
CS 31: Introduction to Computer Systems

04: C Programming
January 30



Introduction to C programming
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Announcements

• Midterm Exam in Lecture Hall – SCI 199
• Please let me know your accommodations TODAY!
• Homework 1 is out
– Due in class next Thursday (Feb 6th)
– Can work in groups of up to 3
– All HWs worth 3%



Reading Quiz



Today

• Basics of C programming
– Comments, variables, print statements, loops, 

conditionals, etc.
– Ask questions if you have them!

• Comparison of C vs. Python
– Data organization and strings
– Functions
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How a Computer Runs a Program

What we know so far:
– Binary Arithmetic, and overflow rules

• Two’s complement Subtraction can be reframed as addition

– Know encodings and sizes for different C types
• char, unsigned char, int, unsigned int, …

– Know how to perform binary operations (Add, Sub) 
• Don’t yet know how the Add HW circuit works (next week)

Binary Program
Software Libraries
Operating System

Computer Hardware

How instructions & data are encoded

OS Abstractions, Resource management

How underlying HW organized & works



0101011010101010101010
1010101010101010100…

Understand how program written in a  high-level 
language  is run on the underlying System (OS/HW)

A Main Course Goal:

main() {
int x;
x = 6 + 7;
printf(“x %d”, x);

}

Binary Program
Software Libraries
Operating System

Computer Hardware

C Program

Understand the details 
all the way down

gcc



What is C?

Dennis Ritchie 
worked at Bell Labs

C Unix
C was created for systems programming 
back in 1972.

C was created to write Unix.

Machine / Hardware
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Evolution of C – K&R, ANSI C

• K&R (Brian Kernighan & Dennis Richie)
– Bell Labs
– “The C Programming Language”, 1st Edition (1978)
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• ANSI C (American National Standards Institute)
– Defines both language and standard C library
– “The C Programming Language”, 2nd Edition (1989)

• ISO C90 (International Standards Organization) ≅ ANSI C in 1990

• ISO C99 (International Standards Organization)
New data types, moving C to 64 bit processors
Support for text strings with characters not in the English language

• C18: Current International Standard



Why C in this course?
• Did you ever see the wizard of Oz?
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What was going on behind the curtains?
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More than what you would think!
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The mystery revealed!

What the…
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So, why C in this course?

• Closed Curtains
– A safe place for programmers!
– Python hides certain aspects of reality
– This is good!

• Behind The Curtains Programming
– Most Operating Systems (OS)
– Access to memory and memory management
– Dangerous, but necessary
– Important to understand how the real system works
– Makes you a better programmer!
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Python versus C: Paradigms

Python and C follow different programming paradigms.

• C:
– is more procedure-oriented. 
– breaks down to functions.

• Python 
– follows an object-oriented paradigm.
– allows Python to break down Objects.
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Python versus C: Paradigms

• Python is an “interpreted” language: 
interpreter does lexing, parsing, 
compiling and interpreting!

• Python does not allow you to access 
memory directly.

• Python provides automatic memory 
management. It is a “garbage collected” 
language.

• Python types “expand to available 
memory”. 

• Python provides “exceptions”: if your 
program has an error at run-time it will 
throw an exception.
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• C is compiled language: compiles to 
machine code that is “executed” by the 
underlying processor.

• C allows you to access memory directly, 
interpret that memory in any way you 
wish, and shoot yourself in the foot.

• C provides manual memory 
management.

• Types in C are dependent on the 
machine you are running on.

• No built-in error handling, if you are 
lucky (and smart) your program will 
check “error conditions” and fail 
gracefully. 



Intro to C Programming

• is closer to the machine: see relationship between C code and 
computer execution

• can write faster code! 
• want abstraction? out of luck – DIY implementation of 

dictionary
• It gives you access to aspects of the machine that are not 

accessible in Python.
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So, the point(er) is….?

• Programming Languages Are Tools
– Python is one language and it does its job well
– C is another language and it does its job well

• Pick The Right Tool for the Job
– C is a good language to explore how the system works 

under-the-hood.
– C is the Language of Systems Programmers: Fast running 

OS code is really really important!

• It is the right tool for the job we need to accomplish in 
this course!
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GNU Compiler Collection

$gcc –g –o prog prog.c
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GNU Compiler Collection

compile programs using the 
GNU C Compiler
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$gcc –g –o prog prog.c



GNU Compiler Collection

Command line options
-g: generates debugging information
-o: build to output file prog 

Slide 41

$gcc –g –o prog prog.c

compile programs using the 
GNU C Compiler



Hello World
Python C

# hello world
import math

def main():
print “hello world”

main()

// hello world 
#include <stdio.h>

int main( ) {
printf(“hello world\n”);
return 0;

}
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Hello World
Python C

# hello world
import math

def main():
print “hello world”

main()

// hello world 
#include <stdio.h>

int main( ) {
printf(“hello world\n”);
return 0;

}

#: single line comment //: single line comment
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Hello World
Python C

# hello world
import math

def main():
print “hello world”

main()

// hello world 
#include <stdio.h>

int main( ) {
printf(“hello world\n”);
return 0;

}

#: single line comment //: single line comment
import libname:  include Python libraries #include<libname>: include C libraries
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Hello World
Python C

# hello world
import math

def main():
print “hello world”

main()

// hello world 
#include <stdio.h>

int main( ) {
printf(“hello world\n”);
return 0;

}

#: single line comment //: single line comment
import libname:  include Python libraries #include<libname>: include C libraries
Blocks: indentation Blocks:  {   } (indentation for readability)
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“White Space”

• Python cares about how your program is formatted.  
Spacing has meaning.

• C compiler does NOT care.  Spacing is ignored.
– This includes spaces, tabs, new lines, etc.
– Good practice (for your own sanity):
• Put each statement on a separate line.
• Keep indentation consistent within blocks.
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Are these the same program?
#include <stdio.h>

int main() {
int number = 7;
if (number > 10) {

do_this();
} else {

do_that();
}

}

#include <stdio.h>
int main() { int number = 7; 
if (number > 10) { do_this();

} else
{
do_that();}}
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Yes – but one is harder to 
debug than the other



Hello World
Python C

# hello world
import math

def main():
print “hello world”

main()

// hello world 
#include <stdio.h>

int main( ) {
printf(“hello world\n”);
return 0;

}

#: single line comment //: single line comment
import libname:  include Python libraries #include<libname>: include C libraries
Blocks: indentation Blocks:  {   } (indentation for readability)
print: statement to printout string printf: function to print out format string
statement: each on separate line statement: each ends with ;
def main(): : the main function definition int main( ) : the main function definition 

(int specifies the return type of main)
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Types

• Everything is stored as bits.

• Type tells us how to interpret those bits.

• “What type of data is it?”
– integer, floating point, text, etc.
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Representation Matters!

• No self-identifying data
– Looking at a sequence of bits doesn’t tell you 

what they mean
– Could be signed, unsigned integer
– Could be floating-point number
– Could be part of a string

• The machine interprets what those bits mean!
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Types in C

• All variables have an explicit type!

• You (programmer) must declare variable types.
– Where: at the beginning of a block, before use.
– How: <variable type> <variable name>;

• Examples:
int humidity; float temperature;
humidity = 20; temperature = 32.5
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We have to explicitly declare variable types 
ahead of time?  Lame!  Python figured out 
variable types for us, why doesn’t C?
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We have to explicitly declare variable types 
ahead of time?  Lame!  Python figured out 
variable types for us, why doesn’t C?

A. C is old.
B. Explicit type declaration is more efficient.
C. Explicit type declaration is less error prone.
D. Dynamic typing (what Python does) is imperfect.
E. Some other reason (explain)
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We have to explicitly declare variable types 
ahead of time?  Lame!  Python figured out 
variable types for us, why doesn’t C?

A. C is old (maybe?)
B. Explicit type declaration is more efficient.
C. Explicit type declaration is less error prone.
D. Dynamic typing (what Python does) is imperfect.
E. Some other reason (explain)
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Numerical Type Comparison

Integers (int)
• Example:

int humidity;

humidity = 20;

• Only represents integers

• Small range, high precision

• Faster arithmetic

• (Maybe) less space required

Floating Point (float, double)
• Example:

float temperature;

temperature = 32.5;

• Represents fractional values

• Large range, less precision

• Slower arithmetic

I need a variable to store a number, which type should I use?

Use the one that fits your specific need best…
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An Example with Local Variables
/* a multiline comment:

anything between slashdot and dotslash */

#include <stdio.h> // C’s standard I/O library (for 
printf)

int main() {
// first: declare main’s local variables 
int x, y;
float z; 

// followed by: main function statements
x = 6; 
y = (x + 3)/2;
z = x; 
z = (z + 3)/2;

printf(…)  // Print x, y, z
} Slide 56



An Example with Local Variables
/* a multiline comment:

anything between slashdot and dotslash */

#include <stdio.h> // C’s standard I/O library (for printf)

int main() {
// first: declare main’s local variables 

int x, y;
float z; 

// followed by: main function statements
x = 6; 
y = (x + 3)/2;
z = x; 
z = (z + 3)/2;

printf(…)  // Print x, y, z
}
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X Y Z
A 4 4 4
B 6 4 4
C 6 4.5 4
D 6 4 4.5
E 6 4.5 4.5

Clicker choices



An Example with Local Variables
/* a multiline comment:

anything between slashdot and dotslash */

#include <stdio.h> // C’s standard I/O library (for printf)

int main() {
// first: declare main’s local variables 

int x, y;
float z; 

// followed by: main function statements
x = 6; 
y = (x + 3)/2;
z = x; 
z = (z + 3)/2;

printf(…)  // Print x, y, z
}
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X Y Z
A 4 4 4
B 6 4 4
C 6 4.5 4
D 6 4 4.5
E 6 4.5 4.5

Clicker choices



Operators: need to think about type

Arithmetic:  +, -, *, /,  %  (numeric type operands)

/:  operation and result type depends on operand types:

– Two int operands:  int division truncates:    3/2 is 1

– 1 or 2 float or double: float or double division:  3.0/2 is 1.5

%: mod operator:  (only int or unsigned types)

• Gives you the (integer) remainder of division: 13 % 2  is 1,  27 % 3  is 0

• Shorthand operators :

– var op = expr; ( var = var op expr):    

– x += 4   is equivalent to   x = x + 4

– var++;  var--;   (var = var+1; var = var-1):   

x++   is same as  x = x + 1   x-- is same as x = x -1;
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Boolean values in C?

• There is no “boolean” type in C!

• Instead, integer expressions used in conditional 
statements are interpreted as true or false 

• Zero (0) is false, any non-zero value is true
– Use this to always check return value of the function 

• Questions?

• “Which non-zero value does it use? 

• E.g., int x = 10>5. what is x?
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The value of x is compiler specific don’t rely on the 
output to be a certain value



Operators: need to think about type

• Relational (operands any type, result int “boolean”):
• <, <=, >, >=, ==, !=      
• 6 != (4+2)   is 0 (false)
• 6 > 3    some non-zero value (we don’t care which one) (true)

• Logical (operands int “boolean”, result int “boolean”):
• !   (not):          !6           is 0  (false)
• &&   (and):     8 && 0  is 0  (false)
• ||   (or):          8 || 0    is non-zero (true)
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Boolean values in C
• Zero (0) is false, any non-zero value is true
• Logical (operands int “boolean”->result int “boolean”):

• !   (not): inverts truth value
• &&   (and): true if both operands are true
• ||   (or): true if either operand is true

#1 #2

A True True

B True False

C False True

D False False

Clicker choicesDo the following statements 
evaluate to True or False?

#1:  (!10) || (5 > 2)

#2: (-1) && ((!5) > -1)
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Boolean values in C
• Zero (0) is false, any non-zero value is true
• Logical (operands int “boolean”->result int “boolean”):

• !   (not): inverts truth value
• &&   (and): true if both operands are true
• ||   (or): true if either operand is true

#1 #2

A True True

B True False

C False True

D False False

Clicker choicesDo the following statements 
evaluate to True or False?

#1:  (!10) || (5 > 2)

#2: (-1) && ((!5) > -1)
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Conditional Statements

Very similar to Python, just remember { } are 
blocks, no curly braces, only the next line will be 
executed! Always use curly braces.

Basic if statement: With optional else: 

if(<boolean expr>) {

if-true-body

} 

if(<boolean expr>) {

if-true-body

} else {

else body(expr-false)

}
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Conditional Statements

Very similar to Python, just remember { } are blocks

Chaining if-else if With optional else:
if(<boolean expr1>) {

if-expr1-true-body

} else if (<bool expr2>){

else-if-expr2-true-body

(expr1 false)

}

... 

} else if (<bool exprN>){

else-if-exprN-true-body

}

if(<boolean expr1>) {

if-expr1-true-body

} else if (<bool expr2>){

else-if-expr2-true-body

}

...

} else if (<bool exprN>){

else-if-exprN-true-body

} else {

else body

(all exprX’s false)

} 
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While Loops

• Basically identical to Python while loops:
while(<boolean expr>) {

while-expr-true-body
}

x = 20;
while (x < 100) {

y = y + x;
x += 4;  //  x = x + 4;

}
<next stmt after loop>;

x = 20;
while(1) {  // while true

y = y + x;
x += 4;
if(x >= 100) {

break;  // break out of loop 
}

}
<next stmt after loop>;
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For loops: different than Python’s 
for (<init>; <cond>; <step>) {

for-loop-body-statements
}
<next stmt after loop>;

1. Evaluate <init> one time, when first eval for statement
2. Evaluate <cond>, if it is false, drop out of the loop (<next stmt after>)
3. Evaluate the statements in the for loop body
4. Evaluate <step>
5. Goto step (2)

for(i=1; i <= 10; i++) {  // example for loop
printf(“%d\n”, i*i);

}
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printf function

Python: print “%d %s\t %f” % (6, “hello”, 3.4)
C: printf(“%d %s\t %f\n”,  6, “hello”, 3.4);

printf(<format string>, <values list>);

%d int placeholder (-13)

%f or %g float or double (higher-precision than float) placeholder (9.6)

%c char placeholder     (‘a’)

%s string placeholder  (“hello there”)

\t \n tab character, new line character

Formatting Differences:

C: need to explicitly print end-of-line 

character (\n)

C: string and char are different types

‘a’: in Python is a string,  in C is a char

“a”: in Python is a string, in C is a string
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Data Collections in C
• Many complex data types out there (CS 35)

• C has a few simple ones built-in:
– Arrays
– Structures (struct)
– Strings (arrays of characters)

• Often combined in practice, e.g.:
– An array of structs
– A struct containing strings
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Arrays
• C’s support for collections of values
– Array buckets store a single type of value

– Specify max capacity (num buckets) when you declare an 
array variable (single memory chunk)

<type> <var_name>[<num buckets>];

int arr[5];  // an array of 5 integers
float rates[40]; // an array of 40 floats
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Arrays
• C’s support for collections of values

• Often accessed via a loop:
int arr[5];  // an array of 5 integers
float rates[40]; // an array of 40 floats
for(i=0; i < 5; i++) {

arr[i] = i;
rates[i] = (arr[i]*1.387)/4;

}

Get/Set value using brackets [] to index 
into array.

arr

[0] [1] [2] [3] [4]
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Array Characteristics

int january_temps[31];  // Daily high temps

• Indices start at 0! Why? Computing the offset 
from the start of the array

january_temps” (without brackets!) Location of [0] in 
memory.

[0] [1] [2] [3] [4] [29][30]
…

Array bucket indices.

[35]
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Array Characteristics

int january_temps[31];  // Daily high temps

“january_temps”
Location of [0] in memory. [0] [1] [2] [3] [4] [29][30]

…

Array bucket indices.

[35]

• Indices start at 0!  Why?
• Array variable name means, to the compiler, the 

beginning of the memory chunk. (address)
• Keep this in mind, we’ll return to it soon (functions).
• Index number is an offset from beginning.
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Given what we know about arrays, how can 
we add a temperature reading second 
element in the array? 

int january_temps[31];  // Daily high temps

“january_temps”
Location of [0] in memory. [0] [1] [2] [3] [4] [29][30]

…

Array bucket indices.

[35]
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1. scanf(“%d”, january_temps);

2. scanf(“%d”, &january_temps[1]);

3. None of the above



Given what we know about arrays, how can 
we add a temperature reading second 
element in the array? 

int january_temps[31];  // Daily high temps

“january_temps”
Location of [0] in memory. [0] [1] [2] [3] [4] [29][30]

…

Array bucket indices.

[35]

1. scanf(“%d”, january_temps);

2. scanf(“%d”, &january_temps[1]);

3. None of the above
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Array Characteristics

int january_temps[31];  // Daily high temps

“january_temps”
Location of [0] in memory. [0] [1] [2] [3] [4] [29][30]

…

Array bucket indices.

[35]

• Array variable name means, to the compiler, the beginning of the memory 
chunk. (address)

• Index number is an offset from beginning.

C does NOT do bounds checking. Asking 
for january_temps[35]?
• Python: error
• C: “Sure! I don’t care ”
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Characters and Strings

A character (type char) is numerical value that holds one 

letter.

char my_letter = ‘w’;   // Note: single quotes

What is the numerical value?

– printf(“%d   %c”, my_letter, my_letter);

– Would print:  119   w

Why is ‘w’ equal to 119? 

– ASCII Standard says so.

– American Standard Code for Information Interchange
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Characters 
and Strings

$ man ascii
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119 = w



Characters and Strings

• A character (type char) is numerical value that 
holds one letter.

• A string is a memory block containing characters, one 
after another…, with a
null terminator (numerical 0) at the end.

• Examples:

char food[6] = “Pizza”;

P i z z a

[0] [1] [2] [3] [4]

name (Other memory)

Hmm, suppose we used 
printf and %s to print 
name.

How does it know where 
the string ends and other 
memory begins?
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How can we tell where a string ends?

A. Mark the end of the string with a special character.

B. Associate a length value with the string, and use that to 
store its current length.

C. A string is always the full length of the array it’s contained 
within (e.g., char name[20] must be of length 20).

D. All of these could work (which is best?).

E. Some other mechanism (such as?).

Slide 80



How can we tell where a string ends?
A. Mark the end of the string with a special character. 

(what we do in C)

B. Associate a length value with the string, and use that to 
store its current length.

C. A string is always the full length of the array it’s 
contained within (e.g., char name[20] must be of 
length 20) –
• inconvenient and inflexible

D. All of these could work (technically true)

E. Some other mechanism (such as?).
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Characters 
and Strings

Special 
stuff 
over 
here in 
the 
lower 
values.
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Characters and Strings

• A character (type char) is numerical value that 

holds one letter.

• A string is a memory block containing characters, one 

after another, with a null terminator (numerical 0) at 

the end.

• Examples:

char name[20] = “Pizza”;

P i z z a

[0] [1] [2] [3] [4]

\0

[5]

…

[6] [7] [18][19]
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Strings in C
• C String library functions: #include <string.h>

– Common functions (strlen, strcpy, etc.) make strings easier
– Less friendly than Python strings

• More on strings later, in labs.

• For now, remember about strings:
– Allocate enough space for null terminator!
– If you’re modifying a character array (string), don’t forget to set 

the null terminator!
– If you see crazy, unpredictable behavior with strings, check 

these two things!
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Functions: Specifying Types

specify the return type of the function, and the type of each 
parameter

<return type> <func name> ( <param list> ) {
// declare local variables first
// then function statements
return <expression>;

}

// my_function takes 2 int values and returns an int
int my_function(int x, int y) {  

int result;
result = x;
if(y > x) {
result = y+5;

}
return result*2; 

}

Compiler will yell at you if 
you try to pass the wrong 
type!
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Function Arguments

Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {
a = a + 5;
return a - b;

}

int main() {
// declare two integers
int x, y;  
x = 4;
y = 7;
y = func(x, y);
printf(“%d, %d”, x, y);

}

Stack

main:
x:

y:

4

7

4

7

Slide 86



Function Arguments

• Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {
a = a + 5;
return a - b;

}

int main() {
// declare two integers
int x, y;  
x = 4;
y = 7;
y = func(x, y);
printf(“%d, %d”, x, y);

}

Stack

main:
x:

y:

func:
a:

b:

4

7

9

7

Note: This doesn’t change!

Slide 87no impact on values in main!



Function Arguments

• Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {
a = a + 5;
return a - b;

}

int main() {
// declare two integers
int x, y;  
x = 4;
y = 7;
y = func(x, y);
printf(“%d, %d”, x, y);

}

Stack

main:
x:

y:

4

2

Output:  4, 2
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What will this print?
int func(int a, int y, int my_array[]) {

y = 1;
my_array[a] = 0;
my_array[y] = 8;
return y;

}

int main() {
int x;
int values[2];

x = 0;
values[0] = 5;
values[1] = 10;

x = func(x, x, values);

printf(“%d, %d, %d”, x, values[0], values[1]);
}

A. 0, 5, 8
B. 0, 5, 10
C. 1, 0, 8
D. 1, 5, 8
E. 1, 5, 10

Hint: What does the name of an 
array mean to the compiler?
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What will this print?
int func(int a, int y, int my_array[]) {

y = 1;
my_array[a] = 0;
my_array[y] = 8;
return y;

}

int main() {
int x;
int values[2];

x = 0;
values[0] = 5;
values[1] = 10;

x = func(x, x, values);

printf(“%d, %d, %d”, x, values[0], values[1]);
}

A. 0, 5, 8
B. 0, 5, 10
C. 1, 0, 8
D. 1, 5, 8
E. 1, 5, 10

Hint: Still accessing the same 
memory location of array in func
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(Mem address)

What will this print?

Stack

main:
x:

values:

0

105
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int func(int a, int y, int my_array[]) 
{

y = 1;
my_array[a] = 0;
my_array[y] = 8;
return y;

}

int main() {
int x;
int values[2];

x = 0;
values[0] = 5;
values[1] = 10;

x = func(x, x, values);
printf(“%d, %d, %d”, x, values[0], 

values[1]);
}



(Mem address)

What will this print?

Stack

main:
x:

values:

0

10

func:
0a:

my_array:
(Mem address)

5

0y:
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int func(int a, int y, int my_array[]) 
{

y = 1;
my_array[a] = 0;
my_array[y] = 8;
return y;

}

int main() {
int x;
int values[2];

x = 0;
values[0] = 5;
values[1] = 10;

x = func(x, x, values);
printf(“%d, %d, %d”, x, values[0], 

values[1]);
}



(Mem address)

Stack

main:
x:

values:

0

10

func:
0a:

my_array:
(Mem address)

5

1y:
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What will this print?
int func(int a, int y, int my_array[]) 
{

y = 1;
my_array[a] = 0;
my_array[y] = 8;
return y;

}

int main() {
int x;
int values[2];

x = 0;
values[0] = 5;
values[1] = 10;

x = func(x, x, values);
printf(“%d, %d, %d”, x, values[0], 

values[1]);
}



(Mem address)

What will this print?

Stack

main:
x:

values:

0

8

func:
0a:

my_array:
(Mem address)

0

1y:

int func(int a, int y, int my_array[]) 
{

y = 1;
my_array[a] = 0;
my_array[y] = 8;
return y;

}

int main() {
int x;
int values[2];

x = 0;
values[0] = 5;
values[1] = 10;

x = func(x, x, values);
printf(“%d, %d, %d”, x, values[0], 

values[1]);
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(Mem address)

What will this print?

Stack

main:
x:

values:

1

80
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int func(int a, int y, int my_array[]) 
{

y = 1;
my_array[a] = 0;
my_array[y] = 8;
return y;

}

int main() {
int x;
int values[2];

x = 0;
values[0] = 5;
values[1] = 10;

x = func(x, x, values);
printf(“%d, %d, %d”, x, values[0], 

values[1]);
}



structs
• Treat a collection of values as a single type:
– C is not an object oriented language, no classes
– A struct is like just the data part of a class

• Rules:
1. Define a new struct type outside of any function
2. Declare variables of the new struct type
3. Use dot notation to access the different field values 

of the struct variable
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Struct Example
Suppose we want to represent a student type.
struct student {

char name[20];
int grad_year;
float gpa;

};
// Variable bob is of type struct student
struct student bob;
// Set name (string) with strcpy()
strcpy(bob.name, “Robert Paulson”);  
bob.grad_year = 2019;
bob.gpa = 3.1;

printf(“Name: %s, year: %d, GPA: %f”, bob.name, 
bob.grad_year, bob.gpa);
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Arrays of Structs
struct student {

char name[20];
int grad_year;
float gpa;

};
//create an array of struct students!
struct student classroom[50];

strcpy(classroom[0].name, “Alice”);
classroom[0].grad_year = 2014
classroom[0].gpa = 4.0;

// With a loop, create an army of Alice clones!
int i;
for (i = 0; i < 50; i++) {

strcpy(classroom[i].name, “Alice”);
classroom[i].grad_year = 2014;
classroom[i].gpa = 4.0;

}
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Arrays of Structs

struct student classroom[50];

strcpy(classroom[0].name, “Alice”);
classroom[0].grad_year = 2019;
classroom[0].gpa = 4.0;

strcpy(classroom[1].name, “Bob”);
classroom[1].grad_year = 2020;
classroom[1].gpa = 3.1

strcpy(classroom[2].name, “Cat”);
classroom[2].grad_year = 2021;
classroom[2].gpa = 3.4
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Struct: Layout in Memory
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‘A’ ‘l’ ‘i’ ‘c
’

‘e
’

‘\0
’

… ‘B’ ‘o
’

‘b
’

‘\0’ … ‘C’ ‘a’ ‘t
’

‘\
0’

…

2019 2020 2021

4.0 3.1 3.4

classroom:

[0] [1] [2]



Fear not!

• Don’t worry, I don’t expect you to have mastered C.
• It’s a skill you’ll pick up as you go.
• We’ll revisit these topics when necessary.

• When in doubt: solve the problem in English, 
whiteboard pictures, whatever else!
– Translate to C later.
– Eventually, you’ll start to think in C.
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Up next…

• Digital circuits
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