
CS 31: Introduction to Computer Systems

03: Binary Arithmetic
January 28

Clicker Question:
Have you registered your clicker?

A. Yes
B. No
C. What’s a clicker?

Check your frequency:

• Iclicker2: frequency AA
• Iclicker+: green light next to selection

For new devices this should be okay,
For used you may need to reset frequency

Reset:
1. hold down power button until

blue light flashes (2secs)
2. Press the frequency code: AA

vote status light will indicate success

Reading Quiz

Abstraction

User / Programmer
Wants low complexity

Applications
Specific functionality

Software library
Reusable functionality

Complex devices
Compute & I/O

Operating system
Manage resources

Slide 10

Abstraction

Complex devices
Compute & I/O

Slide 11

100000000
101010100

Today

• Binary Arithmetic
– Unsigned addition
– Subtraction

• Representation
– Signed magnitude
– Two’s complement
– Signed overflow

• Bit operations

Slide 12

Last Class: Binary Digits: (BITS)

Representation: 1 x 27 + 0 x 26 ….. + 1 x 23 + 1 x 22 + 1 x 21 +
1 x 20

10001111 = 143

10001111Most significant bit Least significant bit
7 6 5 4 3 2 1 0

Slide 13

one byte is the smallest addressable unit - contains 8 bits

Last Class: Unsigned Integers

• Suppose we had one byte
– Can represent 28 (256) values
– If unsigned (strictly non-negative): 0 – 255

What if we add one more?

Slide 14

Last Class: Unsigned Arithmetic (one byte)

• one byte
– 28 (256) values
– unsigned : 0 – 255

0 = 00000000
1 = 00000001
2 = 00000010
…

254 = 11111110
255 = 11111111add
one more?

0
(00000000)

255
(11111111)

Number line: Addition

255 =
1*27 + … + 1*20

+1

+1

Slide 15

Last Class: Unsigned Arithmetic (one byte)

• one byte

– 28 (256) values

– unsigned : 0 – 255

252 = 11111100

253 = 11111101

254 = 11111110

255 = 11111111

What if we add one more?

255 + 1 is ?

Car odometer “rolls over”.

0

(00000000)

255

(11111111)

Addition

+1

+1

we cannot represent an

infinite number of

values in a finite storage

space

Slide 16

Last Class: Arithmetic and Fixed Storage

0

128
(10000000)

64192

255 (11111111)

Addition

Modular arithmetic: Here, all values are modulo 256. Slide 17

• Fixed Storage: finite set of
values
– 1 byte: 28 (256) values
– unsigned values: 0 – 255

• Yields Modular Arithmetic
– All operations are % 256
(eg) 255 + 4 = 259 % 256 = 3

Last Class: Unsigned Addition (4-bit)

Addition works like grade school addition:

1
0110 6 1100 12

+ 0100 + 4 + 1010 +10
1010 10 1 0110 6

^carry out

Four bits give us range: 0 - 15

Slide 18

Last Class: Unsigned Addition (4-bit)

Addition works like grade school addition:

1
0110 6 1100 12

+ 0100 + 4 + 1010 +10
1010 10 1 0110 6

^carry out

Four bits give us range: 0 - 15 Overflow!

Slide 19

Last Class: Arithmetic and Fixed Storage

0

128
(10000000)

64192

255 (11111111)

Addition

Slide 20

• Fixed Storage: finite set of
values
– 1 byte: 28 (256) values
– unsigned values: 0 – 255

Not Used: Signed Magnitude Representation
(for 4 bit values)

Slide 21

One bit (usually left-most) signals:

– 0 for positive

– 1 for negative

For one byte:

1 = 00000001

-1 = 10000001

For one byte:

0 = 00000000

-0? = 10000000

Pros: Negation
(negative value of a
number) is very
simple!

Major con: Two ways
to represent zero.

Slide 22

Used Today: Two’s Complement Representation
(for four bit values)

• Borrow nice property
from number line:

0

-1 1

Only one instance of zero!
Implies: -1 and 1 on either side of it.

For an 8 bit range we can express 256
unique values:
• 128 non-negative values (0 to 127)

• 128 negative values (-1 to -128)

Two’s Complement
• Only one value for zero
• With N bits, can represent the range:

§ -2N-1 to 2N-1 – 1
• Most significant bit still designates
– 0: positive
– 1: negative

• Negating a value is slightly more complicated:
1 = 00000001, -1 = 11111111

From now on, unless we explicitly say otherwise, we’ll assume all integers
are stored using two’s complement! This is the standard! Slide 23

Two’s Complement

• Each two’s complement number is now:
[-2n-1*dn-1] + [2n-2*dn-2] +…+ [21*d1] + [20*d0]

Note the negative sign on just the most significant bit. This is
why first bit tells us whether the value is negative vs. positive.

Slide 24

If we interpret 11001 as a two’s complement
number, what is the value in decimal?

Each two’s complement number is now:
[-2n-1*dn-1] + [2n-2*dn-2] +…+ [21*d1] + [20*d0]

A. -2

B. -7

C. -9

D. -25
Slide 25

If we interpret 11001 as a two’s complement
number, what is the value in decimal?

Each two’s complement number is now:
[-2n-1*dn-1] + [2n-2*dn-2] +…+ [21*d1] + [20*d0]

A. -2

B. -7

C. -9

D. -25
Slide 26

-16 + 8 + 1 = -7

“If we interpret…”

What is the decimal value of 1100?

• …as unsigned, 4-bit value: 12 (%u)
• …as signed (two’s comp), 4-bit value: -4 (%d)

• …as an 8-bit value: 12. (i.e., 0000 1100)

Slide 27

Two’s Complement Negation

• To negate a value x, we want to
find y such that x + y = 0.

• For N bits, y = 2N - x

B

Slide 28

0

-127

-1 1

127

-128

unsigned

128

254
255 0

Negation Example (8 bits)

• For N bits, y = 2N - x
• Negate the value (2) 00000010
• 28 - 2 = 256 - 2 = 254

• Our wheel only goes to 127!
– Put -2 where 254 would be

if wheel was unsigned.
– 254 in binary is 11111110

0

-127

-1

B

1

127
-128

Slide 29

-2

signed

Given 11111110, it’s 254 if interpreted as
unsigned and -2 interpreted as signed.

Negation Shortcut

• A much easier, faster way to negate:
– Flip the bits (0’s become 1’s, 1’s become 0’s)
– Add 1

• Negate 00101110 (46)

• Formally:
– 28 - 46 = 256 - 46 = 210
– 210 in binary is 11010010

Slide 30

46: 00101110

Flip the bits: 11010001

Add 1 + 1

-46: 11010010

Negation Two Ways

4 bit Examples
x -x 24 - x Bit flip + 1

0000 0000 10000 – 0000 = 0000 1111 + 1 = 0000

0001 1111 10000 – 0001 = 1111 1110 + 1 = 1111

0010 110 10000 – 0010 = 1110 1101 + 1 = 1110

0111 1001 10000 – 0111 = 1001 1000 + 1 = 1001

Slide 31

Decimal to Two’s Complement with 8 bit values
(high-order bit is the sign bit)

for positive values, use same algorithm as for unsigned
• (E.g.)6 6 - 4 = 2 (4:22)
• 2 – 2 = 0 (2:21): 00000110

for negative values:
• convert negation (positive) to binary
• then negate binary to get negative

E.g.: -3
• 3: 00000011
• negate: 11111100+1 = 11111101 = -3

Slide 32

Decimal to Two’s Complement with 8 bit values
(high-order bit is the sign bit)

for negative values:
• convert negation (positive) to binary
• then negate binary to get negative

Try converting -7 to Two’s Complement representation

A. 11111001
B. 00000111
C. 11111000
D. 11110011

Slide 33

Decimal to Two’s Complement with 8 bit values
(high-order bit is the sign bit)

for negative values:

• convert negation (positive) to binary

• then negate binary to get negative

Try converting -7 to Two’s Complement representation

A. 11111001

B. 00000111

C. 11111000

D. 11110011

Slide 34

-7 = (1) 7: 00000111
(2) negate: 11111000 + 1 = 11111001

Addition & Subtraction for Integers

• Addition is the same as for unsigned
– One exception: different rules for overflow
– Can use the same hardware for both

• Subtraction is the same operation as addition
– Just need to negate the second operand…

• 6 - 7 = 6 + (-7) = 6 + (~7 + 1)
– ~7 is shorthand for “flip the bits of 7”

Slide 35

Subtraction Hardware

Negate and add 1 to second operand:

Can use the same circuit for add and subtract:

6 - 7 == 6 + ~7 + 1

input 1 ------------------------------->

input 2 --> possible bit flipper --> ADD CIRCUIT ---> result

possible +1 input-------->

Slide 36

Let’s call this possible +1 input: “Carry in”

(0: on add, 1: on subtract)

4-bit signed Examples:

Subtraction via Addition:
– a-b is same as a + ~b + 1

Subtraction: flip bits and add 1
3 - 6 = 0011

1001 (6: 0110 ~6: 1001)
+ 1
1101 = -3

Addition: don’t flip bits or add 1

3 + -6 = 0011
+ 1010
1101 = -3 Slide 37

Signed & Unsigned 4-bit Subtraction:

Unsigned subtraction: flip bits and add 1

13 - 1 =

Signed subtraction: flip bits and add 1

-3 - 1 =

Slide 38

A. 1100 & 1100
B. 1100 & 1010
C. 1010 & 1010
D.1001 & 1100

Signed & Unsigned 4-bit Subtraction:

Unsigned subtraction: flip bits and add 1

13 - 1 = 1101
1110 (1: 0001 ~1: 1110)

+ 1
1 1100 = 12

Signed subtraction: flip bits and add 1

-3 - 1 = 1101
1110

+ 1
1 1100 = -4

Slide 39

By switching to two’s complement, have
we solved this value “rolling over”
(overflow) problem?

A. Yes, it’s gone.

B. Nope, it’s still there.

C. It’s even worse now.

0

-127

-1

B

1

127

-128

Slide 40

By switching to two’s complement, have
we solved this value “rolling over”
(overflow) problem?

A. Yes, it’s gone.

B. Nope, it’s still there.

C. It’s even worse now.

0

-127

-1

B

1

127

-128This is an issue we need to be aware of
when adding and subtracting!

Slide 41

Overflow, Revisited

0

-127

-1

Signed

1

127

-128

0

128

64192

255

Unsigned

Danger Zone

Danger Zone

Slide 42

If we add a positive number and a negative
number, will we have overflow? (Assume they
are the same # of bits)

A. Always

B. Sometimes

C. Never

0

-127

-1

Signed

1

127

-128

Danger Zone Slide 43

If we add a positive number and a negative
number, will we have overflow? (Assume they
are the same # of bits)

A. Always

B. Sometimes

C. Never

0

-127

-1

Signed

1

127

-128

Danger Zone Slide 44

Signed (Two’s Complement) Overflow For
Addition

– Addition Overflow: IFF the sign bits of operands are the same,
but the sign bit of result is different.

– Not enough bits to store result!

sign of operands = sign of result

3+4=7 -2+-3=-5
0011 1110

+0100 +1101
0111 1 1011

Slide 45

no overflow

0

-127

-1 1

127

-128

Signed (Two’s Complement) Overflow For
Addition

– Addition Overflow: IFF the sign bits of operands are the same,
but the sign bit of result is different.

– Not enough bits to store result!

sign of operands = sign of result sign of operands ≠ sign of result

3+4=7 -2+-3=-5 4+7=11 -6-8=-14
0011 1110 0100 1010

+0100 +1101 +0111 +1000
0111 1 1011 1011 1 0010

Slide 46

no overflow overflow

Signed (Two’s Complement) Overflow For Subtraction

Subtraction Overflow Two Rules:
– Rule 1:

• Positive operand - Negative operand = Positive Result: No Overflow
• Positive operand - Negative operand = Negative Result: Overflow
• Intuition: We know a positive – negative is equivalent to a

positive + positive. If this sum does not result in a positive value we have an
overflow

– Rule 2:

• Negative operand - Positive operand = Negative Result: No Overflow
• Negative operand - Positive operand = Positive Result: Overflow
• Intuition: We know a negative – positive number is equivalent to a

negative + negative number. If this sum does not result in a negative value we
have an overflow

Slide 47

Minuend Subtrahend

Minuend Subtrahend

Result

Result

Signed (Two’s Complement) Overflow For Subtraction

Subtraction Overflow Rules Summarized:
• IFF the sign bits of the subtraction operands are

different, and the sign bit of the Result and
Subtrahend are the same as shown below:
– Minuend - Subtrahend = Result
– If positive – negative = negative (overflow)
– If negative – positive = positive (overflow)

Slide 48

Signed (Two’s Complement) Overflow For Subtraction

Subtraction Overflow Two Rules:
– Rule 1:

• Positive operand - Negative operand = Positive Result: No Overflow
• Positive operand - Negative operand = Negative Result: Overflow

Slide 49

no overflow overflow

Subtrahend and Result have
different sign bits

2-(-3)=5
0010
-1110

3-(-4)=7
0011
-1100

0010
+0011
0101

0011
+0100
0111

2-(-6)=8
0010
-1010

3-(-7)=10
0011
-1001

0010
+0110
1000(-8)

0011
+0111
1010(-6)

Subtrahend and Result have the
same sign bits

Signed (Two’s Complement) Overflow For Subtraction

Subtraction Overflow Two Rules:
– Rule 2:

• Negative operand - Positive operand = Negative Result: No Overflow
• Negative operand - Positive operand = Positive Result: Overflow

Slide 50

no overflow overflow

Subtrahend and Result have
different sign bits

-2-(3)=-5
1110
-0011

-3-(4)=-7
1101
-0100

1110
+1101
1 1011(-5)

1101
+1100
1 1001(-7)

-2-(7)=-9
1110
-0111

-4-(7)=-11
1100
-0111

1110
+1001
1 0111(7)

1100
+0111
1 0011(-6)

Subtrahend and Result have the
same sign bits

Overflow Rules

• Signed (Two’s Complement):
– Addition:

• The sign bits of operands are the same, but the sign bit of result is
different.

– Subtraction:
• First compute the following: if the sign bits of the subtraction

operands are different, and the sign bit of the result and
subtrahend are the same. (minuend-subtrahend – result)

• then, turn into an Addition operation

• Can we formalize unsigned overflow?
– Need to include subtraction too, skipped it before.

Slide 51

Recall Subtraction Hardware

Negate and add 1 to second operand:

Can use the same circuit for add and subtract:

6 - 7 == 6 + ~7 + 1

input 1 ------------------------------->

input 2 --> possible bit flipper --> ADD CIRCUIT ---> result

possible +1 input-------->

Slide 52

Let’s call this possible +1 input: “Carry in”

(0: on add, 1: on subtract)

How many of these unsigned operations have
overflowed?
4 bit unsigned values (range 0 to 15):

carry-in carry-out
Addition (carry-in = 0)
9 + 11 = 1001 + 1011 + 0 = 1 0100
9 + 6 = 1001 + 0110 + 0 = 0 1111
3 + 6 = 0011 + 0110 + 0 = 0 1001

Subtraction (carry-in = 1)
6 - 3 = 0110 + 1100 + 1 = 1 0011
3 - 6 = 0011 + 1010 + 1 = 0 1101

A. 1
B. 2
C. 3
D. 4
E. 5

(-3)

(-6)

Slide 53

How many of these unsigned operations have
overflowed?
4 bit unsigned values (range 0 to 15):

carry-in carry-out
Addition (carry-in = 0)
9 + 11 = 1001 + 1011 + 0 = 1 0100 = 4
9 + 6 = 1001 + 0110 + 0 = 0 1111 = 15
3 + 6 = 0011 + 0110 + 0 = 0 1001 = 9

Subtraction (carry-in = 1)
6 - 3 = 0110 + 1100 + 1 = 1 0011 = 3
3 - 6 = 0011 + 1010 + 1 = 0 1101 = 13

A. 1
B. 2
C. 3
D. 4
E. 5

(-3)

(-6)

Slide 54

Pattern?

How many of these unsigned operations have
overflowed?
4 bit unsigned values (range 0 to 15):

carry-in carry-out
Addition (carry-in = 0)
9 + 11 = 1001 + 1011 + 0 = 1 0100 = 4
9 + 6 = 1001 + 0110 + 0 = 0 1111 = 15
3 + 6 = 0011 + 0110 + 0 = 0 1001 = 9

Subtraction (carry-in = 1)
6 - 3 = 0110 + 1100 + 1 = 1 0011 = 3
3 - 6 = 0011 + 1010 + 1 = 0 1101 = 13

A. 1
B. 2
C. 3
D. 4
E. 5

(-3)

(-6)

Slide 55

Pattern?

Overflow Rule Summary

• Signed overflow:
– The sign bits of operands are the same, but the sign bit of

result is different.

• Unsigned: overflow
– The carry-in bit is different from the carry-out.

Cin Cout Cin XOR Cout
0 0 0
0 1 1
1 0 1
1 1 0

So far, all arithmetic on values that were the same size. What if they’re different?

Slide 56

Sign Extension
• When combining signed values of different sizes,

expand the smaller to equivalent larger size:

char y=2, x=-13;
short z = 10;

z = z + y; z = z + x;

0000000000001010 0000000000000101
+ 00000010 + 11110011
0000000000000010 1111111111110011

Fill in high-order bits with sign-bit value to get same
numeric value in larger number of bytes.

Slide 57

Let’s verify that this works

4-bit signed value, sign extend to 8-bits, is it the same
value?

0111 ---> 0000 0111 obviously still 7
1010 ----> 1111 1010 is this still -6?

-128 + 64 + 32 + 16 + 8 + 0 + 2 + 0 = -6 yes!

Slide 58

Operations on Bits

• For these, doesn’t matter how the bits are
interpreted (signed vs. unsigned)

• Bit-wise operators (AND, OR, NOT, XOR)

• Bit shifting

Slide 59

Bit-wise Operators
• bit operands, bit result (interpret as you please)

& (AND) | (OR) ~(NOT) ^(XOR)

A B A & B A | B ~A A ^ B
0 0 0 0 1 0
0 1 0 1 1 1
1 0 0 1 0 1
1 1 1 1 0 0

01010101 01101010 10101010 ~10101111
| 00100001 & 10111011 ^ 01101001 01010000

01110101 00101010 11000011

Slide 60

More Operations on Bits
• Bit-shift operators: << left shift, >> right shift

01010101 << 2 is 01010100
2 high-order bits shifted out
2 low-order bits filled with 0

01101010 << 4 is 10100000
01010101 >> 2 is 00010101
01101010 >> 4 is 00000110

10101100 >> 2 is 00101011 (logical shift)
or 11101011 (arithmetic shift)

Arithmetic right shift: fills high-order bits w/sign bit
C automatically decides which to use based on type:

signed: arithmetic, unsigned: logical
Slide 61

Try out some 4-bit examples:

bit-wise operations:
• 0101 & 1101
• 0101 | 1101

Logical (unsigned) bit shift:
• 1010 << 2
• 1010 >> 2

Arithmetic (signed) bit shift:
• 1010 << 2
• 1010 >> 2

Slide 62

Try out some 4-bit examples:

bit-wise operations:
• 0101 & 1101 = 0101
• 0101 | 1101 = 1101

Logical (unsigned) bit shift:
• 1010 << 2 = 1000
• 1010 >> 2 = 0010

Arithmetic (signed) bit shift:
• 1010 << 2 = 1000
• 1010 >> 2 = 1110

Slide 63

Additional Info: Fractional binary numbers

0 1-1….-11982 15 999…99

−1
2

1
8

1
2

How do we represent fractions in binary?

Slide 64

Additional Info: Representing Signed Float
Values

• One option (used for floats, NOT integers)
– Let the first bit represent the sign
– 0 means positive
– 1 means negative

• For example:
– 0101 -> 5
– 1101 -> -5

• Problem with this scheme?

Slide 65

Additional Info: Floating Point Representation

1 bit for sign sign | exponent | fraction |
8 bits for exponent

23 bits for precision

value = (-1)sign * 1.fraction * 2(exponent-127)

let's just plug in some values and try it out

0x40ac49ba: 0 10000001 01011000100100110111010
sign = 0 exp = 129 fraction = 2902458

= 1*1.2902458*22 = 5.16098

I don’t expect you to memorize this

Slide 66

Up Next

• C programming

Slide 67

