
CS 31: Introduction to Computer Systems

02: Binary Representation
January 23

Announcements

• Sign up for Piazza!

• Let me know about exam conflicts!

• Register your clicker!

• Faculty Talk Tomorrow on Newtorks & Security:
11.30 – 12.30pm (Free Pizza!)

Slide 2

Reading Quiz

• Note the red border!

• 1 minute per question

• No talking, no laptops, phones during the quiz.

Slide 3

Today

• Number systems and conversion

• Data types and storage:
– Sizes
– Representation
– Signedness

Slide 10

Abstraction

User / Programmer
Wants low complexity

Applications
Specific functionality

Software library
Reusable functionality

Complex devices
Compute & I/O

Operating system
Manage resources

Slide 11

Bits and Bytes

• Bit: a 0 or 1 value (binary)
– HW represents as two different voltages
– 1: the presence of voltage (high voltage)
– 0: the absence of voltage (low voltage)

• Byte: 8 bits, the smallest addressable unit
Memory: 01010101 10101010 00001111 …

Slide 12

Binary Digits: (BITs)

• One bit: two values (0 or 1)
• Two bits: four values (00, 01, 10, or 11)
• Three bits: eight values (000, 001, …, 110, 111)

Slide 13

Files

Sequence of bytes… nothing more, nothing less

Slide 14

How many unique values can we represent
with 9 bits? Why?

• One bit: two values (0 or 1)
• Two bits: four values (00, 01, 10, or 11)
• Three bits: eight values (000, 001, …, 110, 111)

A. 18
B. 81
C. 256
D. 512
E. Some other number of values.

Slide 15

How many unique values can we represent
with 9 bits? Why?

• One bit: two values (0 or 1)
• Two bits: four values (00, 01, 10, or 11)
• Three bits: eight values (000, 001, …, 110, 111)

A. 18
B. 81
C. 256
D. 512
E. Some other number of values.

Slide 16

How many values?

1 bit: 0 1

2 bits: 0 0 0 1 1 0 1 1

3 bits: 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

4 bits: 0
0

0
1

0
0

0
0

0
0

0
1

0
0

1
1

0
0

0
1

1
1

0
0

0
0

0
1

1
1

1
1

16 values

1
1

0
1

0
0

0
0

1
1

0
1

0
0

1
1

1
1

0
1

1
1

0
0

1
1

0
1

1
1

1
1

N bits: 2N values

Slide 17

Let’s start with what we know

• Digits 0-9

• Positional numbering

• Digits are composed to make larger numbers

• Known as the Base 10 representation

Slide 18

Decimal number system (Base 10)

Sequence of digits in range [0, 9]

6 4 0 2 5

Digit #0: 1’s place (least significant digit)

Slide 19

Digit #1: 10’s place

And so on
…

.

What is the significance of the Nth digit
number in this number system? What
does it contribute to the overall value?

64025

A. dN * 1
B. dN * 10
C. dN * 10N

D. dN * N10

E. dN * 10dN

Digit #0: d0Digit #4: d4

What is the significance of the Nth digit
number in this number system? What
does it contribute to the overall value?

64025

A. dN * 1
B. dN * 10
C. dN * 10N

D. dN * N10

E. dN * 10dN

Digit #0: d0Digit #4: d4

Consider the meaning of d3
(the value 4) above. What is it
contributing to the total value?

Decimal: Base 10
A number, written as the sequence of digits

dndn-1…d2d1d0

where d is in {0,1,2,3,4,5,6,7,8,9},

represents the value:
[dn * 10n] + [dn-1 * 10n-1] + ... + [d2 * 102] + [d1 * 101] + [d0 * 100]

64025

Slide 22

Decimal: Base 10
A number, written as the sequence of digits

dndn-1…d2d1d0

where d is in {0,1,2,3,4,5,6,7,8,9}, represents the value:

[dn * 10n] + [dn-1 * 10n-1] + ... + [d2 * 102] + [d1 * 101] + [d0 * 100]

64025 =
6 * 104 + 4 * 103 + 0 * 102 + 2 * 101 + 5 * 100

60000 + 4000 + 0 + 20 + 5

Slide 23

Decimal: Base 10
A number, written as the sequence of digits

dndn-1…d2d1d0

where d is in {0,1,2,3,4,5,6,7,8,9}, represents the value:

[dn * 10n] + [dn-1 * 10n-1] + ... + [d2 * 102] + [d1 * 101] + [d0 * 100]

64025 =
6 * 104 + 4 * 103 + 0 * 102 + 2 * 101 + 5 * 100

60000 + 4000 + 0 + 20 + 5

Slide 24

Decimal: Base 10
A number, written as the sequence of digits

dndn-1…d2d1d0

where d is in {0,1,2,3,4,5,6,7,8,9}, represents the value:

[dn * 10n] + [dn-1 * 10n-1] + ... + [d2 * 102] + [d1 * 101] + [d0 * 100]

64025 =
6 * 104 + 4 * 103 + 0 * 102 + 2 * 101 + 5 * 100

60000 + 4000 + 0 + 20 + 5

Slide 25

Decimal: Base 10
A number, written as the sequence of digits

dndn-1…d2d1d0

where d is in {0,1,2,3,4,5,6,7,8,9}, represents the value:

[dn * 10n] + [dn-1 * 10n-1] + ... + [d2 * 102] + [d1 * 101] + [d0 * 100]

64025 =
6 * 104 + 4 * 103 + 0 * 102 + 2 * 101 + 5 * 100

60000 + 4000 + 0 + 20 + 5

Slide 26

Decimal: Base 10
A number, written as the sequence of digits

dndn-1…d2d1d0

where d is in {0,1,2,3,4,5,6,7,8,9}, represents the value:

[dn * 10n] + [dn-1 * 10n-1] + ... + [d2 * 102] + [d1 * 101] + [d0 * 100]

64025 =
6 * 104 + 4 * 103 + 0 * 102 + 2 * 101 + 5 * 100

60000 + 4000 + 0 + 20 + 5

Slide 27

Decimal: Base 10
A number, written as the sequence of digits

dndn-1…d2d1d0

where d is in {0,1,2,3,4,5,6,7,8,9}, represents the value:

[dn * 10n] + [dn-1 * 10n-1] + ... + [d2 * 102] + [d1 * 101] + [d0 * 100]

64025 =
6 * 104 + 4 * 103 + 0 * 102 + 2 * 101 + 5 * 100

60000 + 4000 + 0 + 20 + 5

Slide 28

Generalizing

The meaning of a digit depends on its position in a
number.

A number, written as the sequence of digits
dndn-1…d2d1d0 in base b represents the value:

[dn * bn] + [dn-1 * bn-1] + ... + [d2 * b2] + [d1 * b1] + [d0 * b0]

[dn * 10n] + [dn-1 * 10n-1] + ... + [d2 * 102] + [d1 * 101] + [d0 * 100]

Binary: Base 2

Used by computers to store digital values.

– Indicated by prefixing number with 0b

A number, written as the sequence of digits
dndn-1…d2d1d0 where d is in {0,1}, represents the value:

[dn * 2n] + [dn-1 * 2n-1] + ... + [d2 * 22] + [d1 * 21] + [d0 * 20]

What is the value of 0b110101 in decimal?

• A number, written as the sequence of digits
dndn-1…d2d1d0 where d is in {0,1}, represents the value:

[dn * 2n] + [dn-1 * 2n-1] + ... + [d2 * 22] + [d1 * 21] + [d0 * 20]

A. 26
B. 53
C. 61
D. 106
E. 128

Slide 31

What is the value of 0b110101 in decimal?

• A number, written as the sequence of digits
dndn-1…d2d1d0 where d is in {0,1}, represents the value:

[dn * 2n] + [dn-1 * 2n-1] + ... + [d2 * 22] + [d1 * 21] + [d0 * 20]

A. 26
B. 53
C. 61
D. 106
E. 128

Slide 32

Binary Digits: (BITS)

Representation: 1 x 27 + 0 x 26 ….. + 1 x 23 + 1 x 22 + 1 x 21 +
1 x 20

10001111 = 143

10001111Most significant bit Least significant bit
7 6 5 4 3 2 1 0

Slide 33

Other (common) number systems.

• Base 10: decimal
• Base 2: binary

• Base 16: hexadecimal
• Base 8: octal
• Base 64

Slide 34

Hexadecimal: Base 16

Indicated by prefixing number with 0x

A number, written as the sequence of digits
dndn-1…d2d1d0

where d is in {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F},

represents the value:

[dn * 16n] + [dn-1 * 16n-1] + ... +
[d2 * 162] + [d1 * 161] + [d0 * 160]

Slide 35

What is the value of 0x1B7 in decimal?

A. 397
B. 409
C. 419
D. 437
E. 439

162 = 256

DEC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
HEX 0 1 2 3 4 5 6 7 8 9 A B C D E F

Slide 36

[dn * 16n] + [dn-1 * 16n-1] + ... +

[d2 * 162] + [d1 * 161] + [d0 * 160]

What is the value of 0x1B7 in decimal?

A. 397
B. 409
C. 419
D. 437
E. 439 162 = 256

1*162 + 11*161 + 7*160 = 439

DEC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
HEX 0 1 2 3 4 5 6 7 8 9 A B C D E F

Slide 37

[dn * 16n] + [dn-1 * 16n-1] + ... +

[d2 * 162] + [d1 * 161] + [d0 * 160]

Important Point…

• You can represent the same value in a variety of
number systems / bases.

• It’s all stored as binary in the computer.
– Presence/absence of voltage.

Slide 38

Common number systems.

• Base 2: How data is stored in hardware.
• Base 10: Preferred by people.
• Base 8: Used to represent file permissions.
• Base 16: Convenient for representing memory

addresses.
• Base 64: Commonly used on the Internet, (e.g. email

attachments).

Slide 39

Different ways of visualizing the same information!

Hexadecimal: Base 16

• Fewer digits to represent same value
– Same amount of information!

• Like binary, base is power of 2

• Each digit is a “nibble”, or half a byte.

Slide 40

Each hex digit is a “nibble”

• One hex digit: 16 possible values (0-9, A-F)

• 16 = 24, so each hex digit has exactly four bits worth
of information.

• We can map each hex digit to a four-bit binary value.
(helps for converting between bases)

Slide 41

Each hex digit is a “nibble”

Example value: 0x1B7

Four-bit value: 1
Four-bit value: B (decimal 11)
Four-bit value: 7

In binary: 0001 1011 0111
1 B 7

Slide 42

Hexadecimal Representation

• Bit patterns as base-16 numbers
• Convert binary to hexadecimal: by splitting into

groups of 4 bits each.
Example:

Bin 11 1100 1010 1101 1011 0011
Hex 3 C A D B 3

11 1100 1010 1101 1011 00112 = 3CADB316

Slide 43

Converting Decimal -> Binary

• Two methods:
– division by two remainder
– powers of two and subtraction

Slide 44

Method 1: decimal value D, binary result b (b_i : ith bit):
i = 0
while (D > 0)

if D is odd
set bi to 1

if D is even
set bi to 0

i++
D = D/2

Example: Converting 105

Slide 45

Method 1: decimal value D, binary result b (b_i : ith bit):
i = 0
while (D > 0)

if D is odd
set bi to 1

if D is even
set bi to 0

i++
D = D/2

example: D = 105 b0 = 1
D/2 D = 52 b1 = 0
D/2 D = 26 b2 = 0
D/2 D = 13 b3 = 1
D/2 D = 6 b4 = 0
D/2 D = 3 b5 = 1
D/2 D = 1 b6 = 1
D/2 D = 0 b7 = 0

105 = 01101001

Example: Converting 105

Slide 46

Method 1: decimal value D, binary result b (b_i : ith bit):
i = 0
while (D > 0)

if D is odd
set bi to 1

if D is even
set bi to 0

i++
D = D/2

example: D = 105 b0 = 1
D/2 D = 52 b1 = 0
D/2 D = 26 b2 = 0
D/2 D = 13 b3 = 1
D/2 D = 6 b4 = 0
D/2 D = 3 b5 = 1
D/2 D = 1 b6 = 1
D/2 D = 0 b7 = 0

105 = 01101001

Example: Converting 105

Slide 47

Method 1: decimal value D, binary result b (b_i : ith bit):
i = 0
while (D > 0)

if D is odd
set bi to 1

if D is even
set bi to 0

i++
D = D/2

example: D = 105 b0 = 1
D/2 D = 52 b1 = 0
D/2 D = 26 b2 = 0
D/2 D = 13 b3 = 1
D/2 D = 6 b4 = 0
D/2 D = 3 b5 = 1
D/2 D = 1 b6 = 1
D/2 D = 0 b7 = 0

105 = 01101001

Example: Converting 105

Slide 48

Method 1: decimal value D, binary result b (b_i : ith bit):
i = 0
while (D > 0)

if D is odd
set bi to 1

if D is even
set bi to 0

i++
D = D/2

example: D = 105 b0 = 1
D/2 D = 52 b1 = 0
D/2 D = 26 b2 = 0
D/2 D = 13 b3 = 1
D/2 D = 6 b4 = 0
D/2 D = 3 b5 = 1
D/2 D = 1 b6 = 1
D/2 D = 0 b7 = 0

105 = 01101001

Example: Converting 105

Slide 49

Method 1: decimal value D, binary result b (b_i : ith bit):
i = 0
while (D > 0)

if D is odd
set bi to 1

if D is even
set bi to 0

i++
D = D/2

example: D = 105 b0 = 1
D/2 D = 52 b1 = 0
D/2 D = 26 b2 = 0
D/2 D = 13 b3 = 1
D/2 D = 6 b4 = 0
D/2 D = 3 b5 = 1
D/2 D = 1 b6 = 1
D/2 D = 0 b7 = 0

105 = 01101001

Example: Converting 105

Slide 50

Method 1: decimal value D, binary result b (b_i : ith bit):
i = 0
while (D > 0)

if D is odd
set bi to 1

if D is even
set bi to 0

i++
D = D/2

example: D = 105 b0 = 1
D/2 D = 52 b1 = 0
D/2 D = 26 b2 = 0
D/2 D = 13 b3 = 1
D/2 D = 6 b4 = 0
D/2 D = 3 b5 = 1
D/2 D = 1 b6 = 1
D/2 D = 0 b7 = 0

Example: Converting 105

Slide 51

Method 1: decimal value D, binary result b (b_i : ith bit):
i = 0
while (D > 0)

if D is odd
set bi to 1

if D is even
set bi to 0

i++
D = D/2

example: D = 105 b0 = 1
D/2 D = 52 b1 = 0
D/2 D = 26 b2 = 0
D/2 D = 13 b3 = 1
D/2 D = 6 b4 = 0
D/2 D = 3 b5 = 1
D/2 D = 1 b6 = 1
D/2 D = 0 b7 = 0

105 = 01101001

Example: Converting 105

Slide 52

Method 2

20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16,
25 = 32, 26 = 64, 27 = 128
• To convert 105:

– Find largest power of two that’s less than 105 (64)
– Subtract 64 (105 – 64 = 41), put a 1 in d6

– Subtract 32 (41 – 32 = 9), put a 1 in d5

– Skip 16, it’s larger than 9, put a 0 in d4

– Subtract 8 (9 – 8 = 1), put a 1 in d3

– Skip 4 and 2, put a 0 in d2 and d1

– Subtract 1 (1 – 1 = 0), put a 1 in d0 (Done)

__ __ __ __ __ __ __
d6 d5 d4 d3 d2 d1 d0 Slide 53

1 1 0 1 0 0 1

What is the value of 357 in binary?

A. 101100011
B. 101100101
C. 101101001
D. 101110101
E. 110100101

20 = 1, 21 = 2, 22 = 4, 23 = 8,
24 = 16, 25 = 32, 26 = 64, 27 = 128,
28 = 256

Slide 54

What is the value of 357 in binary?

A. 101100011
B. 101100101
C. 101101001
D. 101110101
E. 110100101

20 = 1, 21 = 2, 22 = 4, 23 = 8,
24 = 16, 25 = 32, 26 = 64, 27 = 128,
28 = 256

Slide 55

1 0 1 1 0 0 1 0 1
d8 d7 d6 d5 d4 d3 d2 d1 d0

357 – 256 = 101
101 – 64 = 37

37 – 32 = 5
5 – 4 = 1

So far: Unsigned Integers

With N bits, can represent values: 0 to 2n-1

We can always add 0’s to the front of a number without
changing it:

10110= 010110 = 00010110 = 0000010110

Slide 56

So far: Unsigned Integers

With N bits, can represent values: 0 to 2n-1

• 1 byte: char, unsigned char
• 2 bytes: short, unsigned short
• 4 bytes: int, unsigned int, float
• 8 bytes: long long, unsigned long long,
double

• 4 or 8 bytes: long, unsigned long

Slide 57

Unsigned Integers

• Suppose we had one byte
– Can represent 28 (256) values

– If unsigned (strictly non-negative): 0 – 255

252 = 11111100

253 = 11111101

254 = 11111110

255 = 11111111

What if we add one more?

0 255 Larger
Values

Traditional number line:

Addition

Unsigned Integers

• Suppose we had one byte
– Can represent 28 (256) values

– If unsigned (strictly non-negative): 0 – 255

252 = 11111100

253 = 11111101

254 = 11111110

255 = 11111111

What if we add one more?

Car odometer “rolls over”.

Any time we are dealing with a
finite storage space we cannot
represent an infinite number of
values!

Slide 59

Unsigned Integers
Suppose we had one byte

• Can represent 28 (256) values

• If unsigned (strictly non-negative):

0 – 255

252 = 11111100

253 = 11111101

254 = 11111110

255 = 11111111

What if we add one more?

0

128
(10000000)

64192

255 (11111111)

Addition

Modular arithmetic: Here, all values are modulo 256. Slide 60

Unsigned Addition (4-bit)

• Addition works like grade school addition:

1
0110 6 1100 12

+ 0100 + 4 + 1010 +10
1010 10 1 0110 6

^carry out

Four bits give us range: 0 - 15

Unsigned Addition (4-bit)

• Addition works like grade school addition:

1
0110 6 1100 12

+ 0100 + 4 + 1010 +10
1010 10 1 0110 6

^no carry out ^carry out

Four bits give us range: 0 - 15 Overflow!

Carry out is indicative of something having gone wrong when adding unsigned values

Suppose we want to support signed values
(positive and negative) in 8 bits, where should
we put -1 and -127 on the circle? Why?

-1

-127 (11111111)

-127

-1 (11111111)

A B

C: Put them somewhere else. Slide 63

0 0

Suppose we want to support signed values
(positive and negative) in 8 bits, where should
we put -1 and -127 on the circle? Why?

0

-1

-127 (11111111)
0

-127

-1 (11111111)

A: signed
magnitude

B: Two’s
complement

C: Put them somewhere else. Slide 64

Signed Magnitude Representation
(for 4 bit values)

Slide 65

• One bit (usually left-most) signals:
– 0 for positive
– 1 for negative

For one byte:
1 = 00000001, -1 = 10000001

Pros: Negation (negative value of a
number) is very simple!

For one byte:
0 = 00000000
What about 10000000?

Major con: Two ways to represent zero.

Slide 66

Two’s Complement Representation
(for four bit values)

• Borrow nice property
from number line:

0

-1 1

Only one instance of zero!
Implies: -1 and 1 on either side of it.

For an 8 bit range we can express 256
unique values:
• 128 non-negative values (0 to 127)

• 128 negative values (-1 to -128)

Additional Info: Fractional binary numbers

0 1-1….-11982 15 999…99

−1
2

1
8

1
2

How do we represent fractions in binary?

Slide 67

Additional Info: Representing Signed Float
Values

• One option (used for floats, NOT integers)
– Let the first bit represent the sign
– 0 means positive
– 1 means negative

• For example:
– 0101 -> 5
– 1101 -> -5

• Problem with this scheme?

Slide 68

Additional Info: Floating Point Representation

1 bit for sign sign | exponent | fraction |
8 bits for exponent

23 bits for precision

value = (-1)sign * 1.fraction * 2(exponent-127)

let's just plug in some values and try it out

0x40ac49ba: 0 10000001 01011000100100110111010
sign = 0 exp = 129 fraction = 2902458

= 1*1.2902458*22 = 5.16098

I don’t expect you to memorize this

Slide 69

Summary

• Images, Word Documents, Code, and Video can represented in bits.

• Byte or 8 bits is the smallest addressable unit

• N bits can represent 2
N

unique values

• A number is written as a sequence of digits: in the decimal base system

– [dn * 10 ^ n] + [dn-1 * 10 ^ n-1] + ... + [d2 * 10 ^ 2] + [d1 * 10 ^ 1] + [d0 * 10 ^ 0]

– For any base system:

– [dn * b ^ n] + [dn-1 * b ^ n-1] + ... + [d2 * b ^ 2] + [d1 * b ^ 1] + [d0 * b ^ 0]

• Hexadecimal values (represent 16 values): {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}

– Each hexadecimal value can be represented by 4 bits. (2^4=16)

• A finite storage space we cannot represent an infinite number of values. For e.g.,

the max unsigned 8 bit value is 255.

– Trying to represent a value >255 will result in an overflow.

• Two’s Complement Representation: 128 non-negative values (0 to 127), and 128

negative values (-1 to -128).
Slide 70

