CS31 Written Homework 5: Arrays, Strings and Structs

Spring 2020 Due: Monday, April 6th, 11.59pm EDT
Your SwatlID:

This is an individual HW and not paired.

Consider the following declarations and assignments. Use man pages to understand the string
functions beginning with str.

struct icecream{
float quantity;
char *flavor;
int available;

};

int main(){
int al1][2], 1i=5;
char *favorite, second_fav[7], f, *c;
struct icecream *request, icecream_list[3];

favorite = malloc(sizeof (char)*15); //assume malloc succeeds

/* function that fills in list of icecream flavors
* in the following order. flavor is malloced within each struct.
* chocolate, cookie_dough, strawberry
* quantity and available are set to 1. */
fill_icecream_list(icecream_list);
request = &icecream_list[2];

strcpy(favorite, "chocolate");
strncpy(second_fav, "cookie_dough", 6);
favorite[5] = ‘\0’;

for (i=0; i< 3 ; i++){
f = x(icecream_list[i]. (flavor+2));

}

if (strcmp(favorite, "chocolate")){
i=0;

}

c=&f;

-——> SHOW RESULTS FOR QUESTION 1 and 2 WHEN PROGRAM REACHES HERE
//free all allocated memory

Question 1: Based of the C code on the previous page, what are the TYPE, and sizeof ()
of each of the following expressions. If it is an address, describe what it is the address of.
You can assume the size of a pointer is 8 bytes, irrespective of the data type it is pointing
to.

TYPE sizeof ()
1. a
2. alo0]
3. ¢

4. favorite

5. second_fav

6. request

7. &request

8. *request

9. icecream_1list

10. icecream_list[0]

Question 2

Trace through the C code on page 1, and draw memory contents (heap and stack) at the
execution point indicated in main, and show the output produced by a complete run of the
program.

OUTPUT

Ignore Question!

Stack and Heap Diagram

You can treat the memory allocated for a struct, like memory allocated to an int, char
(primitive data type) and draw a single box to represent a single struct.

Question 3: Struct Alignment

For the struct shown below, show the struct alignment in main memory assuming the first
memory address available to store the struct is 8880. Write down an alternate struct decla-
ration to allocate memory more efficiently. Show the struct layout in main memory on the
following page for both the current struct layout and your memory efficient layout.

struct rect{
short breadth;
char color[3];
int edges;
short length;
float area;

};

//Your memory efficient struct declaration
// there may be more than one efficient representation here):

Memory Address (in decimal)

struct alignment

memory efficient alignment

8880

8881

8882

8883

8884

8885

8886

8887

8888

8889

8890

8891

8892

8893

8894

8895

8896

8897

8898

8899

8900

8901

8902

8903

8904

8905

8906

8907

8908

8909

8910

8911

8912

8913

8914

Question 4: Allocating 2D arrays dynamically

Consider the following 2D-array allocations and fill in the blanks:

#tdefine N 2
#tdefine M 3

int main(){
int *humidity; //dynamically allocated "2D" array using 1 malloc
int **rainfall; //dynamically allocated "2D" array using N+1 mallocs

) //N x M int values.

humidity = malloc(

if ('humidity){
perror("malloc");
exit(1);

}

/* dynamically allocate 2D array of N+1 mallocs
* first: malloc up 1 array of N integer pointers:

* i.e., one column of integer pointers.
* next: for each integer pointer, allocate an
* array of M ints (row of values)

*/

// malloc up 1 column of N integer pointers (int *).
rainfall = malloc(sizeof (int *) *
if ('rainfall){

perror("malloc");

exit(1);
}

/* for loop to malloc M ints for each of the
* N integer pointers above.

rainfall[i] = malloc(_______________);
if ('rainfall[i]){
perror("malloc");
exit(1);
}
} //end of for loop

//free space allocated to humidity
free(_________);

/*Write your loop here to free space allocated for each
* row in rainfall. I.e., rainfall[i] (row values)x*/

//finally free rainfall

}//end of main

