
CS 31: Introduction to Computer Systems

03: Binary Arithmetic
January 28



Clicker Question:
Have you registered your clicker?

A. Yes
B. No
C. What’s a clicker?

Check your frequency:

• Iclicker2: frequency AA
• Iclicker+: green light next to selection

For new devices this should be okay,
For used you may need to reset frequency

Reset:
1. hold down power button until 

blue light flashes (2secs)
2. Press the frequency code: AA

vote status light will indicate success



Reading Quiz



Abstraction

User / Programmer
Wants low complexity

Applications
Specific functionality

Software library
Reusable functionality

Complex devices
Compute & I/O

Operating system
Manage resources
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Abstraction

Complex devices
Compute & I/O
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100000000
101010100



Today

• Binary Arithmetic
– Unsigned addition 
– Subtraction

• Representation
– Signed magnitude
– Two’s complement
– Signed overflow

• Bit operations
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Last Class: Binary Digits: (BITS)

Representation: 1 x 27 + 0 x 26 ….. + 1 x 23 + 1 x 22 + 1 x 21 + 
1 x 20

10001111 = 143

10001111Most significant bit Least significant bit
7 6 5 4 3 2 1 0
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one byte is the smallest addressable unit - contains 8 bits 



Last Class: Unsigned Integers

• Suppose we had one byte
– Can represent 28 (256) values
– If unsigned (strictly non-negative): 0 – 255

What if we add one more?

Slide 14



Last Class: Unsigned Arithmetic (one byte)

• one byte
– 28 (256) values
– unsigned : 0 – 255

0 = 00000000
1 = 00000001
2 = 00000010
…

254 = 11111110
255 = 11111111add 
one more?

0
(00000000)

255
(11111111)

Number line: Addition

255 =
1*27 + … + 1*20

+1

+1
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Last Class: Unsigned Arithmetic (one byte)

• one byte

– 28 (256) values

– unsigned : 0 – 255

252 = 11111100

253 = 11111101

254 = 11111110

255 = 11111111

What if we add one more?

255 + 1 is ?

Car odometer “rolls over”.

0

(00000000)

255

(11111111)

Addition

+1

+1

we cannot represent an 

infinite number of 

values in a finite storage 

space
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Last Class: Arithmetic and Fixed Storage

0

128 
(10000000)

64192

255 (11111111)

Addition

Modular arithmetic: Here, all values are modulo 256. Slide 17

• Fixed Storage: finite set of 
values 
– 1 byte: 28 (256) values
– unsigned values: 0 – 255

• Yields Modular Arithmetic
– All operations are % 256
(eg) 255 + 4 = 259 % 256 = 3



Last Class: Unsigned Addition (4-bit)

Addition works like grade school addition:

1
0110    6       1100    12

+ 0100 + 4 + 1010 +10
1010   10     1 0110     6

^carry out

Four bits give us range: 0 - 15
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Last Class: Unsigned Addition (4-bit)

Addition works like grade school addition:

1
0110    6       1100    12

+ 0100 + 4 + 1010 +10
1010   10     1 0110     6

^carry out

Four bits give us range: 0 - 15 Overflow!
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Last Class: Arithmetic and Fixed Storage

0

128 
(10000000)

64192

255 (11111111)

Addition
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• Fixed Storage: finite set of 
values 
– 1 byte: 28 (256) values
– unsigned values: 0 – 255



Not Used: Signed Magnitude Representation 
(for 4 bit values)
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One bit (usually left-most) signals:

– 0 for positive

– 1 for negative

For one byte:

1 = 00000001

-1 = 10000001

For one byte:

0   = 00000000

-0? = 10000000

Pros: Negation 
(negative value of a 
number) is very 
simple!

Major con: Two ways 
to represent zero.
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Used Today: Two’s Complement Representation 
(for four bit values)

• Borrow nice property 
from number line:

0

-1 1

Only one instance of zero!
Implies: -1 and 1 on either side of it.

For an 8 bit range we can express 256 
unique values:
• 128 non-negative values (0 to 127)

• 128 negative values (-1 to -128)



Two’s Complement
• Only one value for zero
• With N bits, can represent the range:

§ -2N-1 to 2N-1 – 1
• Most significant bit still designates 
– 0: positive 
– 1: negative

• Negating a value is slightly more complicated:
1 = 00000001, -1 = 11111111

From now on, unless we explicitly say otherwise, we’ll assume all integers 
are stored using two’s complement!  This is the standard! Slide 23



Two’s Complement

• Each two’s complement number is now:
[-2n-1*dn-1] + [2n-2*dn-2] +…+ [21*d1] + [20*d0]

Note the negative sign on just the most significant bit.  This is 
why first bit tells us whether the value is negative vs. positive.
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If we interpret 11001 as a two’s complement 
number, what is the value in decimal?

Each two’s complement number is now:
[-2n-1*dn-1] + [2n-2*dn-2] +…+ [21*d1] + [20*d0]

A. -2

B. -7

C. -9

D. -25
Slide 25



If we interpret 11001 as a two’s complement 
number, what is the value in decimal?

Each two’s complement number is now:
[-2n-1*dn-1] + [2n-2*dn-2] +…+ [21*d1] + [20*d0]

A. -2

B. -7

C. -9

D. -25
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-16 + 8 + 1 = -7



“If we interpret…”

What is the decimal value of 1100?

• …as unsigned, 4-bit value: 12  (%u)
• …as signed (two’s comp), 4-bit value: -4  (%d)

• …as an 8-bit value: 12. (i.e., 0000 1100)
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Two’s Complement Negation

• To negate a value x, we want to 
find y such that x + y = 0.

• For N bits, y = 2N - x

B
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0

-127

-1 1

127

-128



unsigned

128

254
255 0

Negation Example (8 bits)

• For N bits, y = 2N - x
• Negate the value (2) 00000010
• 28 - 2 = 256 - 2 = 254

• Our wheel only goes to 127!
– Put -2 where 254 would be

if wheel was unsigned.
– 254 in binary is 11111110

0

-127

-1

B

1

127
-128
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-2

signed

Given 11111110, it’s 254 if interpreted as 
unsigned and -2 interpreted as signed.



Negation Shortcut

• A much easier, faster way to negate:
– Flip the bits (0’s become 1’s, 1’s become 0’s)
– Add 1

• Negate 00101110 (46)

• Formally:
– 28 - 46 = 256 - 46 = 210
– 210 in binary is 11010010
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46:                 00101110 

Flip the bits: 11010001

Add 1 + 1

-46:                11010010



Negation Two Ways

4 bit Examples
x -x 24 - x Bit flip + 1

0000 0000 10000 – 0000 = 0000 1111 + 1 = 0000

0001 1111 10000 – 0001 = 1111 1110 + 1 = 1111

0010 110 10000 – 0010  = 1110 1101 + 1 = 1110

0111 1001 10000 – 0111  = 1001 1000 + 1 = 1001
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Decimal to Two’s Complement with 8 bit values 
(high-order bit is the sign bit)

for positive values, use  same algorithm as for unsigned
• (E.g.)6  6 - 4 = 2 (4:22)
• 2 – 2 = 0 (2:21):  00000110

for negative values: 
• convert negation (positive) to binary
• then negate binary to get negative

E.g.: -3 
• 3: 00000011 
• negate: 11111100+1 = 11111101 = -3
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Decimal to Two’s Complement with 8 bit values 
(high-order bit is the sign bit)

for negative values: 
• convert negation (positive) to binary
• then negate binary to get negative

Try converting -7 to Two’s Complement representation

A. 11111001
B. 00000111
C. 11111000
D. 11110011
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Decimal to Two’s Complement with 8 bit values 
(high-order bit is the sign bit)

for negative values: 

• convert negation (positive) to binary

• then negate binary to get negative

Try converting -7 to Two’s Complement representation

A. 11111001

B. 00000111

C. 11111000

D. 11110011
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-7   = (1) 7:  00000111
(2) negate: 11111000 + 1 = 11111001 



Addition & Subtraction for Integers

• Addition is the same as for unsigned
– One exception: different rules for overflow
– Can use the same hardware for both

• Subtraction is the same operation as addition
– Just need to negate the second operand…

• 6 - 7 = 6 + (-7) = 6 + (~7 + 1)
– ~7 is shorthand for “flip the bits of 7”
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Subtraction Hardware

Negate and add 1 to second operand:

Can use the same circuit for add and subtract:

6 - 7 ==  6 + ~7 + 1

input 1 ------------------------------->

input 2 --> possible bit flipper --> ADD CIRCUIT ---> result

possible +1 input-------->

Slide 36

Let’s call this possible +1 input: “Carry in” 

(0: on add, 1: on subtract)



4-bit signed Examples:

Subtraction via Addition:  
– a-b is same as  a + ~b + 1

Subtraction: flip bits and add 1
3 - 6 =   0011

1001 (6: 0110  ~6: 1001)
+ 1
1101 = -3

Addition: don’t flip bits or add 1

3 + -6 =   0011 
+ 1010
1101 = -3 Slide 37



Signed & Unsigned 4-bit Subtraction:

Unsigned subtraction: flip bits and add 1

13 - 1 =

Signed subtraction: flip bits and add 1

-3 - 1 =
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A. 1100 & 1100
B. 1100 & 1010
C. 1010 & 1010
D.1001 & 1100



Signed & Unsigned 4-bit Subtraction:

Unsigned subtraction: flip bits and add 1

13 - 1 =  1101
1110 (1: 0001  ~1: 1110)

+ 1
1  1100 = 12

Signed subtraction: flip bits and add 1

-3 - 1 =   1101
1110

+ 1
1  1100 = -4
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By switching to two’s complement, have 
we solved this value “rolling over” 
(overflow) problem?

A. Yes, it’s gone.

B. Nope, it’s still there.

C. It’s even worse now.

0

-127

-1

B

1

127

-128
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By switching to two’s complement, have 
we solved this value “rolling over” 
(overflow) problem?

A. Yes, it’s gone.

B. Nope, it’s still there.

C. It’s even worse now.

0

-127

-1

B

1

127

-128This is an issue we need to be aware of 
when adding and subtracting!
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Overflow, Revisited

0

-127

-1

Signed

1

127

-128

0

128

64192

255

Unsigned

Danger Zone

Danger Zone
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If we add a positive number and a negative 
number, will we have overflow?  (Assume they 
are the same # of bits)

A. Always

B. Sometimes

C. Never

0

-127

-1

Signed

1

127

-128

Danger Zone Slide 43



If we add a positive number and a negative 
number, will we have overflow?  (Assume they 
are the same # of bits)

A. Always

B. Sometimes

C. Never

0

-127

-1

Signed

1

127

-128

Danger Zone Slide 44



Signed (Two’s Complement) Overflow For 
Addition

– Addition Overflow: IFF the sign bits of operands are the same, 
but the sign bit of result is different.

– Not enough bits to store result!

sign of operands = sign of result

3+4=7   -2+-3=-5
0011     1110

+0100 +1101
0111   1 1011
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no overflow

0

-127

-1 1

127

-128



Signed (Two’s Complement) Overflow For 
Addition

– Addition Overflow: IFF the sign bits of operands are the same, 
but the sign bit of result is different.

– Not enough bits to store result!

sign of operands = sign of result sign of operands ≠ sign of result

3+4=7   -2+-3=-5 4+7=11 -6-8=-14
0011     1110 0100       1010

+0100 +1101 +0111 +1000
0111   1 1011 1011     1 0010   
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no overflow overflow



Signed (Two’s Complement) Overflow For Subtraction

Subtraction Overflow Two Rules: 
– Rule 1:

• Positive operand - Negative operand = Positive Result: No Overflow
• Positive operand  - Negative operand = Negative Result: Overflow
• Intuition: We know a positive – negative is equivalent to a 

positive + positive. If this sum does not result in a positive value we have an 
overflow

– Rule 2:

• Negative operand - Positive operand = Negative Result: No Overflow
• Negative operand - Positive operand = Positive Result:  Overflow
• Intuition: We know a negative – positive number is equivalent to a 

negative + negative number. If this sum does not result in a negative value we 
have an overflow
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Minuend Subtrahend

Minuend Subtrahend

Result

Result



Signed (Two’s Complement) Overflow For Subtraction

Subtraction Overflow Rules Summarized: 
• IFF the sign bits of the subtraction operands are 

different, and the sign bit of the Result and 
Subtrahend are the same as shown below: 
– Minuend - Subtrahend = Result
– If positive – negative = negative (overflow)
– If negative – positive = positive (overflow)
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Signed (Two’s Complement) Overflow For Subtraction

Subtraction Overflow Two Rules: 
– Rule 1:

• Positive operand - Negative operand = Positive Result: No Overflow
• Positive operand  - Negative operand = Negative Result: Overflow
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no overflow overflow

Subtrahend and Result have 
different sign bits

2-(-3)=5
0010
-1110  

3-(-4)=7
0011
-1100

0010
+0011
0101

0011
+0100
0111

2-(-6)=8
0010
-1010  

3-(-7)=10
0011
-1001

0010
+0110
1000(-8)

0011
+0111
1010(-6)

Subtrahend and Result have the 
same sign bits



Signed (Two’s Complement) Overflow For Subtraction

Subtraction Overflow Two Rules: 
– Rule 2:

• Negative operand - Positive operand = Negative Result: No Overflow
• Negative operand - Positive operand = Positive Result:  Overflow
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no overflow overflow

Subtrahend and Result have 
different sign bits

-2-(3)=-5
1110
-0011  

-3-(4)=-7
1101
-0100

1110
+1101
1 1011(-5)

1101
+1100
1 1001(-7)

-2-(7)=-9
1110
-0111  

-4-(7)=-11
1100
-0111

1110
+1001
1 0111(7)

1100
+0111
1 0011(-6)

Subtrahend and Result have the 
same sign bits



Overflow Rules

• Signed (Two’s Complement):
– Addition:

• The sign bits of operands are the same, but the sign bit of result is 
different.

– Subtraction:
• First compute the following:  if the sign bits of the subtraction 

operands are different, and the sign bit of the result and 
subtrahend are the same. (minuend-subtrahend – result)

• then, turn into an Addition operation

• Can we formalize unsigned overflow?
– Need to include subtraction too, skipped it before.
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Recall Subtraction Hardware

Negate and add 1 to second operand:

Can use the same circuit for add and subtract:

6 - 7 ==  6 + ~7 + 1

input 1 ------------------------------->

input 2 --> possible bit flipper --> ADD CIRCUIT ---> result

possible +1 input-------->
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Let’s call this possible +1 input: “Carry in” 

(0: on add, 1: on subtract)



How many of these unsigned operations have 
overflowed?
4 bit unsigned values (range 0 to 15):

carry-in carry-out
Addition (carry-in = 0)
9 + 11  =   1001 + 1011 + 0 =  1  0100 
9 +  6  =   1001 + 0110 + 0 =  0  1111
3 +  6  =   0011 + 0110 + 0 =  0  1001

Subtraction (carry-in = 1)
6 - 3  =   0110 + 1100 + 1  = 1  0011
3 - 6  =   0011 + 1010 + 1  = 0  1101

A. 1
B. 2
C. 3
D. 4
E. 5

(-3)

(-6)
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How many of these unsigned operations have 
overflowed?
4 bit unsigned values (range 0 to 15):

carry-in carry-out
Addition (carry-in = 0)
9 + 11  =   1001 + 1011 + 0 =  1  0100 =  4
9 +  6  =   1001 + 0110 + 0 =  0  1111 = 15
3 +  6  =   0011 + 0110 + 0 =  0  1001 =  9

Subtraction (carry-in = 1)
6 - 3  =   0110 + 1100 + 1  = 1  0011 =  3
3 - 6  =   0011 + 1010 + 1  = 0  1101 = 13

A. 1
B. 2
C. 3
D. 4
E. 5

(-3)

(-6)
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Pattern?



How many of these unsigned operations have 
overflowed?
4 bit unsigned values (range 0 to 15):

carry-in carry-out
Addition (carry-in = 0)
9 + 11  =   1001 + 1011 + 0 =  1  0100 =  4
9 +  6  =   1001 + 0110 + 0 =  0  1111 = 15
3 +  6  =   0011 + 0110 + 0 =  0  1001 =  9

Subtraction (carry-in = 1)
6 - 3  =   0110 + 1100 + 1  = 1  0011 =  3
3 - 6  =   0011 + 1010 + 1  = 0  1101 = 13

A. 1
B. 2
C. 3
D. 4
E. 5

(-3)

(-6)
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Pattern?



Overflow Rule Summary

• Signed overflow:
– The sign bits of operands are the same, but the sign bit of 

result is different.

• Unsigned: overflow
– The carry-in bit is different from the carry-out.

Cin Cout Cin XOR Cout
0   0            0
0   1            1
1   0            1
1   1            0

So far, all arithmetic on values that were the same size.  What if they’re different?
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Sign Extension
• When combining signed values of different sizes, 

expand the smaller to equivalent larger size:

char y=2, x=-13; 
short z = 10;

z = z + y;                z = z + x;

0000000000001010          0000000000000101
+       00000010          +       11110011
0000000000000010          1111111111110011

Fill in high-order bits with sign-bit value to get same 
numeric value in larger number of bytes.
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Let’s verify that this works

4-bit signed value, sign extend to 8-bits, is it the same 
value?

0111   --->  0000 0111     obviously still 7
1010   ----> 1111 1010     is this still -6?

-128 + 64 + 32  + 16 +  8 + 0 + 2 + 0 =  -6    yes!
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Operations on Bits

• For these, doesn’t matter how the bits are 
interpreted (signed vs. unsigned)

• Bit-wise operators (AND, OR, NOT, XOR)

• Bit shifting
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Bit-wise Operators
• bit operands, bit result (interpret as you please)

& (AND)          | (OR)           ~(NOT)            ^(XOR)

A    B      A & B    A | B    ~A    A ^ B
0    0        0        0       1      0
0    1        0        1       1      1
1    0        0        1       0      1
1    1        1        1       0      0

01010101     01101010     10101010   ~10101111
| 00100001 & 10111011 ^ 01101001 01010000

01110101     00101010     11000011
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More Operations on Bits
• Bit-shift operators:   << left shift,  >> right shift

01010101 << 2  is 01010100     
2 high-order bits shifted out
2 low-order bits filled with 0

01101010 << 4  is 10100000 
01010101 >> 2  is 00010101
01101010 >> 4  is 00000110

10101100 >> 2  is 00101011 (logical shift) 
or 11101011 (arithmetic shift)

Arithmetic right shift:   fills high-order bits w/sign bit
C automatically decides which to use based on type:

signed: arithmetic, unsigned: logical
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Try out some 4-bit examples:

bit-wise operations:
• 0101 & 1101
• 0101 | 1101

Logical (unsigned) bit shift:
• 1010 << 2
• 1010 >> 2

Arithmetic (signed) bit shift:
• 1010 << 2
• 1010 >> 2
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Try out some 4-bit examples:

bit-wise operations:
• 0101 & 1101 = 0101
• 0101 | 1101  = 1101

Logical (unsigned) bit shift:
• 1010 << 2 = 1000
• 1010 >> 2 = 0010

Arithmetic (signed) bit shift:
• 1010 << 2 = 1000
• 1010 >> 2 = 1110
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Additional Info: Fractional binary numbers

0 1-1….-11982 15 999…99

−1
2

1
8

1
2

How do we represent fractions in binary?
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Additional Info: Representing Signed Float 
Values

• One option (used for floats, NOT integers)
– Let the first bit represent the sign
– 0 means positive
– 1 means negative

• For example:
– 0101 -> 5
– 1101 -> -5

• Problem with this scheme?
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Additional Info: Floating Point Representation

1  bit for sign              sign |   exponent |  fraction |
8  bits for exponent

23 bits for precision

value = (-1)sign * 1.fraction * 2(exponent-127)

let's just plug in some values and try it out

0x40ac49ba: 0 10000001   01011000100100110111010
sign = 0 exp = 129   fraction = 2902458

= 1*1.2902458*22 = 5.16098

I don’t  expect you to memorize this
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Up Next

• C programming
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