
CS 31: Introduction to Computer Systems

02: Binary Representation
January 23



Announcements

• Sign up for Piazza!

• Let me know about exam conflicts!

• Register your clicker!

• Faculty Talk Tomorrow on Newtorks & Security: 
11.30 – 12.30pm (Free Pizza!)
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Reading Quiz

• Note the red border!

• 1 minute per question

• No talking, no laptops, phones during the quiz.
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Today

• Number systems and conversion

• Data types and storage:
– Sizes
– Representation
– Signedness
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Abstraction

User / Programmer
Wants low complexity

Applications
Specific functionality

Software library
Reusable functionality

Complex devices
Compute & I/O

Operating system
Manage resources
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Bits and Bytes

• Bit: a 0 or 1 value (binary)
– HW represents as two different voltages
– 1: the presence of voltage (high voltage)
– 0: the absence of voltage (low voltage)

• Byte: 8 bits, the smallest addressable unit
Memory:   01010101      10101010      00001111 …
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Binary Digits: (BITs)

• One bit: two values (0 or 1)
• Two bits: four values (00, 01, 10, or 11)
• Three bits: eight values (000, 001, …, 110, 111)

Slide 13



Files

Sequence of bytes… nothing more, nothing less

Slide 14



How many unique values can we represent 
with 9 bits?  Why?

• One bit: two values (0 or 1)
• Two bits: four values (00, 01, 10, or 11)
• Three bits: eight values (000, 001, …, 110, 111)

A. 18
B. 81
C. 256
D. 512
E. Some other number of values.
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How many values?

1 bit: 0 1

2 bits: 0 0 0 1 1 0 1 1

3 bits: 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

4 bits: 0
0

0
1

0
0

0
0

0
0

0
1

0
0

1
1

0
0

0
1

1
1

0
0

0
0

0
1

1
1

1
1

16 values

1
1

0
1

0
0

0
0

1
1

0
1

0
0

1
1

1
1

0
1

1
1

0
0

1
1

0
1

1
1

1
1

N bits: 2N values
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Let’s start with what we know

• Digits 0-9

• Positional numbering 

• Digits are composed to make larger numbers

• Known as the Base 10 representation
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Decimal number system (Base 10)

Sequence of digits in range [0, 9]

6 4 0 2 5

Digit #0: 1’s place (least significant digit)
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Digit #1: 10’s place

And so on
…

.



What is the significance of the Nth digit 
number in this number system? What 
does it contribute to the overall value?

64025

A. dN * 1
B. dN * 10
C. dN * 10N

D. dN * N10

E. dN * 10dN

Digit #0: d0Digit #4: d4



What is the significance of the Nth digit 
number in this number system? What 
does it contribute to the overall value?

64025

A. dN * 1
B. dN * 10
C. dN * 10N

D. dN * N10

E. dN * 10dN

Digit #0: d0Digit #4: d4

Consider the meaning of d3
(the value 4) above.  What is it 
contributing to the total value?



Decimal: Base 10
A number, written as the sequence of digits 

dndn-1…d2d1d0

where d is in {0,1,2,3,4,5,6,7,8,9}, 

represents the value:
[dn * 10n] + [dn-1 * 10n-1] + ... + [d2 * 102] + [d1 * 101] + [d0 * 100]

64025
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Decimal: Base 10
A number, written as the sequence of digits 

dndn-1…d2d1d0

where d is in {0,1,2,3,4,5,6,7,8,9}, represents the value:

[dn * 10n] + [dn-1 * 10n-1] + ... + [d2 * 102] + [d1 * 101] + [d0 * 100]

64025 = 
6 * 104 + 4 * 103 + 0 * 102 + 2 * 101 + 5 * 100

60000 + 4000 + 0 + 20 + 5
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Generalizing

The meaning of a digit depends on its position in a 
number.  

A number, written as the sequence of digits 
dndn-1…d2d1d0 in base b represents the value:

[dn * bn] + [dn-1 * bn-1] + ... + [d2 * b2] + [d1 * b1] + [d0 * b0]

[dn * 10n] + [dn-1 * 10n-1] + ... + [d2 * 102] + [d1 * 101] + [d0 * 100]



Binary: Base 2

Used by computers to store digital values.

– Indicated by prefixing number with 0b

A number, written as the sequence of digits 
dndn-1…d2d1d0 where d is in {0,1}, represents the value:

[dn * 2n] + [dn-1 * 2n-1] + ... + [d2 * 22] + [d1 * 21] + [d0 * 20]



What is the value of 0b110101 in decimal?

• A number, written as the sequence of digits 
dndn-1…d2d1d0 where d is in {0,1}, represents the value:

[dn * 2n] + [dn-1 * 2n-1] + ... + [d2 * 22] + [d1 * 21] + [d0 * 20]

A. 26
B. 53
C. 61
D. 106
E. 128
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Binary Digits: (BITS)

Representation: 1 x 27 + 0 x 26 ….. + 1 x 23 + 1 x 22 + 1 x 21 + 
1 x 20

10001111 = 143

10001111Most significant bit Least significant bit
7 6 5 4 3 2 1 0

Slide 33



Other (common) number systems.

• Base 10: decimal
• Base 2: binary

• Base 16: hexadecimal
• Base 8: octal
• Base 64
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Hexadecimal: Base 16

Indicated by prefixing number with 0x

A number, written as the sequence of digits 
dndn-1…d2d1d0

where d is in {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, 

represents the value:

[dn * 16n ] + [dn-1 * 16n-1 ] + ... +
[d2 * 162 ] + [d1 * 161 ] + [d0 * 160 ]
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What is the value of 0x1B7 in decimal?

A. 397
B. 409
C. 419
D. 437
E. 439

162 = 256 

DEC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
HEX 0 1 2 3 4 5 6 7 8 9 A B C D E F
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[dn * 16n ] + [dn-1 * 16n-1 ] + ... +

[d2 * 162 ] + [d1 * 161 ] + [d0 * 160 ]



What is the value of 0x1B7 in decimal?

A. 397
B. 409
C. 419
D. 437
E. 439 162 = 256

1*162 + 11*161 + 7*160 = 439

DEC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
HEX 0 1 2 3 4 5 6 7 8 9 A B C D E F
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[dn * 16n ] + [dn-1 * 16n-1 ] + ... +

[d2 * 162 ] + [d1 * 161 ] + [d0 * 160 ]



Important Point…

• You can represent the same value in a variety of 
number systems / bases.

• It’s all stored as binary in the computer.
– Presence/absence of voltage.
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Common number systems.

• Base 2: How data is stored in hardware.
• Base 10: Preferred by people.
• Base 8: Used to represent file permissions.
• Base 16: Convenient for representing memory 

addresses.
• Base 64: Commonly used on the Internet, (e.g. email 

attachments).
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Different ways of visualizing the same information!



Hexadecimal: Base 16

• Fewer digits to represent same value
– Same amount of information!

• Like binary, base is power of 2

• Each digit is a “nibble”, or half a byte.
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Each hex digit is a “nibble”

• One hex digit: 16 possible values (0-9, A-F)

• 16 = 24, so each hex digit has exactly four bits worth 
of information.

• We can map each hex digit to a four-bit binary value. 
(helps for converting between bases)
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Each hex digit is a “nibble”

Example value: 0x1B7

Four-bit value: 1
Four-bit value: B (decimal 11)
Four-bit value: 7

In binary: 0001 1011 0111
1 B 7
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Hexadecimal Representation

• Bit patterns as base-16 numbers
• Convert binary to hexadecimal: by splitting into 

groups of 4 bits each.
Example:

Bin 11 1100 1010 1101 1011 0011
Hex 3 C A D B 3

11 1100 1010 1101 1011 00112 = 3CADB316
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Converting Decimal -> Binary

• Two methods:
– division by two remainder
– powers of two and subtraction
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Method 1: decimal value D, binary result b (b_i : ith bit):
i = 0
while (D > 0)

if D is odd
set bi  to 1

if D is even
set bi to 0

i++
D = D/2

Example: Converting 105
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Method 1: decimal value D, binary result b (b_i : ith bit):
i = 0
while (D > 0)

if D is odd
set bi to 1

if D is even
set bi to 0

i++
D = D/2

example: D = 105        b0 = 1
D/2 D =  52        b1 = 0
D/2 D =  26        b2 = 0
D/2 D =  13        b3 = 1
D/2 D =   6        b4 = 0
D/2 D =   3        b5 = 1
D/2 D =   1        b6 = 1
D/2 D =   0        b7 = 0

105   =  01101001

Example: Converting 105
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Method 2

20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16,
25 = 32, 26 = 64, 27 = 128
• To convert 105:

– Find largest power of two that’s less than 105 (64)
– Subtract 64 (105 – 64 = 41), put a 1 in d6

– Subtract 32 (41 – 32 = 9), put a 1 in d5

– Skip 16, it’s larger than 9, put a 0 in d4

– Subtract 8 (9 – 8 = 1), put a 1 in d3

– Skip 4 and 2, put a 0 in d2 and d1

– Subtract 1 (1 – 1 = 0), put a 1 in d0  (Done)

__ __ __ __ __ __ __
d6 d5 d4 d3 d2 d1 d0 Slide 53
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What is the value of 357 in binary?

A. 101100011
B. 101100101
C. 101101001
D. 101110101
E. 110100101

20 = 1, 21 = 2, 22 = 4, 23 = 8,
24 = 16, 25 = 32, 26 = 64, 27 = 128,
28 = 256
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What is the value of 357 in binary?
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1 0 1 1 0 0 1 0 1  
d8 d7 d6 d5 d4 d3 d2 d1 d0

357 – 256 = 101
101 – 64 =  37

37 – 32 = 5
5 – 4 = 1



So far: Unsigned Integers

With N bits, can represent values: 0 to 2n-1

We can always add 0’s to the front of a number without 
changing it:

10110= 010110 = 00010110 = 0000010110
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So far: Unsigned Integers

With N bits, can represent values: 0 to 2n-1

• 1 byte:  char, unsigned char
• 2 bytes: short, unsigned short
• 4 bytes: int, unsigned int, float
• 8 bytes: long long, unsigned long long, 
double

• 4 or 8 bytes: long, unsigned long
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Unsigned Integers

• Suppose we had one byte
– Can represent 28 (256) values

– If unsigned (strictly non-negative): 0 – 255

252 = 11111100

253 = 11111101

254 = 11111110

255 = 11111111

What if we add one more?

0 255 Larger
Values

Traditional number line:

Addition



Unsigned Integers

• Suppose we had one byte
– Can represent 28 (256) values

– If unsigned (strictly non-negative): 0 – 255

252 = 11111100

253 = 11111101

254 = 11111110

255 = 11111111

What if we add one more?

Car odometer “rolls over”.

Any time we are dealing with a 
finite storage space we cannot 
represent an infinite number of 
values!
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Unsigned Integers
Suppose we had one byte

• Can represent 28 (256) values

• If unsigned (strictly non-negative): 

0 – 255

252 = 11111100

253 = 11111101

254 = 11111110

255 = 11111111

What if we add one more?

0

128 
(10000000)

64192

255 (11111111)

Addition

Modular arithmetic: Here, all values are modulo 256. Slide 60



Unsigned Addition (4-bit)

• Addition works like grade school addition:

1
0110    6       1100    12

+ 0100 + 4 + 1010 +10
1010   10     1 0110     6

^carry out

Four bits give us range: 0 - 15



Unsigned Addition (4-bit)

• Addition works like grade school addition:

1
0110    6       1100    12

+ 0100 + 4 + 1010 +10
1010   10     1 0110     6

^no carry out   ^carry out

Four bits give us range: 0 - 15 Overflow!

Carry out is indicative of something having gone wrong when adding unsigned values



Suppose we want to support signed values 
(positive and negative) in 8 bits, where should 
we put -1 and -127 on the circle?  Why? 

-1

-127 (11111111)

-127

-1 (11111111)

A B

C: Put them somewhere else. Slide 63
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Suppose we want to support signed values 
(positive and negative) in 8 bits, where should 
we put -1 and -127 on the circle?  Why? 

0

-1

-127 (11111111)
0

-127

-1 (11111111)

A: signed 
magnitude

B: Two’s 
complement

C: Put them somewhere else. Slide 64



Signed Magnitude Representation 
(for 4 bit values)
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• One bit (usually left-most) signals:
– 0 for positive
– 1 for negative

For one byte:
1 = 00000001, -1 = 10000001

Pros: Negation (negative value of a 
number) is very simple!

For one byte:
0 = 00000000
What about 10000000?

Major con: Two ways to represent zero.
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Two’s Complement Representation 
(for four bit values)

• Borrow nice property 
from number line:

0

-1 1

Only one instance of zero!
Implies: -1 and 1 on either side of it.

For an 8 bit range we can express 256 
unique values:
• 128 non-negative values (0 to 127)

• 128 negative values (-1 to -128)



Additional Info: Fractional binary numbers

0 1-1….-11982 15 999…99

−1
2

1
8

1
2

How do we represent fractions in binary?
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Additional Info: Representing Signed Float 
Values

• One option (used for floats, NOT integers)
– Let the first bit represent the sign
– 0 means positive
– 1 means negative

• For example:
– 0101 -> 5
– 1101 -> -5

• Problem with this scheme?
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Additional Info: Floating Point Representation

1  bit for sign              sign |   exponent |  fraction |
8  bits for exponent

23 bits for precision

value = (-1)sign * 1.fraction * 2(exponent-127)

let's just plug in some values and try it out

0x40ac49ba: 0 10000001   01011000100100110111010
sign = 0 exp = 129   fraction = 2902458

= 1*1.2902458*22 = 5.16098

I don’t  expect you to memorize this
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Summary

• Images, Word Documents, Code, and Video can represented in bits. 

• Byte or 8 bits is the smallest addressable unit

• N bits can represent 2
N

unique values

• A number is written as a sequence of digits: in the decimal base system

– [dn * 10 ^ n] + [dn-1 * 10 ^ n-1] + ... + [d2 * 10 ^ 2] + [d1 * 10 ^ 1] + [d0 * 10 ^ 0]

– For any base system: 

– [dn * b ^ n] + [dn-1 * b ^ n-1] + ... + [d2 * b ^ 2] + [d1 * b ^ 1] + [d0 * b ^ 0]

• Hexadecimal values (represent 16 values): {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}

– Each hexadecimal value can be represented by 4 bits. (2^4=16)

• A finite storage space we cannot represent an infinite number of values. For e.g., 

the max unsigned 8 bit value is 255. 

– Trying to represent a value >255 will result in an overflow.

• Two’s Complement Representation: 128 non-negative values (0 to 127), and 128 

negative values (-1 to -128). 
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