
CS 31: Introduction to Computer Systems

04: C Programming
January 30

Introduction to C programming

Slide 2

Announcements

• Midterm Exam in Lecture Hall – SCI 199
• Please let me know your accommodations TODAY!
• Homework 1 is out
– Due in class next Thursday (Feb 6th)
– Can work in groups of up to 3
– All HWs worth 3%

Reading Quiz

Today

• Basics of C programming
– Comments, variables, print statements, loops,

conditionals, etc.
– Ask questions if you have them!

• Comparison of C vs. Python
– Data organization and strings
– Functions

Slide 21

How a Computer Runs a Program

What we know so far:
– Binary Arithmetic, and overflow rules

• Two’s complement Subtraction can be reframed as addition

– Know encodings and sizes for different C types
• char, unsigned char, int, unsigned int, …

– Know how to perform binary operations (Add, Sub)
• Don’t yet know how the Add HW circuit works (next week)

Binary Program
Software Libraries
Operating System

Computer Hardware

How instructions & data are encoded

OS Abstractions, Resource management

How underlying HW organized & works

0101011010101010101010
1010101010101010100…

Understand how program written in a high-level
language is run on the underlying System (OS/HW)

A Main Course Goal:

main() {
int x;
x = 6 + 7;
printf(“x %d”, x);

}

Binary Program
Software Libraries
Operating System

Computer Hardware

C Program

Understand the details
all the way down

gcc

What is C?

Dennis Ritchie
worked at Bell Labs

C Unix
C was created for systems programming
back in 1972.

C was created to write Unix.

Machine / Hardware

Slide 24

Evolution of C – K&R, ANSI C

• K&R (Brian Kernighan & Dennis Richie)
– Bell Labs
– “The C Programming Language”, 1st Edition (1978)

Slide 25

• ANSI C (American National Standards Institute)
– Defines both language and standard C library
– “The C Programming Language”, 2nd Edition (1989)

• ISO C90 (International Standards Organization) ≅ ANSI C in 1990

• ISO C99 (International Standards Organization)
New data types, moving C to 64 bit processors
Support for text strings with characters not in the English language

• C18: Current International Standard

Why C in this course?
• Did you ever see the wizard of Oz?

Slide 26

What was going on behind the curtains?

Slide 27

More than what you would think!

Slide 28

The mystery revealed!

What the…

Slide 29

So, why C in this course?

• Closed Curtains
– A safe place for programmers!
– Python hides certain aspects of reality
– This is good!

• Behind The Curtains Programming
– Most Operating Systems (OS)
– Access to memory and memory management
– Dangerous, but necessary
– Important to understand how the real system works
– Makes you a better programmer!

Slide 30

Python versus C: Paradigms

Python and C follow different programming paradigms.

• C:
– is more procedure-oriented.
– breaks down to functions.

• Python
– follows an object-oriented paradigm.
– allows Python to break down Objects.

Slide 31

Python versus C: Paradigms

• Python is an “interpreted” language:
interpreter does lexing, parsing,
compiling and interpreting!

• Python does not allow you to access
memory directly.

• Python provides automatic memory
management. It is a “garbage collected”
language.

• Python types “expand to available
memory”.

• Python provides “exceptions”: if your
program has an error at run-time it will
throw an exception.

Slide 32

• C is compiled language: compiles to
machine code that is “executed” by the
underlying processor.

• C allows you to access memory directly,
interpret that memory in any way you
wish, and shoot yourself in the foot.

• C provides manual memory
management.

• Types in C are dependent on the
machine you are running on.

• No built-in error handling, if you are
lucky (and smart) your program will
check “error conditions” and fail
gracefully.

Intro to C Programming

• is closer to the machine: see relationship between C code and
computer execution

• can write faster code!
• want abstraction? out of luck – DIY implementation of

dictionary
• It gives you access to aspects of the machine that are not

accessible in Python.

Slide 33

So, the point(er) is….?

• Programming Languages Are Tools
– Python is one language and it does its job well
– C is another language and it does its job well

• Pick The Right Tool for the Job
– C is a good language to explore how the system works

under-the-hood.
– C is the Language of Systems Programmers: Fast running

OS code is really really important!

• It is the right tool for the job we need to accomplish in
this course!

Slide 38

GNU Compiler Collection

$gcc –g –o prog prog.c

Slide 39

GNU Compiler Collection

compile programs using the
GNU C Compiler

Slide 40

$gcc –g –o prog prog.c

GNU Compiler Collection

Command line options
-g: generates debugging information
-o: build to output file prog

Slide 41

$gcc –g –o prog prog.c

compile programs using the
GNU C Compiler

Hello World
Python C

hello world
import math

def main():
print “hello world”

main()

// hello world
#include <stdio.h>

int main() {
printf(“hello world\n”);
return 0;

}

Slide 42

Hello World
Python C

hello world
import math

def main():
print “hello world”

main()

// hello world
#include <stdio.h>

int main() {
printf(“hello world\n”);
return 0;

}

#: single line comment //: single line comment

Slide 43

Hello World
Python C

hello world
import math

def main():
print “hello world”

main()

// hello world
#include <stdio.h>

int main() {
printf(“hello world\n”);
return 0;

}

#: single line comment //: single line comment
import libname: include Python libraries #include<libname>: include C libraries

Slide 44

Hello World
Python C

hello world
import math

def main():
print “hello world”

main()

// hello world
#include <stdio.h>

int main() {
printf(“hello world\n”);
return 0;

}

#: single line comment //: single line comment
import libname: include Python libraries #include<libname>: include C libraries
Blocks: indentation Blocks: { } (indentation for readability)

Slide 45

“White Space”

• Python cares about how your program is formatted.
Spacing has meaning.

• C compiler does NOT care. Spacing is ignored.
– This includes spaces, tabs, new lines, etc.
– Good practice (for your own sanity):
• Put each statement on a separate line.
• Keep indentation consistent within blocks.

Slide 46

Are these the same program?
#include <stdio.h>

int main() {
int number = 7;
if (number > 10) {

do_this();
} else {

do_that();
}

}

#include <stdio.h>
int main() { int number = 7;
if (number > 10) { do_this();

} else
{
do_that();}}

Slide 47

Yes – but one is harder to
debug than the other

Hello World
Python C

hello world
import math

def main():
print “hello world”

main()

// hello world
#include <stdio.h>

int main() {
printf(“hello world\n”);
return 0;

}

#: single line comment //: single line comment
import libname: include Python libraries #include<libname>: include C libraries
Blocks: indentation Blocks: { } (indentation for readability)
print: statement to printout string printf: function to print out format string
statement: each on separate line statement: each ends with ;
def main(): : the main function definition int main() : the main function definition

(int specifies the return type of main)

Slide 48

Types

• Everything is stored as bits.

• Type tells us how to interpret those bits.

• “What type of data is it?”
– integer, floating point, text, etc.

Slide 49

Representation Matters!

• No self-identifying data
– Looking at a sequence of bits doesn’t tell you

what they mean
– Could be signed, unsigned integer
– Could be floating-point number
– Could be part of a string

• The machine interprets what those bits mean!

Slide 50

Types in C

• All variables have an explicit type!

• You (programmer) must declare variable types.
– Where: at the beginning of a block, before use.
– How: <variable type> <variable name>;

• Examples:
int humidity; float temperature;
humidity = 20; temperature = 32.5

Slide 51

We have to explicitly declare variable types
ahead of time? Lame! Python figured out
variable types for us, why doesn’t C?

Slide 52

We have to explicitly declare variable types
ahead of time? Lame! Python figured out
variable types for us, why doesn’t C?

A. C is old.
B. Explicit type declaration is more efficient.
C. Explicit type declaration is less error prone.
D. Dynamic typing (what Python does) is imperfect.
E. Some other reason (explain)

Slide 53

We have to explicitly declare variable types
ahead of time? Lame! Python figured out
variable types for us, why doesn’t C?

A. C is old (maybe?)
B. Explicit type declaration is more efficient.
C. Explicit type declaration is less error prone.
D. Dynamic typing (what Python does) is imperfect.
E. Some other reason (explain)

Slide 54

Numerical Type Comparison

Integers (int)
• Example:

int humidity;

humidity = 20;

• Only represents integers

• Small range, high precision

• Faster arithmetic

• (Maybe) less space required

Floating Point (float, double)
• Example:

float temperature;

temperature = 32.5;

• Represents fractional values

• Large range, less precision

• Slower arithmetic

I need a variable to store a number, which type should I use?

Use the one that fits your specific need best…
Slide 55

An Example with Local Variables
/* a multiline comment:

anything between slashdot and dotslash */

#include <stdio.h> // C’s standard I/O library (for
printf)

int main() {
// first: declare main’s local variables
int x, y;
float z;

// followed by: main function statements
x = 6;
y = (x + 3)/2;
z = x;
z = (z + 3)/2;

printf(…) // Print x, y, z
} Slide 56

An Example with Local Variables
/* a multiline comment:

anything between slashdot and dotslash */

#include <stdio.h> // C’s standard I/O library (for printf)

int main() {
// first: declare main’s local variables

int x, y;
float z;

// followed by: main function statements
x = 6;
y = (x + 3)/2;
z = x;
z = (z + 3)/2;

printf(…) // Print x, y, z
}

Slide 57

X Y Z
A 4 4 4
B 6 4 4
C 6 4.5 4
D 6 4 4.5
E 6 4.5 4.5

Clicker choices

An Example with Local Variables
/* a multiline comment:

anything between slashdot and dotslash */

#include <stdio.h> // C’s standard I/O library (for printf)

int main() {
// first: declare main’s local variables

int x, y;
float z;

// followed by: main function statements
x = 6;
y = (x + 3)/2;
z = x;
z = (z + 3)/2;

printf(…) // Print x, y, z
}

Slide 58

X Y Z
A 4 4 4
B 6 4 4
C 6 4.5 4
D 6 4 4.5
E 6 4.5 4.5

Clicker choices

Operators: need to think about type

Arithmetic: +, -, *, /, % (numeric type operands)

/: operation and result type depends on operand types:

– Two int operands: int division truncates: 3/2 is 1

– 1 or 2 float or double: float or double division: 3.0/2 is 1.5

%: mod operator: (only int or unsigned types)

• Gives you the (integer) remainder of division: 13 % 2 is 1, 27 % 3 is 0

• Shorthand operators :

– var op = expr; (var = var op expr):

– x += 4 is equivalent to x = x + 4

– var++; var--; (var = var+1; var = var-1):

x++ is same as x = x + 1 x-- is same as x = x -1;
Slide 59

Boolean values in C?

• There is no “boolean” type in C!

• Instead, integer expressions used in conditional
statements are interpreted as true or false

• Zero (0) is false, any non-zero value is true
– Use this to always check return value of the function

• Questions?

• “Which non-zero value does it use?

• E.g., int x = 10>5. what is x?

Slide 60

The value of x is compiler specific don’t rely on the
output to be a certain value

Operators: need to think about type

• Relational (operands any type, result int “boolean”):
• <, <=, >, >=, ==, !=
• 6 != (4+2) is 0 (false)
• 6 > 3 some non-zero value (we don’t care which one) (true)

• Logical (operands int “boolean”, result int “boolean”):
• ! (not): !6 is 0 (false)
• && (and): 8 && 0 is 0 (false)
• || (or): 8 || 0 is non-zero (true)

Slide 61

Boolean values in C
• Zero (0) is false, any non-zero value is true
• Logical (operands int “boolean”->result int “boolean”):

• ! (not): inverts truth value
• && (and): true if both operands are true
• || (or): true if either operand is true

#1 #2

A True True

B True False

C False True

D False False

Clicker choicesDo the following statements
evaluate to True or False?

#1: (!10) || (5 > 2)

#2: (-1) && ((!5) > -1)

Slide 62

Boolean values in C
• Zero (0) is false, any non-zero value is true
• Logical (operands int “boolean”->result int “boolean”):

• ! (not): inverts truth value
• && (and): true if both operands are true
• || (or): true if either operand is true

#1 #2

A True True

B True False

C False True

D False False

Clicker choicesDo the following statements
evaluate to True or False?

#1: (!10) || (5 > 2)

#2: (-1) && ((!5) > -1)

Slide 63

F T

T T

Conditional Statements

Very similar to Python, just remember { } are
blocks, no curly braces, only the next line will be
executed! Always use curly braces.

Basic if statement: With optional else:

if(<boolean expr>) {

if-true-body

}

if(<boolean expr>) {

if-true-body

} else {

else body(expr-false)

}

Slide 64

Conditional Statements

Very similar to Python, just remember { } are blocks

Chaining if-else if With optional else:
if(<boolean expr1>) {

if-expr1-true-body

} else if (<bool expr2>){

else-if-expr2-true-body

(expr1 false)

}

...

} else if (<bool exprN>){

else-if-exprN-true-body

}

if(<boolean expr1>) {

if-expr1-true-body

} else if (<bool expr2>){

else-if-expr2-true-body

}

...

} else if (<bool exprN>){

else-if-exprN-true-body

} else {

else body

(all exprX’s false)

}

Slide 65

While Loops

• Basically identical to Python while loops:
while(<boolean expr>) {

while-expr-true-body
}

x = 20;
while (x < 100) {

y = y + x;
x += 4; // x = x + 4;

}
<next stmt after loop>;

x = 20;
while(1) { // while true

y = y + x;
x += 4;
if(x >= 100) {

break; // break out of loop
}

}
<next stmt after loop>;

Slide 66

For loops: different than Python’s
for (<init>; <cond>; <step>) {

for-loop-body-statements
}
<next stmt after loop>;

1. Evaluate <init> one time, when first eval for statement
2. Evaluate <cond>, if it is false, drop out of the loop (<next stmt after>)
3. Evaluate the statements in the for loop body
4. Evaluate <step>
5. Goto step (2)

for(i=1; i <= 10; i++) { // example for loop
printf(“%d\n”, i*i);

}

Slide 67

printf function

Python: print “%d %s\t %f” % (6, “hello”, 3.4)
C: printf(“%d %s\t %f\n”, 6, “hello”, 3.4);

printf(<format string>, <values list>);

%d int placeholder (-13)

%f or %g float or double (higher-precision than float) placeholder (9.6)

%c char placeholder (‘a’)

%s string placeholder (“hello there”)

\t \n tab character, new line character

Formatting Differences:

C: need to explicitly print end-of-line

character (\n)

C: string and char are different types

‘a’: in Python is a string, in C is a char

“a”: in Python is a string, in C is a string

Slide 68

Data Collections in C
• Many complex data types out there (CS 35)

• C has a few simple ones built-in:
– Arrays
– Structures (struct)
– Strings (arrays of characters)

• Often combined in practice, e.g.:
– An array of structs
– A struct containing strings

Slide 69

Arrays
• C’s support for collections of values
– Array buckets store a single type of value

– Specify max capacity (num buckets) when you declare an
array variable (single memory chunk)

<type> <var_name>[<num buckets>];

int arr[5]; // an array of 5 integers
float rates[40]; // an array of 40 floats

Slide 70

Arrays
• C’s support for collections of values

• Often accessed via a loop:
int arr[5]; // an array of 5 integers
float rates[40]; // an array of 40 floats
for(i=0; i < 5; i++) {

arr[i] = i;
rates[i] = (arr[i]*1.387)/4;

}

Get/Set value using brackets [] to index
into array.

arr

[0] [1] [2] [3] [4]

Slide 71

Array Characteristics

int january_temps[31]; // Daily high temps

• Indices start at 0! Why? Computing the offset
from the start of the array

january_temps” (without brackets!) Location of [0] in
memory.

[0] [1] [2] [3] [4] [29][30]
…

Array bucket indices.

[35]

Slide 72

Array Characteristics

int january_temps[31]; // Daily high temps

“january_temps”
Location of [0] in memory. [0] [1] [2] [3] [4] [29][30]

…

Array bucket indices.

[35]

• Indices start at 0! Why?
• Array variable name means, to the compiler, the

beginning of the memory chunk. (address)
• Keep this in mind, we’ll return to it soon (functions).
• Index number is an offset from beginning.

Slide 73

Given what we know about arrays, how can
we add a temperature reading second
element in the array?

int january_temps[31]; // Daily high temps

“january_temps”
Location of [0] in memory. [0] [1] [2] [3] [4] [29][30]

…

Array bucket indices.

[35]

Slide 74

1. scanf(“%d”, january_temps);

2. scanf(“%d”, &january_temps[1]);

3. None of the above

Given what we know about arrays, how can
we add a temperature reading second
element in the array?

int january_temps[31]; // Daily high temps

“january_temps”
Location of [0] in memory. [0] [1] [2] [3] [4] [29][30]

…

Array bucket indices.

[35]

1. scanf(“%d”, january_temps);

2. scanf(“%d”, &january_temps[1]);

3. None of the above
Slide 75

Array Characteristics

int january_temps[31]; // Daily high temps

“january_temps”
Location of [0] in memory. [0] [1] [2] [3] [4] [29][30]

…

Array bucket indices.

[35]

• Array variable name means, to the compiler, the beginning of the memory
chunk. (address)

• Index number is an offset from beginning.

C does NOT do bounds checking. Asking
for january_temps[35]?
• Python: error
• C: “Sure! I don’t care ”

Slide 76

Characters and Strings

A character (type char) is numerical value that holds one

letter.

char my_letter = ‘w’; // Note: single quotes

What is the numerical value?

– printf(“%d %c”, my_letter, my_letter);

– Would print: 119 w

Why is ‘w’ equal to 119?

– ASCII Standard says so.

– American Standard Code for Information Interchange

Slide 77

Characters
and Strings

$ man ascii

Slide 78

119 = w

Characters and Strings

• A character (type char) is numerical value that
holds one letter.

• A string is a memory block containing characters, one
after another…, with a
null terminator (numerical 0) at the end.

• Examples:

char food[6] = “Pizza”;

P i z z a

[0] [1] [2] [3] [4]

name (Other memory)

Hmm, suppose we used
printf and %s to print
name.

How does it know where
the string ends and other
memory begins?

Slide 79

How can we tell where a string ends?

A. Mark the end of the string with a special character.

B. Associate a length value with the string, and use that to
store its current length.

C. A string is always the full length of the array it’s contained
within (e.g., char name[20] must be of length 20).

D. All of these could work (which is best?).

E. Some other mechanism (such as?).

Slide 80

How can we tell where a string ends?
A. Mark the end of the string with a special character.

(what we do in C)

B. Associate a length value with the string, and use that to
store its current length.

C. A string is always the full length of the array it’s
contained within (e.g., char name[20] must be of
length 20) –
• inconvenient and inflexible

D. All of these could work (technically true)

E. Some other mechanism (such as?).
Slide 81

Characters
and Strings

Special
stuff
over
here in
the
lower
values.

Slide 82

0 = Null

Characters and Strings

• A character (type char) is numerical value that

holds one letter.

• A string is a memory block containing characters, one

after another, with a null terminator (numerical 0) at

the end.

• Examples:

char name[20] = “Pizza”;

P i z z a

[0] [1] [2] [3] [4]

\0

[5]

…

[6] [7] [18][19]

Slide 83

Strings in C
• C String library functions: #include <string.h>

– Common functions (strlen, strcpy, etc.) make strings easier
– Less friendly than Python strings

• More on strings later, in labs.

• For now, remember about strings:
– Allocate enough space for null terminator!
– If you’re modifying a character array (string), don’t forget to set

the null terminator!
– If you see crazy, unpredictable behavior with strings, check

these two things!
Slide 84

Functions: Specifying Types

specify the return type of the function, and the type of each
parameter

<return type> <func name> (<param list>) {
// declare local variables first
// then function statements
return <expression>;

}

// my_function takes 2 int values and returns an int
int my_function(int x, int y) {

int result;
result = x;
if(y > x) {
result = y+5;

}
return result*2;

}

Compiler will yell at you if
you try to pass the wrong
type!

Slide 85

Function Arguments

Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {
a = a + 5;
return a - b;

}

int main() {
// declare two integers
int x, y;
x = 4;
y = 7;
y = func(x, y);
printf(“%d, %d”, x, y);

}

Stack

main:
x:

y:

4

7

4

7

Slide 86

Function Arguments

• Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {
a = a + 5;
return a - b;

}

int main() {
// declare two integers
int x, y;
x = 4;
y = 7;
y = func(x, y);
printf(“%d, %d”, x, y);

}

Stack

main:
x:

y:

func:
a:

b:

4

7

9

7

Note: This doesn’t change!

Slide 87no impact on values in main!

Function Arguments

• Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {
a = a + 5;
return a - b;

}

int main() {
// declare two integers
int x, y;
x = 4;
y = 7;
y = func(x, y);
printf(“%d, %d”, x, y);

}

Stack

main:
x:

y:

4

2

Output: 4, 2
Slide 88

What will this print?
int func(int a, int y, int my_array[]) {

y = 1;
my_array[a] = 0;
my_array[y] = 8;
return y;

}

int main() {
int x;
int values[2];

x = 0;
values[0] = 5;
values[1] = 10;

x = func(x, x, values);

printf(“%d, %d, %d”, x, values[0], values[1]);
}

A. 0, 5, 8
B. 0, 5, 10
C. 1, 0, 8
D. 1, 5, 8
E. 1, 5, 10

Hint: What does the name of an
array mean to the compiler?

Slide 89

What will this print?
int func(int a, int y, int my_array[]) {

y = 1;
my_array[a] = 0;
my_array[y] = 8;
return y;

}

int main() {
int x;
int values[2];

x = 0;
values[0] = 5;
values[1] = 10;

x = func(x, x, values);

printf(“%d, %d, %d”, x, values[0], values[1]);
}

A. 0, 5, 8
B. 0, 5, 10
C. 1, 0, 8
D. 1, 5, 8
E. 1, 5, 10

Hint: Still accessing the same
memory location of array in func

Slide 90

(Mem address)

What will this print?

Stack

main:
x:

values:

0

105

Slide 91

int func(int a, int y, int my_array[])
{

y = 1;
my_array[a] = 0;
my_array[y] = 8;
return y;

}

int main() {
int x;
int values[2];

x = 0;
values[0] = 5;
values[1] = 10;

x = func(x, x, values);
printf(“%d, %d, %d”, x, values[0],

values[1]);
}

(Mem address)

What will this print?

Stack

main:
x:

values:

0

10

func:
0a:

my_array:
(Mem address)

5

0y:

Slide 92

int func(int a, int y, int my_array[])
{

y = 1;
my_array[a] = 0;
my_array[y] = 8;
return y;

}

int main() {
int x;
int values[2];

x = 0;
values[0] = 5;
values[1] = 10;

x = func(x, x, values);
printf(“%d, %d, %d”, x, values[0],

values[1]);
}

(Mem address)

Stack

main:
x:

values:

0

10

func:
0a:

my_array:
(Mem address)

5

1y:

Slide 93

What will this print?
int func(int a, int y, int my_array[])
{

y = 1;
my_array[a] = 0;
my_array[y] = 8;
return y;

}

int main() {
int x;
int values[2];

x = 0;
values[0] = 5;
values[1] = 10;

x = func(x, x, values);
printf(“%d, %d, %d”, x, values[0],

values[1]);
}

(Mem address)

What will this print?

Stack

main:
x:

values:

0

8

func:
0a:

my_array:
(Mem address)

0

1y:

int func(int a, int y, int my_array[])
{

y = 1;
my_array[a] = 0;
my_array[y] = 8;
return y;

}

int main() {
int x;
int values[2];

x = 0;
values[0] = 5;
values[1] = 10;

x = func(x, x, values);
printf(“%d, %d, %d”, x, values[0],

values[1]);
} Slide 94

(Mem address)

What will this print?

Stack

main:
x:

values:

1

80

Slide 95

int func(int a, int y, int my_array[])
{

y = 1;
my_array[a] = 0;
my_array[y] = 8;
return y;

}

int main() {
int x;
int values[2];

x = 0;
values[0] = 5;
values[1] = 10;

x = func(x, x, values);
printf(“%d, %d, %d”, x, values[0],

values[1]);
}

structs
• Treat a collection of values as a single type:
– C is not an object oriented language, no classes
– A struct is like just the data part of a class

• Rules:
1. Define a new struct type outside of any function
2. Declare variables of the new struct type
3. Use dot notation to access the different field values

of the struct variable

Slide 96

Struct Example
Suppose we want to represent a student type.
struct student {

char name[20];
int grad_year;
float gpa;

};
// Variable bob is of type struct student
struct student bob;
// Set name (string) with strcpy()
strcpy(bob.name, “Robert Paulson”);
bob.grad_year = 2019;
bob.gpa = 3.1;

printf(“Name: %s, year: %d, GPA: %f”, bob.name,
bob.grad_year, bob.gpa);

Slide 97

Arrays of Structs
struct student {

char name[20];
int grad_year;
float gpa;

};
//create an array of struct students!
struct student classroom[50];

strcpy(classroom[0].name, “Alice”);
classroom[0].grad_year = 2014
classroom[0].gpa = 4.0;

// With a loop, create an army of Alice clones!
int i;
for (i = 0; i < 50; i++) {

strcpy(classroom[i].name, “Alice”);
classroom[i].grad_year = 2014;
classroom[i].gpa = 4.0;

}
Slide 98

Arrays of Structs

struct student classroom[50];

strcpy(classroom[0].name, “Alice”);
classroom[0].grad_year = 2019;
classroom[0].gpa = 4.0;

strcpy(classroom[1].name, “Bob”);
classroom[1].grad_year = 2020;
classroom[1].gpa = 3.1

strcpy(classroom[2].name, “Cat”);
classroom[2].grad_year = 2021;
classroom[2].gpa = 3.4

Slide 99

Struct: Layout in Memory

Slide 100

‘A’ ‘l’ ‘i’ ‘c
’

‘e
’

‘\0
’

… ‘B’ ‘o
’

‘b
’

‘\0’ … ‘C’ ‘a’ ‘t
’

‘\
0’

…

2019 2020 2021

4.0 3.1 3.4

classroom:

[0] [1] [2]

Fear not!

• Don’t worry, I don’t expect you to have mastered C.
• It’s a skill you’ll pick up as you go.
• We’ll revisit these topics when necessary.

• When in doubt: solve the problem in English,
whiteboard pictures, whatever else!
– Translate to C later.
– Eventually, you’ll start to think in C.

Slide 101

Up next…

• Digital circuits

Slide 102

