CS 31: Introduction to Computer Systems

03: Binary Arithmetic January 28

Clicker Question: Have you registered your clicker?

- A. Yes
- B. No
- C. What's a clicker?

Check your frequency:

- Iclicker2: frequency AA
- Iclicker+: green light next to selection

For new devices this should be okay, For used you may need to reset frequency

Reset:

- 1. hold down power button until blue light flashes (2secs)
- 2. Press the frequency code: AA vote status light will indicate success

Reading Quiz

Abstraction

Abstraction

Slide 11

Today

- Binary Arithmetic
 - Unsigned addition
 - Subtraction
- Representation
 - Signed magnitude
 - Two's complement
 - Signed overflow
- Bit operations

Last Class: Binary Digits: (BITS) Most significant bit $\longrightarrow 10001111 \longrightarrow 10001111$ Least significant bit Representation: $1 \times 2^7 + 0 \times 2^6 \dots + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$

10001111 = 143

one byte is the smallest addressable unit - contains 8 bits

Last Class: Unsigned Integers

- Suppose we had one byte
 - Can represent 2⁸ (256) values
 - If unsigned (strictly non-negative): 0 255

Last Class: Unsigned Arithmetic (one byte)

- one byte
 - 2⁸ (256) values
 - unsigned : 0 255

Last Class: Unsigned Arithmetic (one byte)

- one byte
 - 2⁸ (256) values
 - unsigned : 0 255

we cannot represent an infinite number of values in a finite storage space

252 = 11111100 253 = 11111101 +1 254 = 1111110255 = 11111111 +1

Car odometer "rolls over".

What if we add one more? 255 + 1 is ?

Last Class: Arithmetic and Fixed Storage

- Fixed Storage: finite set of values
 - 1 byte: 2⁸ (256) values
 - unsigned values: 0 255
- Yields Modular Arithmetic

 All operations are % 256
 (eg) 255 + 4 = 259 % 256 = 3

Modular arithmetic: Here, all values are modulo 256.

Last Class: Unsigned Addition (4-bit)

Addition works like grade school addition:

Four bits give us range: 0 - 15

Last Class: Unsigned Addition (4-bit)

Addition works like grade school addition:

Four bits give us range: 0 - 15

Overflow!

Last Class: Arithmetic and Fixed Storage

- Fixed Storage: finite set of values
 - 1 byte: 2⁸ (256) values
 - unsigned values: 0 255

<u>Not Used:</u> Signed Magnitude Representation (for 4 bit values)

Figure 1. A logical layout of signed magnitude values for bit sequences of length four.

One bit (usually left-most) signals:

- 0 for positive
- 1 for negative

Pros: Negation (negative value of a number) is very simple!

For one byte:

- 0 = 00000000
- -0? = 10000000

Major con: Two ways to represent zero.

<u>Used Today:</u> Two's Complement Representation (for four bit values)

For an 8 bit range we can express 256 unique values:

- 128 non-negative values (0 to 127)
- 128 negative values (-1 to -128)

• Borrow nice property from number line:

Only one instance of zero! Implies: -1 and 1 on either side of it.

Two's Complement

- Only one value for zero
- With N bits, can represent the range:
 - -2^{N-1} to 2^{N-1} 1
- <u>Most significant bit still designates</u>
 - 0: positive
 - 1: negative
- Negating a value is slightly more complicated:

1 = 0000001, -1 = 1111111

From now on, unless we explicitly say otherwise, we'll assume all integers are stored using two's complement! This is the standard!

Two's Complement

• Each two's complement number is now:

 $[-2^{n-1*}d_{n-1}] + [2^{n-2*}d_{n-2}] + ... + [2^{1*}d_1] + [2^{0*}d_0]$

Note the <u>negative sign</u> on just the most significant bit. This is why first bit tells us whether the value is negative vs. positive. If we interpret 11001 as a two's complement number, what is the value in decimal?

Each two's complement number is now: $[-2^{n-1*}d_{n-1}] + [2^{n-2*}d_{n-2}] + ... + [2^{1*}d_1] + [2^{0*}d_0]$ A. -2

B. -7

C. -9

D. -25

If we interpret 11001 as a two's complement number, what is the value in decimal?

Each two's complement number is now: $[-2^{n-1*}d_{n-1}] + [2^{n-2*}d_{n-2}] + ... + [2^{1*}d_1] + [2^{0*}d_0]$ A. -2

B. <u>-7</u> -16 + 8 + 1 = -7

C. -9

D. -25

"If we interpret..."

What is the decimal value of 1100?

- ...as unsigned, 4-bit value: 12 (%u)
- ...as signed (two's comp), 4-bit value: -4 (%d)
- ...as an 8-bit value: 12. (i.e., **0000** 1100)

Two's Complement Negation

- To negate a value x, we want to find y such that x + y = 0.
- For N bits, $y = 2^N x$

Negation Example (8 bits)

Negation Shortcut

- A much easier, faster way to negate:
 - Flip the bits (0's become 1's, 1's become 0's)
 - Add 1
- Negate 00101110 (46)
- Formally:
 - $-2^{8} 46 = 256 46 = 210$
 - 210 in binary is 11010010

46:	00101110	
Flip the bits: 11010001		
<u>Add 1 + 1</u>		
-46:	11010010	

Negation Two Ways

4 bit Examples			
x	-X	2 ⁴ - x	Bit flip + 1
0000	0000	10000 - 0000 = 0000	1111 + 1 = 0000
0001	1111	10000 - 0001 = 1111	1110 + 1 = 1111
0010	110	10000 - 0010 = 1110	1101 + 1 = 1110
0111	1001	10000 - 0111 = 1001	1000 + 1 = 1001

Decimal to Two's Complement with 8 bit values (high-order bit is the sign bit)

for positive values, use same algorithm as for unsigned

- (E.g.) 6 6 4 = 2 $(4:2^2)$
- 2 2 = 0 (2:2¹): 00000110

for negative values:

- convert negation (positive) to binary
- then negate binary to get negative

E.g.: -3

- 3: 00000011
- negate: 11111100+1 = 11111101 = -3

Decimal to Two's Complement with 8 bit values (high-order bit is the sign bit)

for negative values:

- convert negation (positive) to binary
- then negate binary to get negative

Try converting -7 to Two's Complement representation

- A. 11111001
- B. 00000111
- C. 11111000
- D. 11110011

Decimal to Two's Complement with 8 bit values (high-order bit is the sign bit)

for negative values:

- convert negation (positive) to binary
- then negate binary to get negative

Try converting -7 to Two's Complement representation

- A. 11111001
- B. 00000111

-7 = (1) 7: 00000111(2) negate: 11111000 + 1 = 11111001

- C. 11111000
- D. 11110011

Addition & Subtraction for Integers

- Addition is the same as for unsigned
 - One exception: different rules for overflow
 - Can use the same hardware for both
- Subtraction is the same operation as addition
 Just need to negate the second operand...
- $6 7 = 6 + (-7) = 6 + (^{7} + 1)$

- ~7 is shorthand for "flip the bits of 7"

Subtraction Hardware

Negate and add 1 to second operand:

Can use the same circuit for add and subtract:

 $6 - 7 == 6 + ^7 + 1$

4-bit signed Examples:

Subtraction via Addition:

- a-b is same as a + ab + 1

Subtraction: flip bits and add 1

$$3 - 6 = 0011$$

$$1001 (6: 0110 ~6: 1001)$$

$$+ \frac{1}{1101} = -3$$

Addition: don't flip bits or add 1

$$3 + -6 = 0011$$

+ $\frac{1010}{1101} = -3$

Slide 37

Signed & Unsigned 4-bit Subtraction:

Unsigned subtraction: flip bits and add 1

13 - 1 =

Signed subtraction: flip bits and add 1

-3 - 1 =

A. 1100 & 1100
B. 1100 & 1010
C. 1010 & 1010
D. 1001 & 1100

Signed & Unsigned 4-bit Subtraction:

Unsigned subtraction: flip bits and add 1

$$13 - 1 = 1101$$

$$1110 (1: 0001 ~1: 1110)$$

$$+ 1$$

$$1 1100 = 12$$

Signed subtraction: flip bits and add 1

$$\begin{array}{rcrcrcrcrc}
-3 & -1 & = & 1101 \\ & & 1110 \\ & + & 1 \\ 1 & 1100 & = -4 \end{array}$$

By switching to two's complement, have we solved this value "rolling over" (overflow) problem?

A. Yes, it's gone.

- B. Nope, it's still there.
- C. It's even worse now.

By switching to two's complement, have we solved this value "rolling over" (overflow) problem?

A. Yes, it's gone.

- B. Nope, it's still there.
- C. It's even worse now.

This is an issue we need to be aware of when adding and subtracting!

Slide 42

Danger Zone

Overflow, Revisited

If we add a positive number and a negative number, will we have overflow? (Assume they are the same # of bits)

- A. Always
- **B.** Sometimes
- C. Never

If we add a positive number and a negative number, will we have overflow? (Assume they are the same # of bits)

-1 A. Always **B.** Sometimes C. Never

0 Signed -127 127 -128 Slide 44 Danger Zone

- <u>Addition Overflow</u>: IFF the sign bits of <u>operands are the same</u>, but the sign bit of <u>result is different</u>.
- Not enough bits to store result!

sign of operands = sign of result

no overflow						
3+4=7	-2+-3=-5					
0 011	1 110					
+ <mark>0</mark> 100	+ <mark>1</mark> 101					
0 111	1 1 011					

Slide 46

- <u>Addition Overflow</u>: IFF the sign bits of <u>operands are the same</u>, but the sign bit of <u>result is different</u>.
- Not enough bits to store result!

Subtraction Overflow Two Rules:

– Rule 1:

- Positive operand Negative operand = Positive Result: No Overflow
- Positive operand Negative operand = Negative Result: Overflow
- Intuition: We know a positive negative is equivalent to a positive + positive. If this sum does not result in a positive value we have an overflow

– Rule 2:

- Negative operand Positive operand = Negative Result: No Overflow
- Negative operand Positive operand = Positive Result: Overflow
- Intuition: We know a negative positive number is equivalent to a negative + negative number. If this sum does not result in a negative value we have an overflow

Subtraction Overflow Rules Summarized:

- IFF the sign bits of the subtraction operands are different, and the sign bit of the Result and Subtrahend are the same as shown below:
 - Minuend Subtrahend = Result
 - If positive negative = negative (overflow)
 - If negative positive = positive (overflow)

Subtraction Overflow Two Rules:

- Rule 1:
 - Positive operand Negative operand = Positive Result: No Overflow
 - Positive operand Negative operand = Negative Result: Overflow

Subtraction Overflow Two Rules:

- Rule 2:
 - Negative operand Positive operand = Negative Result: No Overflow
 - Negative operand Positive operand = Positive Result: Overflow

Overflow Rules

- Signed (Two's Complement):
 - Addition:
 - The sign bits of operands are the same, but the sign bit of result is different.
 - Subtraction:
 - First compute the following: if the sign bits of the subtraction operands are different, and the sign bit of the result and subtrahend are the same. (minuend-subtrahend result)
 - then, turn into an Addition operation
- Can we formalize unsigned overflow?

Need to include subtraction too, skipped it before.

Recall Subtraction Hardware

Negate and add 1 to second operand:

Can use the same circuit for add and subtract:

 $6 - 7 == 6 + ^7 + 1$

How many of these <u>unsigned</u> operations have overflowed?

4 bit unsigned values (range 0 to 15):

carry-in carry-out Addition (carry-in = 0) 1001 + 1011 + 0 =9 + 11 1 0100 = 9 + 6 = 1001 + 0110 + 0 = 0 11113 + 6 = 0011 + 0110 + 0 = 0 1001(-3) Subtraction (carry-in = 1) 6 – 3 = 0110 + 1100 + 1 = 1 0011 3 - 6 = 0011 + 1010 + 1 = 0 1101(-6) 1 Α. B. 2 C. 3 D. 4 Ε. 5

How many of these <u>unsigned</u> operations have overflowed?

4 bit unsigned values (range 0 to 15):

carry-in carry-out Addition (carry-in = 0) 1001 + 1011 + 0 = $1 \quad 0100 =$ 9 + 11 = - 4 9 + 6 = 1001 + 0110 + 0 = 0 1111= 153 + 6 = 0011 + 0110 + 0 = 0 1001 = 9(-3) Subtraction (carry-in = 1) 6 – 3 = 0110 + 1100 + 1 = 1 0011 = 3 3 - 6 = $0011 + 1010 + 1 = 0 \quad 1101 = 13$ (-6) 1 Α. 2 Β. Pattern? 3 С. 4 D. Ε. 5

Slide 54

How many of these <u>unsigned</u> operations have overflowed?

4 bit unsigned values (range 0 to 15):

carry-in carry-out Addition (carry-in = 0) 1001 + 1011 + 0 = $1 \quad 0100 =$ 9 + 11 = - 4 9 + 6 = 1001 + 0110 + 0 = 0 1111= 153 + 6 = 0011 + 0110 + 0 = 0 1001 = 9(-3) Subtraction (carry-in = 1) 6 – 3 = 0110 + 1100 + 1 = 1 0011 = 3 3 - 6 = $0011 + 1010 + 1 = 0 \quad 1101 = 13$ (-6) 1 Α. B. 2 Pattern? 3 С. 4 D. Ε. 5

Overflow Rule Summary

- Signed overflow:
 - The sign bits of operands are the same, but the sign bit of result is different.
- Unsigned: overflow
 - The carry-in bit is different from the carry-out.

So far, all arithmetic on values that were the same size. What if they're different?

Sign Extension

• When combining signed values of different sizes, expand the smaller to equivalent larger size:

Fill in high-order bits with sign-bit value to get same numeric value in larger number of bytes.

Let's verify that this works

4-bit signed value, sign extend to 8-bits, is it the same value?

0111 ---> 0000 0111 obviously still 7

1010 ----> 1111 1010 is this still -6?

-128 + 64 + 32 + 16 + 8 + 0 + 2 + 0 = -6 yes!

Operations on Bits

- For these, doesn't matter how the bits are interpreted (signed vs. unsigned)
- Bit-wise operators (AND, OR, NOT, XOR)
- Bit shifting

Bit-wise Operators

bit operands, bit result (interpret as you please)
 & (AND) | (OR) ~(NOT) ^(XOR)

A	В	A & 1	3 A	B ~A	A ^	B
0	0	0	0	1	0	
0	1	0	1	1	1	
1	0	0	1	0	1	
1	1	1	1	0	0	
0101	10101	0110	01010	1010101	_0 <u>~10</u>)101111
001	0001	& 1011	11011	^ 0110100	01 01	010000
0111	10101	0010	01010	1100001	1	

More Operations on Bits

• Bit-shift operators: << left shift, >> right shift

Arithmetic right shift: fills high-order bits w/sign bitC automatically decides which to use based on type:signed: arithmetic, unsigned: logical

Try out some 4-bit examples:

bit-wise operations:

- 0101 & 1101
- 0101 | 1101

Logical (unsigned) bit shift:

- 1010 << 2
- 1010 >> 2

Arithmetic (signed) bit shift:

- 1010 << 2
- 1010 >> 2

Try out some 4-bit examples:

bit-wise operations:

- 0101 & 1101 = **0101**
- 0101 | 1101 = **1101**

Logical (unsigned) bit shift:

- 1010 << 2 = **1000**
- 1010 >> 2 = **0010**

Arithmetic (signed) bit shift:

- 1010 << 2 = **1000**
- 1010 >> 2 = **1110**

Additional Info: Fractional binary numbers

How do we represent fractions in binary?

Additional Info: Representing Signed Float Values

- One option (used for floats, <u>NOT integers</u>)
 - Let the first bit represent the sign
 - 0 means positive
 - 1 means negative
- For example:
 - <u>– 0</u>101 -> 5
 - <u>-1</u>101 -> -5
- Problem with this scheme?

Additional Info: Floating Point Representation

1 bit for sign sign | exponent | fraction |
8 bits for exponent
23 bits for precision

value = (-1)^{sign} * 1.fraction * 2^(exponent-127)

let's just plug in some values and try it out

0x40ac49ba: 0 10000001 01011000100100110111010 sign = 0 exp = 129 fraction = 2902458

 $= 1 \times 1.2902458 \times 2^2 = 5.16098$

I don't expect you to memorize this

Up Next

• C programming