

• Like memory mode, but with constant offset
– Offset is often negative, relative to %ebp

• movl -12(%ebp), %eax
– Take the address in ebp, subtract twelve from it, index

into memory and store the result in eax

Slide 65

Addressing Mode: Displacement

• movl -12(%ebp), %eax
– Take the address in ebp, subtract twelve from it, index

into memory and store the result in eax

(Memory)

name value

%eax 0

%ecx 0x1A68

%ebp 0x1A70

…

CPU Registers

1. Access address:

0x1A70 – 12 => 0x1A64

0x0:

0x4:

0x8:

0xC:

…

0x1A64 11

0x1A68 42

0x1A6C

0x1A70

…

0xFFFFFFFF:

Slide 66

0x0:

0x4:

0x8:

0xC:

…

0x1A64 11

0x1A68 42

0x1A6C

0x1A70 Not this!

…

0xFFFFFFFF:

Addressing Mode: Displacement

• movl -12(%ebp), %eax
– Take the address in ebp, subtract three from it, index

into memory and store the result in eax

(Memory)

name value

%eax 11

%ecx 0x1A68

%ebp 0x1A70

…

CPU Registers

1. Access address:

0x1A70 – 12 => 0x1A64

2. Copy value at that

address to eax.

Slide 67

Let’s try a few examples...

Slide 68

What will memory look like after these instructions?

x is 2 at %ebp-8, y is 3 at %ebp-12, z is 2 at %ebp-16

movl -16(%ebp),%eax
sall $3, %eax
imull $3, %eax
movl -12(%ebp), %edx
addl -8(%ebp), %edx
addl %edx, %eax
movl %eax, -8(%ebp)

name value

%eax ?

%edx ?

%ebp 0x1270

address value

0x1260 2

0x1264 3

0x1268 2

0x126c

0x1270
…

Registers
Memory

Slide 69

What will memory look like after these instructions?
x is 2 at %ebp-8, y is 3 at %ebp-12, z is 2 at %ebp-16

movl -16(%ebp),%eax
sall $3, %eax
imull $3, %eax
movl -12(%ebp), %edx
addl -8(%ebp), %edx
addl %edx, %eax
movl %eax, -8(%ebp)

address value

0x1260 53

0x1264 3

0x1268 24

0x126c

0x1270
…

address value

0x1260 53

0x1264 3

0x1268 2

0x126c

0x1270
…

address value

0x1260 2

0x1264 16

0x1268 24

0x126c

0x1270
…

address value

0x1260 2

0x1264 3

0x1268 53

0x126c

0x1270
…

A: B: C:

D:

Slide 70

Solution
x is 2 at %ebp-8, y is 3 at %ebp-12, z is 2 at %ebp-16

movl -16(%ebp), %eax
sall $3, %eax
imull $3, %eax
movl -12(%ebp), %edx
addl -8(%ebp), %edx
addl %edx, %eax
movl %eax, -8(%ebp)

Equivalent C code:
x = z*24 + y + x;

name value

%eax

%edx

%ebp 0x1270

0x1260 2

0x1264 3

0x1268 2

0x126c

0x1270

Slide 71

Solution
x is 2 at %ebp-8, y is 3 at %ebp-12, z is 2 at %ebp-16

movl -16(%ebp), %eax # R[%eax] ß z (2)
sall $3, %eax # R[%eax] ß z<<3 (16)
imull $3, %eax # R[%eax] ß 16*3 (48)
movl -12(%ebp), %edx # R[%edx] ß y (3)
addl -8(%ebp), %edx # R[%edx] ß y + x (5)
addl %edx, %eax # R[%eax] ß 48+5 (53)
movl %eax, -8(%ebp) # M[R[%ebp]+8]ß5 (x=53)

Equivalent C code:
x = z*24 + y + x;

name value

%eax

%edx

%ebp 0x1270

0x1260 2 z

0x1264 3 y

0x1268 2 x

0x126c

0x1270

Z*24

Slide 72

What will the machine state be after executing
these instructions?

movl %ebp, %ecx
subl $16, %ecx
movl (%ecx), %eax
orl %eax, -8(%ebp)
negl %eax
movl %eax, 4(%ecx)

name value

%eax ?

%ecx ?

%ebp 0x456C

address value

0x455C 7

0x4560 11

0x4564 5

0x4568 3

0x456C
… Slide 78

What will the machine state be after executing
these instructions?

movl %ebp, %ecx # ecx = 0x456C
subl $16, %ecx # ecx = 0x455C
movl (%ecx), %eax # eax = 7
orl %eax, -8(%ebp) #(0111 | 0101)= 0111 = 7
put this value in -8(%ebp)

negl %eax # -7
movl %eax, 4(%ecx) # change value at mem. address 0x4560 to -7

name value

%eax 7

%ecx 0x456C
0x455C

%ebp 0x456C

address value

0x455C 7

0x4560 11 -7

0x4564 5 7

0x4568 3

0x456C
Slide 79

How would you do this in IA32?
x is 2 at %ebp-8, y is 3 at %ebp-12, z is 2 at %ebp-16

C code: z = x ^ y

name value

%eax

%edx

%ebp 0x1270

0x1260 2 z

0x1264 3 y

0x1268 2 x

0x126c

0x1270

Slide 80

How would you do this in IA32?
x is 2 at %ebp-8, y is 3 at %ebp-12, z is 2 at %ebp-16

C code: z = x ^ y

name value

%eax

%edx

%ebp 0x1270

0x1260 2 z

0x1264 3 y

0x1268 2 x

0x126c

0x1270

movl -8(%ebp), %eax
movl -12(%ebp), %edx
xorl %eax, %edx
movl %eax, -16(%ebp)

A:
movl -8(%ebp), %eax
movl -12(%ebp), %edx
xorl %eax, %edx
movl %eax, -8(%ebp)

C:

movl -8(%ebp), %eax
movl -12(%ebp), %edx
xorl %edx, %eax
movl %eax, -16(%ebp)

B:
movl -16(%ebp), %eax
movl -12(%ebp), %edx
xorl %edx, %eax
movl %eax, -8(%ebp)

D:

Slide 81

How would you do this in IA32?
x is 2 at %ebp-8, y is 3 at %ebp-12, z is 2 at %ebp-16

C code: z = x ^ y

name value

%eax

%edx

%ebp 0x1270

0x1260 2 z

0x1264 3 y

0x1268 2 x

0x126c

0x1270

movl -8(%ebp), %eax
movl -12(%ebp), %edx
xorl %eax, %edx
movl %eax, -16(%ebp)

A:
movl -8(%ebp), %eax
movl -12(%ebp), %edx
xorl %eax, %edx
movl %eax, -8(%ebp)

C:

movl -8(%ebp), %eax
movl -12(%ebp), %edx
xorl %edx, %eax
movl %eax, -16(%ebp)

B:
movl -16(%ebp), %eax
movl -12(%ebp), %edx
xorl %edx, %eax
movl %eax, -8(%ebp)

D:

Slide 82

How would you do this in IA32?
x is 2 at %ebp-8, y is 3 at %ebp-12, z is 2 at %ebp-16

x = y >> 3 | x * 8

83

name value

%eax

%edx

%ebp 0x1270

0x1260 2 z

0x1264 3 y

0x1268 2 x

0x126c

0x1270

Slide 83

(1)z = x ^ y
movl -8(%ebp), %eax # R[%eax] ß x
movl -12(%ebp), %edx # R[%edx] ß y
xorl %edx, %eax # R[%eax] ß x ^ y
movl %eax, -16(%ebp) # M[R[%ebp-16]] ß x^y

(2)x = y >> 3 | x * 8
movl -8(%ebp), %eax # R[%eax] ß x
imull $8, %eax # R[%eax] ß x*8
movl -12(%ebp), %edx # R[%edx] ß y

rshl $3, %edx # R[%edx] ß y >> 3
orl %eax, %edx # R[%edx] ß y>>3 | x*8
movl %edx, -8(%ebp) # M[R[%ebp-8]] ß result

name value

%eax

%edx

%ebp 0x1270

0x1260 z

0x1264 y

0x1268 x

0x126c

0x1270

Slide 84

Recall Memory Operands

• displacement(%reg)
– e.g., addl %eax, -8(%ebp)

• IA32 allows a memory operand as the source or
destination, but NOT BOTH
– One of the operands must be a register

• This would not be allowed:
– addl -4(%ebp), -8(%ebp)
– If you wanted this, movl one value into a register first

Slide 85

Control Flow

• Previous examples focused on:
– data movement (movl)
– arithmetic (addl, subl, orl, negl, sall, etc.)

• Up next: Jumping!

(Changing which
instruction we
execute next.)

Slide 86

Relevant XKCD

xkcd #292

Slide 87

https://xkcd.com/292/

Unconditional Jumping / Goto

int main() {
int a = 10;
int b = 20;

goto label1;
a = a + b;

label1:
return;

A label is a place you might jump to.

Labels ignored except for goto/jumps.

(Skipped over if encountered)

int x = 20;
L1:
int y = x + 30;

L2:
printf(“%d, %d\n”, x, y);

Slide 88

Unconditional Jumping / Goto

int main() {
int a = 10;
int b = 20;

goto label1;
a = a + b;

label1:
return;

push %ebp
mov %esp, %ebp
sub $16, %esp
movl $10, -8(%ebp)
movl $20, -4(%ebp)
jmp label1
movl -4(%ebp), $eax
addl $eax, -8(%ebp)
movl -8(%ebp), %eax

label1:
leave

Slide 89

Unconditional Jumping

Usage besides GOTO? push %ebp
mov %esp, %ebp
sub $16, %esp
movl $10, -8(%ebp)
movl $20, -4(%ebp)
jmp label1
movl -4(%ebp), $eax
addl $eax, -8(%ebp)
movl -8(%ebp), %eax

label1:
leave

Slide 90

Unconditional Jumping

• Usage besides GOTO?
– infinite loop
– break;
– continue;
– functions (handled differently)

• Often, we only want to
jump when something
is true / false.

• Need some way to
compare values, jump
based on comparison
results.

push%ebp
mov %esp, %ebp
sub $16, %esp
movl $10, -8(%ebp)
movl $20, -4(%ebp)
jmp label1
movl -4(%ebp), $eax
addl $eax, -8(%ebp)
movl -8(%ebp), %eax
label1:
leave

Slide 91

Condition Codes (or Flags)

• Set in two ways:
1. As “side effects” produced by ALU
2. In response to explicit comparison instructions

• IA-32, condition codes tell you:
– If the result is zero (ZF)
– If the result’s first bit is set (negative if signed) (SF)
– If the result overflowed (assuming unsigned) (CF)
– If the result overflowed (assuming signed) (OF)

Slide 92

Processor State in Registers

• Information about
currently executing
program
• Temporary data

(%eax - %edi)
• Location of runtime stack

(%ebp, %esp)
• Location of current code

control point (%eip, …)
• Status of recent tests

%EFLAGS
(CF, ZF, SF, OF)

%eip

General purpose
registers

Current stack top

Current stack frame

Instruction pointer (PC)

CF ZF SF OF Condition codes

%eax
%ecx
%edx
%ebx
%esi
%edi
%esp
%ebp

Slide 93

Instructions that set condition codes

1. Arithmetic/logic side effects (addl, subl, orl, etc.)

2. CMP and TEST:
cmpl b,a like computing a-b without storing result

• Sets OF if overflow, Sets CF if carry-out,
Sets ZF if result zero, Sets SF if results is negative

testl b,a like computing a&b without storing result
• Sets ZF if result zero, sets SF if a&b < 0

OF and CF flags are zero (there is no overflow with &)

Slide 94

Which flags would this subl set?

• Suppose %eax holds 5, %ecx holds 7

subl $5, %eax
If the result is zero (ZF)
If the result’s first bit is set (negative if signed) (SF)
If the result overflowed (assuming unsigned) (CF)
If the result overflowed (assuming signed) (OF)

A. ZF
B. SF
C. CF and ZF
D. CF and SF
E. CF, SF, and CF

Slide 95

Which flags would this subl set?

• Suppose %eax holds 5, %ecx holds 7

subl $5, %eax
If the result is zero (ZF)
If the result’s first bit is set (negative if signed) (SF)
If the result overflowed (assuming unsigned) (CF)
If the result overflowed (assuming signed) (OF)

A. ZF
B. SF
C. CF and ZF
D. CF and SF
E. CF, SF, and CF

Slide 96

Which flags would this cmpl set?

• Suppose %eax holds 5, %ecx holds 7

cmpl %ecx, %eax

A. ZF
B. SF
C. CF and ZF
D. CF and SF
E. CF, SF, and CF

If the result is zero (ZF)
If the result’s first bit is set (negative if signed) (SF)
If the result overflowed (assuming unsigned) (CF)
If the result overflowed (assuming signed) (OF)

Slide 97

Which flags would this cmpl set?

• Suppose %eax holds 5, %ecx holds 7

cmpl %ecx, %eax

A. ZF
B. SF
C. CF and ZF
D. CF and SF
E. CF, SF, and CF

If the result is zero (ZF)
If the result’s first bit is set (negative if signed) (SF)
If the result overflowed (assuming unsigned) (CF)
If the result overflowed (assuming signed) (OF)

Slide 98

Conditional Jumping
• Jump based on which condition codes are set

Condition Description
jmp 1 Unconditional
je ZF Equal / Zero
jne ~ZF Not Equal / Not Zero
js SF Negative
jns ~SF Nonnegative
jg ~(SF^OF)&~ZF Greater (Signed)
jge ~(SF^OF) Greater or Equal (Signed)
jl (SF^OF) Less (Signed)
jle (SF^OF)|ZF Less or Equal (Signed)
ja ~CF&~ZF Above (unsigned jg)
jb CF Below (unsigned)

Jump
Instructions:
(fig. 3.12)

You do not
need to
memorize
these.

Slide 99

Example Scenario
int userval;
scanf(“%d”, &userval);

if (userval == 42) {
userval += 5;

} else {
userval -= 10;

}
…

• Suppose user gives us
a value via scanf

• We want to check to
see if it equals 42
– If so, add 5
– If not, subtract 10

Slide 100

How would we use jumps/CCs for this?
int userval;
scanf(“%d”, &userval);

if (userval == 42) {
userval += 5;

} else {
userval -= 10;

}
…

Assume userval is stored in %eax at this point.

Slide 101

How would we use jumps/CCs for this?
int userval;
scanf(“%d”, &userval);

if (userval == 42) {
userval += 5;

} else {
userval -= 10;

}
…

Assume userval is stored in %eax at this point.

cmpl $42, %eax
jne L2

L1:
subl $10, %eax
jmp DONE

L2:
addl $5, %eax

DONE:
…

(B)cmpl $42, %eax
je L2

L1:
subl $10, %eax
jmp DONE

L2:
addl $5, %eax

DONE:
…

(A)

cmpl $42, %eax
jne L2

L1:
addl $5, %eax
jmp DONE

L2:
subl $10, %eax

DONE:
…

(C)

Slide 102

How would we use jumps/CCs for this?
int userval;
scanf(“%d”, &userval);

if (userval == 42) {
userval += 5;

} else {
userval -= 10;

}
…

Assume userval is stored in %eax at this point.

cmpl $42, %eax
jne L2

L1:
subl $10, %eax
jmp DONE

L2:
addl $5, %eax

DONE:
…

(B)cmpl $42, %eax
je L2

L1:
subl $10, %eax
jmp DONE

L2:
addl $5, %eax

DONE:
…

(A)

cmpl $42, %eax
jne L2

L1:
addl $5, %eax
jmp DONE

L2:
subl $10, %eax

DONE:
…

(C)

Slide 103

CPU Registers

Using Jump Instructions
• jmp label # unconditional jump (ex. jmp .L2)
• jge label # conditional jump (ex. if >=) (je, jne, js, jg, …)

104

movl $0, %eax
movl $4, %ebx
movl $0, %edx
jmp .L2

.L1:
addl $1, %eax

.L2:
addl %eax, %edx
cmp %eax, %ebx # R[%ebx] – R[%eax]
jge .L1

%eax
%edx
%ebx

Try out this code: what does it do?

(A label is a place you might jump to. Labels ignored except for goto/jumps)

C Loops to IA32

105

do-while:
do {
loop body

} while (cond);

C goto translations:
loop:
loop body
if(cond) goto loop

while:

while(cond) {
loop body

}

if(!cond) goto done
loop:
loop body
if(cond) goto loop

done:

for:

for(init; cond; step){
loop body

}

init code
if(!cond) goto done

loop:
loop body
step
if(cond) goto loop

done:

Loops

• We’ll look at these in the lab!

Slide 106

Summary

• ISA defines what programmer can do on hardware
– Which instructions are available
– How to access state (registers, memory, etc.)
– This is the architecture’s assembly language

• In this course, we’ll be using IA-32
– Instructions for:

• moving data (movl)
• arithmetic (addl, subl, imull, orl, sall, etc.)
• control (jmp, je, jne, etc.)

– Condition codes for making control decisions
• If the result is zero (ZF)
• If the result’s first bit is set (negative if signed) (SF)
• If the result overflowed (assuming unsigned) (CF)
• If the result overflowed (assuming signed) (OF)

Slide 107

