
CS31 Written Homework 4: C Pointers and Functions
Due Thurs, March 5th at the beginning of class

Required: Your Name(s)/Lab Section(s):

Question 1

Consider the following declarations and assignments:

int *a, b[5], c, *d;

for (c=0; c < 5 ; c++) {

b[c]= 1+c;

}

d=b;

a = &c;

c = d[3];

What are the TYPE and VALUE of each of the following expressions (if the expression is invalid, write
“Illegal Expression”, and if it is an address describe what it is the address of):

TYPE VALUE

1. a

------------- -------------

2. b

------------- -------------

3. c

------------- -------------

4. &b[1]

------------- -------------

5. d

------------- -------------

6. *d

------------- -------------

Question 2

Trace through the following C code, and draw memory contents (heap and stack) at the execution point
indicated in foo, and show the output produced by a complete run of the program. (Assume stdio.h and
stdlib.h have been included, and that malloc succeeds.)

MEMORY

int *foo(int *a, int *b, int s);

int main () {

int *arr = NULL, x = 6, y = 7, i;

arr = foo(&x, &y, 5);

printf("x = %d y = %d\n", x, y);

if(arr != NULL) {

for(i=0; i < 5; i++) {

printf("arr[%d] = %d\n",

i, arr[i]);

}

}

free(arr);

return 0;

}

/************************************/

int *foo(int *a, int *b, int s) {

int *tmp, i;

tmp = malloc(sizeof(int)*s);

if(tmp != NULL) {

for(i=0; i < s; i++) {

tmp[i] = i + *b;

}

*a = tmp[2];

*b = 8;

}

// DRAW MEMORY WHEN YOU GET HERE

return tmp;

}

OUTPUT

Question 3

Trace through the following IA32 code. Show the contents of the given memory and registers right before
the instruction at point A is executed. Assume the addl instruction in main that is immediately after the
call instruction is at memory address 0x1234. Hints:

• remember to start execution in main.

• %esp points to the item on the top of the stack, so a push will grow the top of the stack and then move
in the pushed value. A pop will move the value on top of the stack and then shrink the stack.

• The sequence of instructions leave; ret is equivalent to the sequence movl %ebp, %esp; popl %ebp;
popl %eip.

foo:

pushl %ebp

movl %esp, %ebp

subl $16, %esp

movl 8(%ebp), %eax

addl %eax, %eax

movl %eax, -4(%ebp)

movl -4(%ebp), %eax

leave # A

ret

main:

pushl %ebp

movl %esp, %ebp

subl $16, %esp

movl $6, -4(%ebp)

pushl -4(%ebp)

call foo

addl $4, %esp # at addr 0x1234

movl %eax, -4(%ebp)

movl $0, %eax

leave

ret

Register Initial at A

%eax | 2 | |

%edx | 3 | |

%esp | 0x88b0 | |

%ebp | 0x88c0 | |

Memory Address at A value

0x8880

0x8884

0x8888

0x888c

0x8890

0x8894

0x8898

0x889c

0x88a0

0x88a4

0x88a8

0x88ac

0x88b0

0x88b4

0x88b8

0x88bc

0x88c0

