CS 31: Introduction to Computer Systems

02: Binary Representation January 23

Announcements

- Sign up for Piazza!
- Let me know about exam conflicts!
- Register your clicker!
- Faculty Talk Tomorrow on Newtorks & Security: 11.30 – 12.30pm (Free Pizza!)

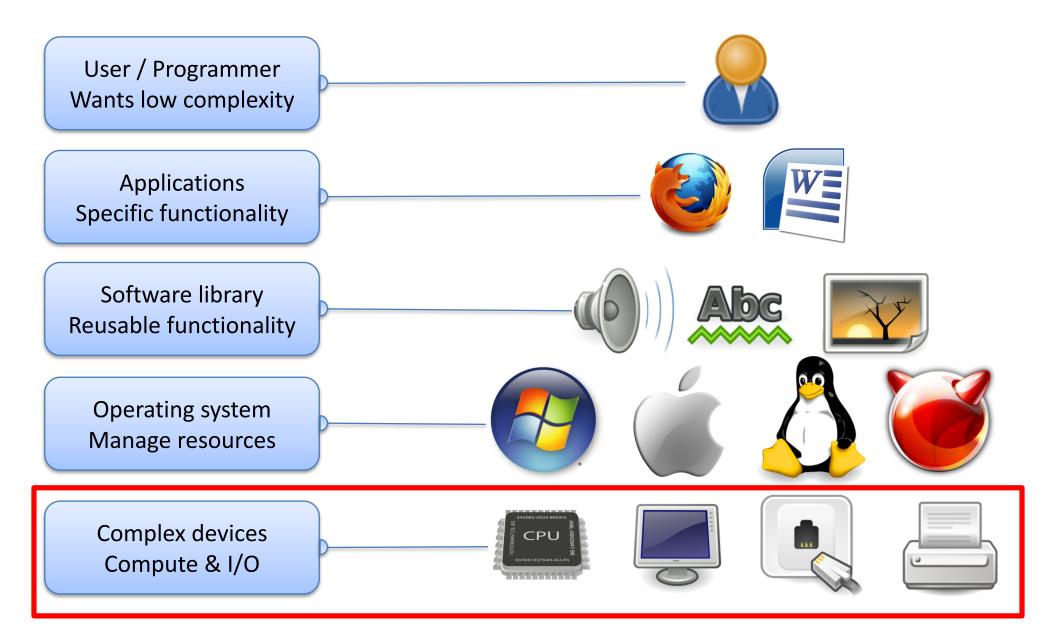
Reading Quiz

- Note the red border!
- 1 minute per question
- No talking, no laptops, phones during the quiz.

Today

- Number systems and conversion
- Data types and storage:
 - Sizes
 - Representation
 - Signedness

Abstraction



Bits and Bytes

- Bit: a 0 or 1 value (binary)
 - HW represents as two different voltages
 - 1: the presence of voltage (<u>high voltage</u>)
 - 0: the absence of voltage (<u>low voltage</u>)
- <u>Byte</u>: 8 bits, <u>the smallest addressable unit</u> Memory: 01010101 10101010 00001111 ...

Binary Digits: (BITs)

- One bit: two values (0 or 1)
- Two bits: four values (00, 01, 10, or 11)
- Three bits: eight values (000, 001, ..., 110, 111)

Files

Sequence of bytes... nothing more, nothing less

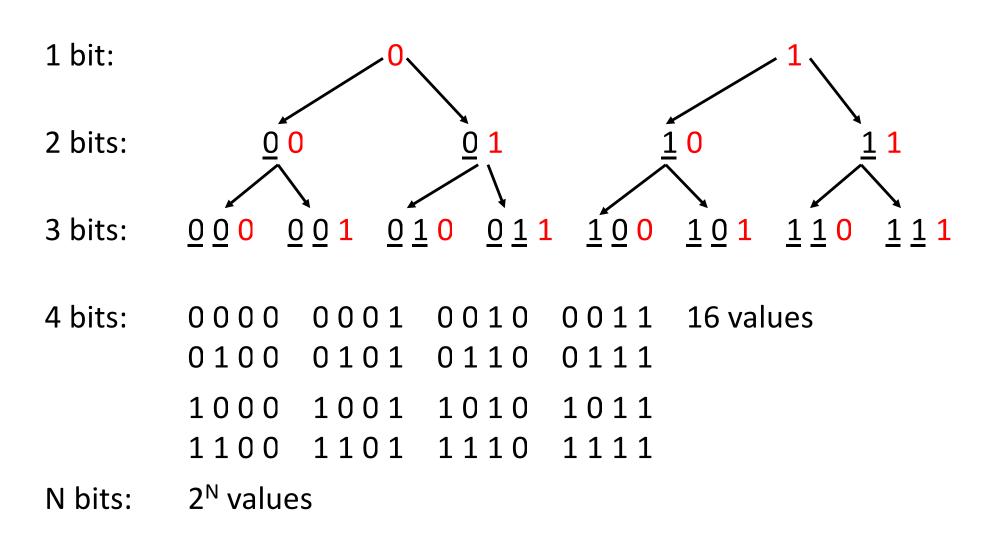
How many unique values can we represent with 9 bits? Why?

- One bit: two values (0 or 1)
- Two bits: four values (00, 01, 10, or 11)
- Three bits: eight values (000, 001, ..., 110, 111)
- A. 18
- B. 81
- C. 256
- D. 512
- E. Some other number of values.

How many unique values can we represent with 9 bits? Why?

- One bit: two values (0 or 1)
- Two bits: four values (00, 01, 10, or 11)
- Three bits: eight values (000, 001, ..., 110, 111)
- A. 18
- B. 81
- C. 256
- D. <u>512</u>
- E. Some other number of values.

How many values?

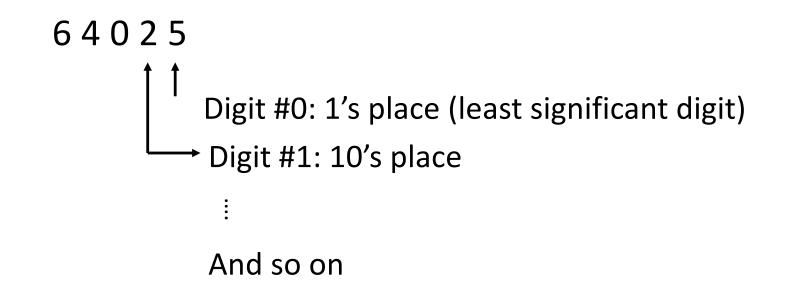


Let's start with what we know

- Digits 0-9
- Positional numbering
- Digits are composed to make larger numbers
- Known as the <u>Base 10</u> representation

Decimal number system (Base 10)

Sequence of digits in range [0, 9]



What is the significance of the Nth digit number in this number system? What does it contribute to the overall value?

> 64025 1 Digit #4: d₄ Digit #0: d₀

A. $d_N * 1$ B. $d_N * 10$ C. $d_N * 10^N$ D. $d_N * N^{10}$ E. $d_N * 10^{d_N}$ What is the significance of the Nth digit number in this number system? What does it contribute to the overall value?

> 64025 ↑ ↑ Digit #4: d₄ Digit #0: d₀

A. $d_N * 1$ B. $d_N * 10$ C. $\underline{d_N} * 10^N$ D. $d_N * N^{10}$ E. $d_N * 10^{d_N}$

Consider the meaning of d_3 (the value 4) above. What is it contributing to the total value?

Decimal: Base 10

A number, written as the sequence of digits $d_n d_{n-1} \dots d_2 d_1 d_0$

where d is in {0,1,2,3,4,5,6,7,8,9},

represents the value: $[d_n * 10^n] + [d_{n-1} * 10^{n-1}] + ... + [d_2 * 10^2] + [d_1 * 10^1] + [d_0 * 10^0]$

64025

Decimal: Base 10 A number, written as the sequence of digits $d_n d_{n-1} \dots d_2 d_1 d_0$

where d is in {0,1,2,3,4,5,6,7,8,9}, represents the value:

$$[d_n * 10^n] + [d_{n-1} * 10^{n-1}] + ... + [d_2 * 10^2] + [d_1 * 10^1] + [d_0 * 10^0]$$

64025 =

Decimal: Base 10 A number, written as the sequence of digits $d_n d_{n-1} \dots d_2 d_1 d_0$

where d is in {0,1,2,3,4,5,6,7,8,9}, represents the value:

$$[d_n * 10^n] + [d_{n-1} * 10^{n-1}] + ... + [d_2 * 10^2] + [d_1 * 10^1] + [d_0 * 10^0]$$

<mark>64</mark>025 =

Decimal: Base 10 A number, written as the sequence of digits $d_n d_{n-1} \dots d_2 d_1 d_0$

where d is in {0,1,2,3,4,5,6,7,8,9}, represents the value:

 $[d_n * 10^n] + [d_{n-1} * 10^{n-1}] + ... + [d_2 * 10^2] + [d_1 * 10^1] + [d_0 * 10^0]$

64025 =

Decimal: Base 10 A number, written as the sequence of digits $d_n d_{n-1} \dots d_2 d_1 d_0$

where d is in {0,1,2,3,4,5,6,7,8,9}, represents the value:

 $[d_n * 10^n] + [d_{n-1} * 10^{n-1}] + ... + [d_2 * 10^2] + [d_1 * 10^1] + [d_0 * 10^0]$

64025 =

$\begin{array}{l} \mbox{Decimal: Base 10} \\ \mbox{A number, written as the sequence of digits} \\ \mbox{d}_n \mbox{d}_{n-1} ... \mbox{d}_2 \mbox{d}_1 \mbox{d}_0 \end{array}$

where d is in {0,1,2,3,4,5,6,7,8,9}, represents the value:

 $[d_n * 10^n] + [d_{n-1} * 10^{n-1}] + ... + [d_2 * 10^2] + [d_1 * 10^1] + [d_0 * 10^0]$

64025 =

Decimal: Base 10 A number, written as the sequence of digits $d_n d_{n-1} \dots d_2 d_1 d_0$

where d is in {0,1,2,3,4,5,6,7,8,9}, represents the value:

 $[d_n * 10^n] + [d_{n-1} * 10^{n-1}] + ... + [d_2 * 10^2] + [d_1 * 10^1] + [d_0 * 10^0]$

64025 =

Generalizing

The meaning of a digit depends on its position in a number.

A number, written as the sequence of digits $d_n d_{n-1} \dots d_2 d_1 d_0$ in base b represents the value:

 $[d_n * b^n] + [d_{n-1} * b^{n-1}] + ... + [d_2 * b^2] + [d_1 * b^1] + [d_0 * b^0]$ $[d_n * 10^n] + [d_{n-1} * 10^{n-1}] + ... + [d_2 * 10^2] + [d_1 * 10^1] + [d_0 * 10^0]$

Binary: Base 2

Used by computers to store digital values.

Indicated by prefixing number with **0b**

A number, written as the sequence of digits $d_nd_{n-1}...d_2d_1d_0$ where d is in {0,1}, represents the value:

 $[d_n * 2^n] + [d_{n-1} * 2^{n-1}] + ... + [d_2 * 2^2] + [d_1 * 2^1] + [d_0 * 2^0]$

What is the value of 0b110101 in decimal?

A number, written as the sequence of digits
 d_nd_{n-1}...d₂d₁d₀ where d is in {0,1}, represents the value:

 $[d_n * 2^n] + [d_{n-1} * 2^{n-1}] + ... + [d_2 * 2^2] + [d_1 * 2^1] + [d_0 * 2^0]$

- A. 26
- B. 53
- C. 61
- D. 106
- E. 128

What is the value of 0b110101 in decimal?

 A number, written as the sequence of digits d_nd_{n-1}...d₂d₁d₀ where d is in {0,1}, represents the value:

 $[d_n * 2^n] + [d_{n-1} * 2^{n-1}] + ... + [d_2 * 2^2] + [d_1 * 2^1] + [d_0 * 2^0]$

- A. 26
- B. <u>53</u>
- C. 61
- D. 106
- E. 128

Binary Digits: (BITS)

Most significant bit $\longrightarrow \underline{10001111}$ \longleftarrow Least significant bit

Representation: $1 \times 2^7 + 0 \times 2^6 \dots + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$

10001111 = 143

Other (common) number systems.

- Base 10: decimal
- Base 2: binary
- Base 16: hexadecimal
- Base 8: octal
- Base 64

Hexadecimal: Base 16

Indicated by prefixing number with **Ox**

A number, written as the sequence of digits $d_n d_{n-1} ... d_2 d_1 d_0$

where d is in {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F},

represents the value:

$$[d_n * 16^n] + [d_{n-1} * 16^{n-1}] + ... + [d_2 * 16^2] + [d_1 * 16^1] + [d_0 * 16^0]$$

What is the value of 0x1B7 in decimal?

А. В. С.	409	9		$[d_n * 16^n] + [d_{n-1} * 16^{n-1}] + \dots + [d_2 * 16^2] + [d_1 * 16^1] + [d_0 * 16^0]$										
D.	437	7		$1C^{2} - 2CC$										
Ε.	439	Э		$16^2 = 256$										
DEC HEX								-					Е	F
													S	lide 36

What is the value of 0x1B7 in decimal?

															S	lide 37
HEX	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
DEC	0	1	2	3	4	-					, .				14	15
E. <u>439</u>						$16^2 = 256$ $1*16^2 + 11*16^1 + 7*16^0 = 439$										
D.	437	7				1 C	· ·									
C.	419	Э				[d ₂ * 16 ²] + [d ₁ * 16 ¹] + [d ₀ * 16 ⁰]										
B. 409						$[d_n * 16^n] + [d_{n-1} * 16^{n-1}] + +$										
Α.				[4]	* 1			A	* 16		1.					

Important Point...

- You can represent the same value in a variety of number systems / bases.
- It's all stored as binary in the computer.
 Presence/absence of voltage.

Common number systems.

- Base 2: How data is stored in hardware.
- Base 10: Preferred by people.
- Base 8: Used to represent file permissions.
- Base 16: Convenient for representing memory addresses.
- Base 64: Commonly used on the Internet, (e.g. email attachments).

Different ways of visualizing the same information!

Hexadecimal: Base 16

- Fewer digits to represent same value
 Same amount of information!
- Like binary, base is power of 2
- Each digit is a "nibble", or half a byte.

Each hex digit is a "nibble"

- One hex digit: 16 possible values (0-9, A-F)
- 16 = 2⁴, so each hex digit has exactly four bits worth of information.
- We can map each hex digit to a four-bit binary value. (helps for converting between bases)

Each hex digit is a "nibble"

Example value: 0x1B7

Four-bit value: 1 Four-bit value: B (decimal 11) Four-bit value: 7

In binary: 0001 1011 0111 1 B 7

Hexadecimal Representation

- Bit patterns as base-16 numbers
- Convert binary to hexadecimal: by splitting into groups of 4 bits each.

Example:

11 1100 1010 1101 1011 0011₂ = 3CADB3₁₆

Bin	11	1100	1010	1101	1011	0011
Hex	3	С	A	D	В	3

Converting Decimal -> Binary

- Two methods:
 - division by two remainder
 - powers of two and subtraction

Method 1: decimal value D, binary result b (b_i : ith bit):

```
i = 0
while (D > 0)
if D is odd
set b<sub>i</sub> to 1
if D is even
set b<sub>i</sub> to 0
i++
D = D/2
```

Example: Converting 105

Method 1: decimal value D, binary result b (b_i : ith bit): i = 0while (D > 0) if D is odd set b_i to 1 if D is even set b_i to 0 i++ D = D/2

example: D = 105

Slide 46

Method 1: decimal value D, binary result b (b_i : ith bit): i = 0while (D > 0) if D is odd set b_i to 1 if D is even set b_i to 0 i++D = D/2

example: D = 105 b0 = 1

Method 1: decimal value D, binary result b (b_i : ith bit): i = 0 while (D > 0)if D is odd **Example: Converting 105** set b_i to 1 if D is even set b_i to 0 i++ D = D/2example: D = 105 b0 = 1

b1 = 0

D/2 D = 52

Method 1: decimal value D, binary result b (b_i : ith bit): i = 0while (D > 0)if D is odd **Example: Converting 105** set b_i to 1 if D is even set b_i to 0 i++ D = D/2example: D = 105b0 = 1D/2 D = 52b1 = 0D/2 D = 26 b2 = 0D/2 D = 13b3 = 1

Method 1: decimal value D, binary result b (b_i : ith bit): i = 0while (D > 0)if D is odd **Example: Converting 105** set b_i to 1 if D is even set b_i to 0 i++ D = D/2example: D = 105b0 = 1D/2 D = 52b1 = 0D/2 D = 26 $b_{2} = 0$ D/2 D = 13b3 = 1D/2 D = 6b4 = 0

b5 = 1

D/2 D = 3

Method 1: decimal value D, binary result b (b i : ith bit): i = 0while (D > 0)if D is odd **Example: Converting 105** set b_i to 1 if D is even set b_i to 0 i++ D = D/2b0 = 1example: D = 105b1 = 0D/2 D = 52D/2 D = 26b2 = 0D/2 D = 13b3 = 1D/2 D = 6b4 = 0D/2 D = 3b5 = 1

b6 = 1

b7 = 0

D/2 D = 1

D/2 D = 0

Method 1: decimal value D, binary result b (b i : ith bit): i = 0while (D > 0)if D is odd **Example: Converting 105** set b_i to 1 if D is even set b_i to 0 i++ D = D/2example: D = 105b0 = 1b1 = 0D/2 D = 52D/2 D = 26b2 = 0D/2 D = 13b3 = 1D/2 D = 6b4 = 0D/2 D = 3 b5 = 1D/2 b6 = 1D = 1D/2 b7 = 0D = 0

105 = 01101001

Method 2

- $2^{0} = 1$, $2^{1} = 2$, $2^{2} = 4$, $2^{3} = 8$, $2^{4} = 16$, $2^{5} = 32$, $2^{6} = 64$, $2^{7} = 128$
- To convert <u>105</u>:
 - Find largest power of two that's less than 105 (64)
 - Subtract 64 (105 64 = 41), put a 1 in d₆
 - Subtract 32 (41 32 = 9), put a 1 in d₅
 - Skip 16, it's larger than 9, put a 0 in d_4
 - Subtract 8 (9 8 = $\underline{1}$), put a 1 in d₃
 - Skip 4 and 2, put a 0 in d_2 and d_1
 - Subtract 1 (1 1 = 0), put a 1 in d₀ (Done)

$$\frac{1}{d_6} \quad \frac{1}{d_5} \quad \frac{0}{d_4} \quad \frac{1}{d_3} \quad \frac{0}{d_2} \quad \frac{0}{d_1} \quad \frac{1}{d_0}$$

What is the value of 357 in binary?

- A. 101100011
- B. 101100101
- C. 101101001
- D. 101110101
- E. 110100101

$$2^{0} = 1,$$
 $2^{1} = 2,$ $2^{2} = 4,$ $2^{3} = 8,$
 $2^{4} = 16,$ $2^{5} = 32,$ $2^{6} = 64,$ $2^{7} = 128,$
 $2^{8} = 256$

What is the value of 357 in binary?

- A. 101100011357 256 = 101
101 64 = 37B. 10110010137 32 = 5
5 4 = 1
- D. 101110101 E. 110100101 $\frac{1}{d_8} \frac{0}{d_7} \frac{1}{d_6} \frac{1}{d_5} \frac{0}{d_4} \frac{0}{d_3} \frac{1}{d_2} \frac{0}{d_1} \frac{1}{d_0}$
- $2^0 = 1$, $2^1 = 2$, $2^2 = 4$, $2^3 = 8$, $2^4 = 16$, $2^5 = 32$, $2^6 = 64$, $2^7 = 128$,

 $2^8 = 256$

So far: Unsigned Integers

With N bits, can represent values: 0 to 2ⁿ-1

We can always add 0's to the front of a number without changing it:

10110 = 010110 = 00010110 = 0000010110

So far: Unsigned Integers

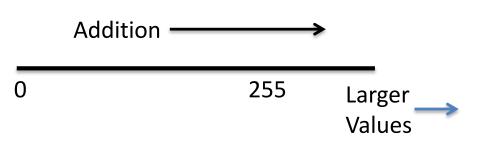
With N bits, can represent values: 0 to 2ⁿ-1

- 1 byte: char, <u>unsigned char</u>
- 2 bytes: short, <u>unsigned short</u>
- 4 bytes: int, <u>unsigned int</u>, float
- 8 bytes: long long, <u>unsigned long long</u>, double
- 4 or 8 bytes: long, <u>unsigned long</u>

Unsigned Integers

- Suppose we had <u>one byte</u>
 - Can represent 2⁸ (256) values
 - If unsigned (strictly non-negative): 0 255
- 252 = 11111100253 = 11111101254 = 1111110255 = 1111111

Traditional number line:



Unsigned Integers

- Suppose we had one byte
 - Can represent 2⁸ (256) values
 - If unsigned (strictly non-negative): 0 255
- 252 = 11111100
- 253 = 11111101
- 254 = 11111110
- 255 = 11111111

What if we add one more?

Car odometer "rolls over".

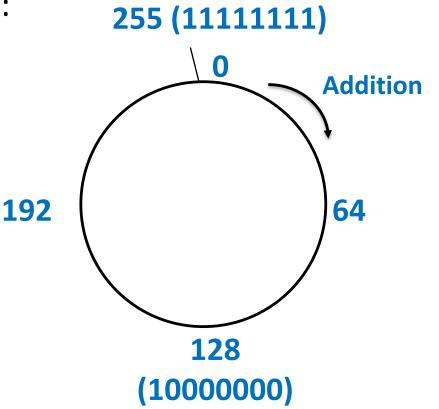
Any time we are dealing with a finite storage space we cannot represent an infinite number of values!

Unsigned Integers

Suppose we had one byte

- Can represent 2⁸ (256) values
- If unsigned (strictly non-negative):
 0 255
 - 252 = 11111100
 - 253 = 11111101
 - 254 = 11111110
 - 255 = 11111111

What if we add one more?



Modular arithmetic: Here, all values are modulo 256.

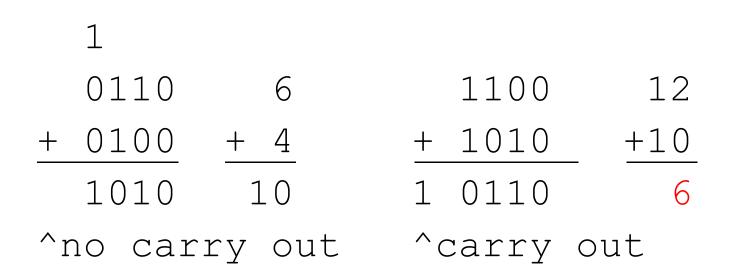
Unsigned Addition (4-bit)

• Addition works like grade school addition:

Four bits give us range: 0 - 15

Unsigned Addition (4-bit)

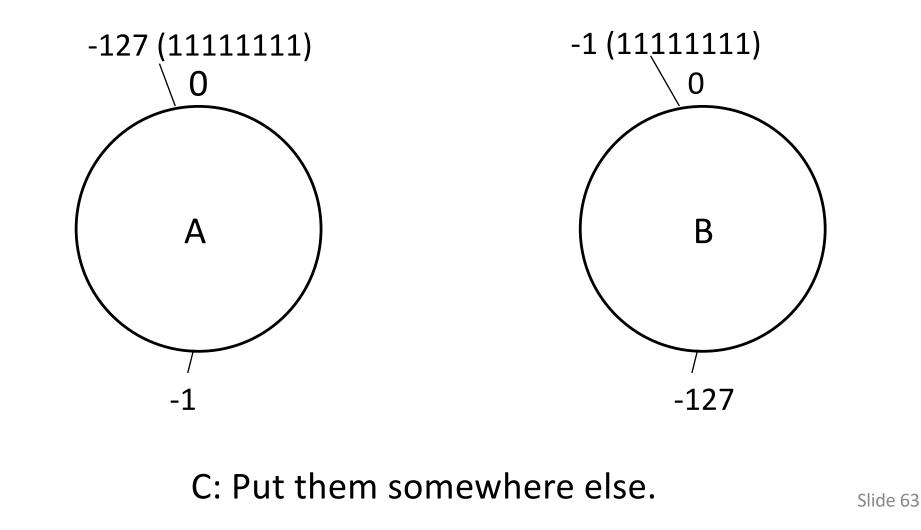
• Addition works like grade school addition:



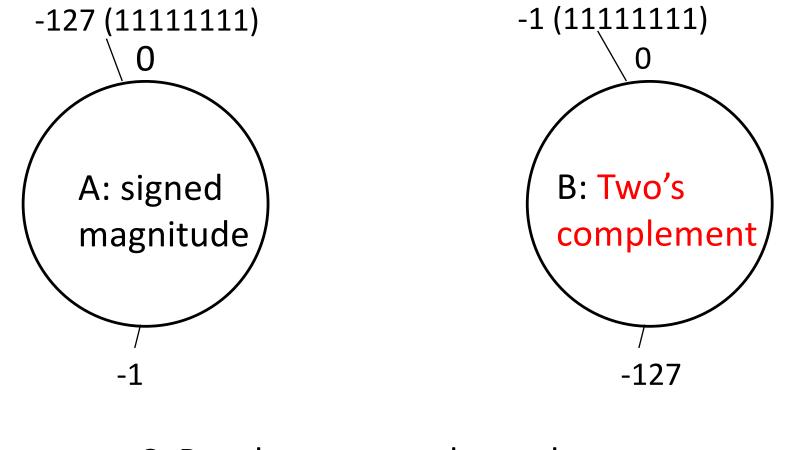
Four bits give us range: 0 - 15 Overflow!

Carry out is indicative of something having gone wrong when adding unsigned values

Suppose we want to support signed values (positive <u>and</u> negative) in 8 bits, where should we put -1 and -127 on the circle? Why?



Suppose we want to support signed values (positive <u>and</u> negative) in 8 bits, where should we put -1 and -127 on the circle? Why?



C: Put them somewhere else.

Slide 64

Signed Magnitude Representation (for 4 bit values)

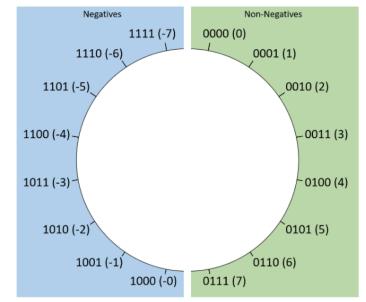


Figure 1. A logical layout of signed magnitude values for bit sequences of length four.

- One bit (usually left-most) signals:
 - 0 for positive
 - 1 for negative

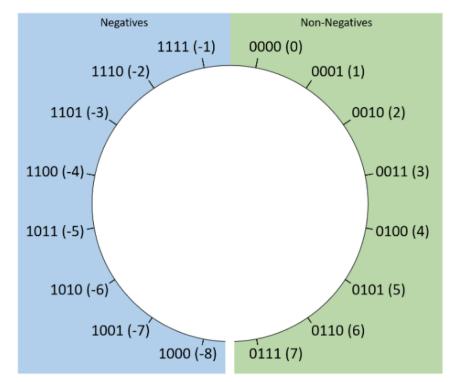
For one byte: 1 = 0000001, -1 = 1000001

Pros: Negation (negative value of a number) is very simple!

For one byte: 0 = 00000000 What about 10000000?

Major con: Two ways to represent zero.

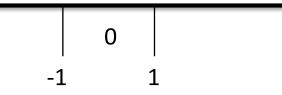
Two's Complement Representation (for four bit values)



For an 8 bit range we can express 256 unique values:

- 128 non-negative values (0 to 127)
- 128 negative values (-1 to -128)

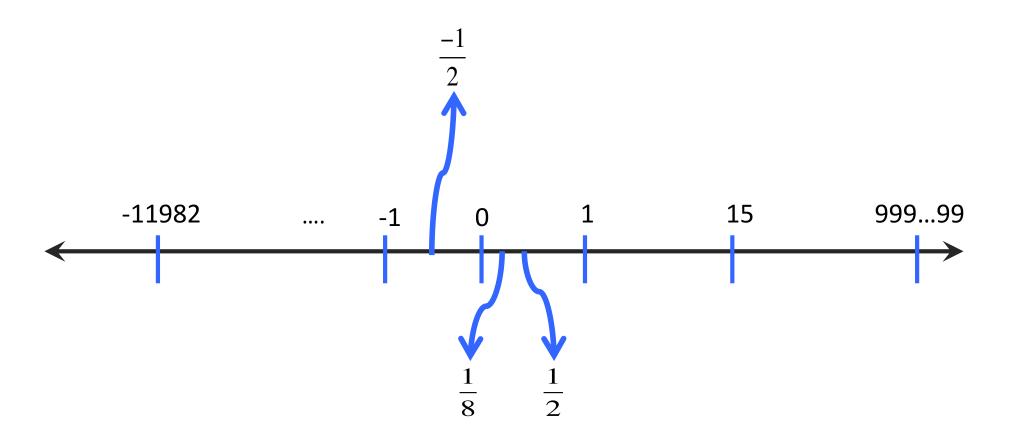
• Borrow nice property from number line:



Only one instance of zero! Implies: -1 and 1 on either side of it.

Additional Info: Fractional binary numbers

How do we represent fractions in binary?



Additional Info: Representing Signed Float Values

- One option (used for floats, <u>NOT integers</u>)
 - Let the first bit represent the sign
 - 0 means positive
 - 1 means negative
- For example:
 - <u>– 0</u>101 -> 5
 - <u>-1</u>101 -> -5
- Problem with this scheme?

Additional Info: Floating Point Representation

1 bit for sign sign | exponent | fraction |
8 bits for exponent
23 bits for precision

value = (-1)^{sign} * 1.fraction * 2^(exponent-127)

let's just plug in some values and try it out

0x40ac49ba: 0 10000001 01011000100100110111010 sign = 0 exp = 129 fraction = 2902458

 $= 1 \times 1.2902458 \times 2^2 = 5.16098$

I don't expect you to memorize this

Summary

- Images, Word Documents, Code, and Video can represented in bits.
- Byte or 8 bits is the smallest addressable unit
- N bits can represent 2^N <u>unique</u> values
- A number is written as a sequence of digits: in the decimal base system
 - [dn * 10 ^ n] + [dn-1 * 10 ^ n-1] + ... + [d2 * 10 ^ 2] + [d1 * 10 ^ 1] + [d0 * 10 ^ 0]
 - For any base system:
 - [dn * b ^ n] + [dn-1 * b ^ n-1] + ... + [d2 * b ^ 2] + [d1 * b ^ 1] + [d0 * b ^ 0]
- Hexadecimal values (represent 16 values): {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}
 - Each hexadecimal value can be represented by 4 bits. (2^4=16)
- <u>A finite storage space we cannot represent an infinite number of values.</u> For e.g., the max unsigned 8 bit value is 255.
 - Trying to represent a value >255 will result in an overflow.
- Two's Complement Representation: 128 non-negative values (0 to 127), and 128 negative values (-1 to -128).