
CS 31: Introduction to Computer Systems

24-25: Race Conditions and
Synchronization

April 23 - 25, 2019

Recap

• To speed up a job, must divide it across multiple cores.

• Thread: abstraction for execution within process.
– Threads share process memory.
– Threads may need to communicate to achieve goal

• Thread communication:
– To solve task (e.g., neighbor GOL cells)
– To prevent bad interactions (synchronization)

Threads

Thread 1
PC1

SP1

Thread 2

Thread 3

PC2

SP2PC3

SP3

Process 1

Text

Data

Stack 3

OS

Heap

Stack 2

Stack 1

They’re all
executing the same
program (shared
instructions in text),
though they may be
at different points
in the code.

Synchronization

• Synchronize: to (arrange events to) happen such that
two events do not overwrite each other’s work.

• Thread synchronization
– When one thread has to wait for another
– Events in threads that occur “at the same time”

• Uses of synchronization
– Prevent race conditions
– Wait for resources to become available (only one

thread has access at any time - deadlocks)

Synchronization:
Too Much Milk (TMM)

Lecture 8 – Slide-5

Milk

3.30

3.05 Look in fridge, no milk

3.10 Leave for the grocery store

3.15

3.20 Arrive at the grocery store

3.25 Buy Milk

3.35 Arrive home, put milk in
fridge Arrive Home

3.00 Arrive home

3.40 Look in fridge, find milk

3.45 Cold Coffee (nom)

Time You Your Roommate

What mechanisms do
we need for two
independent threads to
communicate and get a
consistent view
(computer state)?

How many cartons of milk can we have in this
scenario? (Can we ensure this somehow?)

Lecture 8 – Slide-6

Milk

3.30

3.05 Look in fridge, no milk

3.10 Leave for the grocery store

3.15

3.20 Arrive at the grocery store

3.25 Buy Milk

3.35 Arrive home, put milk in
fridge

Arrive Home

3.00 Arrive home

3.40 Look in fridge, find milk

3.45 Cold Coffee (nom)

Time You Your Roommate

A. One carton
(you)

B. Two cartons
C. No cartons
D. Something

else

Synchronization:
Too Much Milk (TMM): One possible scenario

Lecture 8 – Slide-7

Milk

3.30 Arrive at grocery

3.05 Look in fridge, no milk

3.10 Leave for grocery Arrive Home

3.15 Look in fridge, no milk

3.20 Arrive at grocery Leave for grocery

3.25 Buy Milk

3.35 Arrive home, put milk in
fridge

3.00 Arrive home

3.40 Arrive home, put milk in
fridge

3.45 Oh No!

Time You Your Roommate

Milk

What mechanisms do
we need for two
independent threads to
communicate and get a
consistent view
(computer state)?

Synchronization:

Lecture 8 – Slide-8

Milk

3.30 Arrive at grocery

3.05 Look in fridge, no milk

3.10 Leave for grocery Arrive Home

3.15 Look in fridge, no milk

3.20 Arrive at grocery Leave for grocery

3.25 Buy Milk

3.35 Arrive home, put milk in
fridge

3.00 Arrive home

3.40 Arrive home, put milk in
fridge

3.45 Oh No!

Time You Your Roommate

Milk

What mechanisms do
we need for two
independent threads to
communicate and get a
consistent view
(computer state)?

Threads get scheduled in an arbitrary manner:
bad things may happen: ...or nothing may happen

Synchronization Example

• Coordination required:
– Which thread goes first?
– Threads in different regions must work together to

compute new value for boundary cells.
– Threads might not run at the same speed (depends on

the OS scheduler). Can’t let one region get too far
ahead.

– Context switches can happen at any time!

One core: Three cores:

Thread Ordering
(Why threads require care. Humans aren’t good at reasoning about this.)

• As a programmer you have no idea when threads will
run. The OS schedules them, and the schedule will vary
across runs.

• It might decide to context switch from one thread to
another at any time.

• Your code must be prepared for this!
– Ask yourself: “Would something bad happen if we context

switched here?”

• hard to debug this problem if it is not reproducible

Example: The Credit/Debit Problem

• Say you have $1000 in your bank account
– You deposit $100
– You also withdraw $100

• How much should be in your account?

• What if your deposit and withdrawal occur at the
same time, at different ATMs?

Credit/Debit Problem: Race Condition

Thread T0

Credit (int a) {
int b;

b = ReadBalance ();
b = b + a;
WriteBalance (b);

PrintReceipt (b);
}

Thread T1

Debit (int a) {
int b;

b = ReadBalance ();
b = b - a;
WriteBalance (b);

PrintReceipt (b);
}

Credit/Debit Problem: Race Condition

Thread T0

Credit (int a) {
int b;

b = ReadBalance ();
b = b + a;
WriteBalance (b);

PrintReceipt (b);
}

Thread T1

Debit (int a) {
int b;

b = ReadBalance ();
b = b - a;
WriteBalance (b);

PrintReceipt (b);
}

Say T0 runs first

Read $1000 into b

Credit/Debit Problem: Race Condition

Thread T0

Credit (int a) {
int b;

b = ReadBalance ();
b = b + a;
WriteBalance (b);

PrintReceipt (b);
}

Thread T1

Debit (int a) {
int b;

b = ReadBalance ();
b = b - a;
WriteBalance (b);

PrintReceipt (b);
}

Say T0 runs first

Read $1000 into b

Switch to T1

Read $1000 into b
Debit by $100
Write $900

CONTEXT SWITCH

Credit/Debit Problem: Race Condition

Thread T0

Credit (int a) {
int b;

b = ReadBalance ();
b = b + a;
WriteBalance (b);

PrintReceipt (b);
}

Thread T1

Debit (int a) {
int b;

b = ReadBalance ();
b = b - a;
WriteBalance (b);

PrintReceipt (b);
}

Say T0 runs first

Read $1000 into b

Switch to T1

Read $1000 into b
Debit by $100
Write $900

Switch back to T0

Read $1000 into b
Credit $100
Write $1100

Bank gave you $100!

What went wrong?

“Critical Section”

Thread T0

Credit (int a) {
int b;

b = ReadBalance ();
b = b + a;
WriteBalance (b);

PrintReceipt (b);
}

Thread T1

Debit (int a) {
int b;

b = ReadBalance ();
b = b - a;
WriteBalance (b);

PrintReceipt (b);
}

Bank gave you $100!

What went wrong?

Badness
if context
switch
here!

”Danger Will Robinson!

To Avoid Race Conditions

1. Identify critical sections

2. Use synchronization to enforce mutual exclusion
– Only one thread active in a critical section

Thread 0

- Critical -
- Section -

Thread 1

- Critical -
- Section -

What Are Critical Sections?

• Sections of code executed by multiple threads
– Access shared variables, often making local copy
– Places where order of execution or thread interleaving

will affect the outcome
– Follows: read + modify + write of shared variable

• Must run atomically with respect to each other
– Atomicity: runs as an entire unit or not at all. Cannot

be divided into smaller parts.

Which code region is a critical section?

main ()
{ int a,b;

a = getShared();
b = 10;
a = a + b;
saveShared(a);

a += 1

return a;
}

Thread A
main ()
{ int a,b;

a = getShared();
b = 20;
a = a - b;
saveShared(a);

a += 1

return a;
}

Thread B

s = 40;

shared
memory

A
C

B

D
E

Which code region is a critical section?

main ()
{ int a,b;

a = getShared();
b = 10;
a = a + b;
saveShared(a);

a += 1

return a;
}

Thread A
main ()
{ int a,b;

a = getShared();
b = 20;
a = a - b;
saveShared(a);

a += 1

return a;
}

Thread B

s = 40;

shared
memory

D

read + modify + write of shared variable

Large enough for correctness + Small enough to minimize slow down

Which values might the shared s variable
hold after both threads finish?

main ()
{ int a,b;

a = getShared();
b = 10;
a = a + b;
saveShared(a);

return a;
}

Thread A
main ()
{ int a,b;

a = getShared();
b = 20;
a = a - b;
saveShared(a);

return a;
}

Thread B

s = 40;

shared
memory

If A runs first

main ()
{ int a,b;

a = getShared();
b = 10;
a = a + b;
saveShared(a);

return a;
}

main ()
{ int a,b;

a = getShared();
b = 20;
a = a - b;
saveShared(a);

return a;
}

(s = 40)
s = 50

shared
memory

Thread A Thread B

B runs after A Completes

main ()
{ int a,b;

a = getShared();
b = 10;
a = a + b;
saveShared(a);

return a;
}

main ()
{ int a,b;

a = getShared();
b = 20;
a = a - b;
saveShared(a);

return a;
}

(s = 50)
s = 30;

shared
memory

Thread A Thread B

What about interleaving?

main ()
{ int a,b;

a = getShared();
b = 10;
a = a + b;
saveShared(a);

return a;
}

main ()
{ int a,b;

a = getShared();
b = 20;
a = a - b;
saveShared(a);

return a;
}

s = 40;

shared
memory

Thread A Thread B

One of the threads will overwrite the other’s changes.

Is there a race condition?
Suppose count is a global variable (shared amongst threads),
multiple threads increment it: count++;

A. Yes, there’s a race condition (count++ is a critical section).
B. No, there’s no race condition (count++ is not a critical section).
C. Cannot be determined

movl (%edx), %eax // read count value
addl $1, %eax // modify value
movl %eax, (%edx) // write count

How about if compiler implements it as:

incl (%edx) // increment value

How about if compiler implements it as:

Is there a race condition?
Suppose count is a global variable (shared amongst threads),
multiple threads increment it: count++;

A. Yes, there’s a race condition (count++ is a critical section).
B. No, there’s no race condition (count++ is not a critical section).
C. Cannot be determined

movl (%edx), %eax // read count value
addl $1, %eax // modify value
movl %eax, (%edx) // write count

How about if compiler implements it as:

incl (%edx) // increment value

How about if compiler implements it as:

Neither of these instructions are implemented necessarily as atomic
instruction!

Four Rules for Mutual Exclusion

1. No two threads can be inside their critical sections
at the same time (one of many but not more than
one).

2. No thread outside its critical section may prevent
others from entering their critical sections.

3. No thread should have to wait forever to enter its
critical section. (Starvation)

4. No assumptions can be made about speeds or
number of CPU’s.

Thread Ordering
(Why threads require care. Humans aren’t good at reasoning about this.)

• As a programmer you have no idea when threads will
run. The OS schedules them, and the schedule will vary
across runs.

• It might decide to context switch from one thread to
another at any time.

• Your code must be prepared for this!
– Ask yourself: “Would something bad happen if we context

switched here?”

• hard to debug this problem if it is not reproducible

How to Achieve Mutual Exclusion?

• Surround critical section with entry/exit code
• Entry code should act as a gate
– If another thread is in critical section, block
– Otherwise, allow thread to proceed

• Exit code should release other entry gates

< entry code >

< critical section >

< exit code >

< entry code >

< critical section >

< exit code >

Possible Solution: Spin Lock?

• Lock indicates whether any thread is in critical section.

T0
while (lock == CLOSED);

lock = CLOSED;

< critical section >

lock = OPEN;

T1
while (lock == CLOSED);

lock = CLOSED;

< critical section >

lock = OPEN;

shared int lock = OPEN;

Note: While loop has no body. Keeps
checking the condition as quickly as possible
until it becomes false. (It “spins”)

Possible Solution: Spin Lock?

• Lock indicates whether any thread is in critical section.
• Is there a problem here?
– A: Yes, this is broken.
– B: No, this ought to work.

T0
while (lock == CLOSED);

lock = CLOSED;

< critical section >

lock = OPEN;

T1
while (lock == CLOSED);

lock = CLOSED;

< critical section >

lock = OPEN;

shared int lock = OPEN;

Possible Solution: Spin Lock?

• Lock indicates whether any thread is in critical section.
• Is there a problem here?
– A: Yes, this is broken.
– B: No, this ought to work.

T0
while (lock == CLOSED);

lock = CLOSED;

< critical section >

lock = OPEN;

T1
while (lock == CLOSED);

lock = CLOSED;

< critical section >

lock = OPEN;

shared int lock = OPEN;

Possible Solution: Spin Lock?

T0
while (lock == CLOSED);

lock = CLOSED;

< critical section >

lock = OPEN;

T1
while (lock == CLOSED);

lock = CLOSED;

< critical section >

lock = OPEN;

shared int lock = OPEN;

• What if a context switch occurs at this point?

Two statements: while lock is closed and setting of lock are not
happening atomically. Race condition on updating the lock.

Possible Solution: Take Turns?

• Alternate which thread can enter critical section
• Is there a problem?
– A: Yes, this is broken.
– B: No, this ought to work.

T0
while (turn != T0);

< critical section >

turn = T1;

T1
while (turn != T1);

< critical section >

turn = T0;

shared int turn = T0;

Possible Solution: Take Turns?

• Alternate which thread can enter critical section
• Is there a problem?
– A: Yes, this is broken.
– B: No, this ought to work.

T0
while (turn != T0);

< critical section >

turn = T1;

T1
while (turn != T1);

< critical section >

turn = T0;

shared int turn = T0;

Possible Solution: Take Turns?

• Gives us the correctness of Mutual Exclusion (Rule 1)
• Breaks Rule #2: No thread outside its critical section

may prevent others from entering their critical sections.
• Gets worse with more threads.

T0
while (turn != T0);

< critical section >

turn = T1;

T1
while (turn != T1);

< critical section >

turn = T0;

shared int turn = T0;

Possible Solution: State Intention?

• Each thread states it wants to enter critical section
• Is there a problem?
– A: Yes, this is broken.
– B: No, this ought to work.

T0
flag[T0] = TRUE;

while (flag[T1]);

< critical section >

flag[T0] = FALSE;

T1
flag[T1] = TRUE;

while (flag[T0]);

< critical section >

flag[T1] = FALSE;

shared boolean flag[2] = {FALSE, FALSE};

Possible Solution: State Intention?

• Each thread states it wants to enter critical section
• Is there a problem?
– A: Yes, this is broken.
– B: No, this ought to work.

T0
flag[T0] = TRUE;

while (flag[T1]);

< critical section >

flag[T0] = FALSE;

T1
flag[T1] = TRUE;

while (flag[T0]);

< critical section >

flag[T1] = FALSE;

shared boolean flag[2] = {FALSE, FALSE};

Possible Solution: State Intention?

• What if threads context switch between these two lines?
• Rule #3: No thread should have to wait forever to enter

its critical section (deadlock: neither thread makes
progress)

T0
flag[T0] = TRUE;

while (flag[T1]);

< critical section >

flag[T0] = FALSE;

T1
flag[T1] = TRUE;

while (flag[T0]);

< critical section >

flag[T1] = FALSE;

shared boolean flag[2] = {FALSE, FALSE};

Peterson’s Solution

• If there is competition, take turns; otherwise, enter
• Is there a problem?
• A: Yes, this is broken.
• B: No, this ought to work.

T0
flag[T0] = TRUE;

turn = T1;

while (flag[T1] && turn==T1);

< critical section >

flag[T0] = FALSE;

T1
flag[T1] = TRUE;

turn = T0;

while (flag[T0] && turn==T0);

< critical section >

flag[T1] = FALSE;

shared int turn;
shared boolean flag[2] = {FALSE, FALSE};

Peterson’s Solution

• If there is competition, take turns; otherwise, enter
• Is there a problem?
• A: Yes, this is broken.
• B: No, this ought to work.

T0
flag[T0] = TRUE;

turn = T1;

while (flag[T1] && turn==T1);

< critical section >

flag[T0] = FALSE;

T1
flag[T1] = TRUE;

turn = T0;

while (flag[T0] && turn==T0);

< critical section >

flag[T1] = FALSE;

shared int turn;
shared boolean flag[2] = {FALSE, FALSE};

Peterson’s Solution

• Do we like this solution? Are there problems we would
like to avoid?
• A: Yes
• B: No

T0
flag[T0] = TRUE;

turn = T1;

while (flag[T1] && turn==T1);

< critical section >

flag[T0] = FALSE;

T1
flag[T1] = TRUE;

turn = T0;

while (flag[T0] && turn==T0);

< critical section >

flag[T1] = FALSE;

shared int turn;
shared boolean flag[2] = {FALSE, FALSE};

Peterson’s Solution

• Do we like this solution? Are there problems we would
like to avoid?
• Complexity of the solution increases with the number of

threads you have.
• while loop – using CPU doing nothing.

T0
flag[T0] = TRUE;

turn = T1;

while (flag[T1] && turn==T1);

< critical section >

flag[T0] = FALSE;

T1
flag[T1] = TRUE;

turn = T0;

while (flag[T0] && turn==T0);

< critical section >

flag[T1] = FALSE;

shared int turn;
shared boolean flag[2] = {FALSE, FALSE};

Spinlocks are Wasteful

• If a thread is spinning on a lock, it’s using the CPU
without making progress.
– Single-core system, prevents lock holder from

executing.
– Multi-core system, waste core time when something

else could be running.

• Ideal: thread can’t enter critical section? Schedule
something else. Consider it blocked.

Railroad Semaphore
- track at any given

time

Spinlocks are Wasteful

• If a thread is spinning on a lock, it’s using the CPU
without making progress.
– Single-core system, prevents lock holder from

executing.
– Multi-core system, waste core time when something

else could be running.

• Ideal: thread can’t enter critical section? Schedule
something else. Consider it blocked.

Atomicity

• How do we get away from having to know about all
other interested threads?

• The implementation of acquiring/releasing critical
section must be atomic.
– An atomic operation is one which executes as though it

could not be interrupted
– Code that executes “all or nothing”

• How do we make them atomic?
– Atomic instructions (e.g., test-and-set, compare-and-swap)
– Allows us to build “semaphore” OS abstraction

Semaphores

• Semaphore: OS synchronization variable
– Has integer value
– List of waiting threads

• Works like a gate
• If sem > 0, gate is open
– Value equals number of threads that can enter

• Else, gate is closed
– Possibly with waiting threads

critical
section

sem = 1
sem = 2

sem = 3

sem = 0

Semaphores
• Associated with each semaphore (S) is a

queue of waiting threads
• When wait() is called by a thread:

– If semaphore is open, thread continues
– If semaphore is closed, thread blocks on

queue
• Then signal() opens the semaphore:

– If a thread is waiting on the queue, the
thread is unblocked

– If no threads are waiting on the queue, the
signal is remembered for the next thread

Critical Section

S.wait()

S.signal()

Enter

Exit

Semaphore Operations

sem s = n; //initialize: num. copies of resource

wait (sem s)
decrement s;
if s < 0, block thread (and associate with s);

signal (sem s)
increment s;
if blocked threads, unblock (any) one of them;

Semaphore: an integer variable that can be updated
only using two special atomic instructions (test/set,
compare/swap)

Executes atomically

Executes atomically

Semaphore Operations

Based on what you know about semaphores, should a
process be able to check beforehand whether wait(s) will
cause it to block?

A. Yes, it should be able to check.
B. No, it should not be able to check.

sem s = n; // declare and initialize

wait (sem s) // Executes atomically
decrement s;
if s < 0, block thread (and associate with s);

signal (sem s) // Executes atomically
increment s;
if blocked threads, unblock (any) one of them;

Executes atomically

Executes atomically

Semaphore Operations

Based on what you know about semaphores, should a
process be able to check beforehand whether wait(s) will
cause it to block?

A. Yes, it should be able to check.
B. No, it should not be able to check.

sem s = n; // declare and initialize

wait (sem s) // Executes atomically
decrement s;
if s < 0, block thread (and associate with s);

signal (sem s) // Executes atomically
increment s;
if blocked threads, unblock (any) one of them;

Executes atomically

Executes atomically

Semaphore Operations
sem s = n; // declare and initialize

wait (sem s) // Executes atomically
decrement s;
if s < 0, block thread (and associate with s);

signal (sem s) // Executes atomically
increment s;
if blocked threads, unblock (any) one of them;

Executes atomically

Executes atomically

• No other operations allowed
• In particular, semaphore’s value can’t be tested!
• No thread can tell the value of semaphore s

Mutual Exclusion with Semaphores

• Use a “mutex” semaphore initialized to 1
• Only one thread can enter critical section at a time.
• Simple, works for any number of threads
• Is there any busy-waiting?

T0
wait (mutex);

< critical section >

signal (mutex);

T1
wait (mutex);

< critical section >

signal (mutex);

sem mutex = 1;

Locking Abstraction

• One way to implement critical sections is to “lock the door” on the
way in, and unlock it again on the way out
– Typically exports “nicer” interface for semaphores in user space

• A lock is an object in memory providing two operations
– acquire()/lock(): before entering the critical section
– release()/unlock(): after leaving a critical section

• Threads pair calls to acquire() and release()
– Between acquire()/release(), the thread holds the lock
– acquire() does not return until any previous holder releases
– What can happen if the calls are not paired?

Using Locks

main ()
{ int a,b;

a = getShared();
b = 10;
a = a + b;
saveShared(a);

return a;
}

Thread A
main ()
{ int a,b;

a = getShared();
b = 20;
a = a - b;
saveShared(a);

return a;
}

Thread B

s = 40;

shared
memory

Using Locks

main ()
{ int a,b;

acquire(l);
a = getShared();
b = 10;
a = a + b;
saveShared(a);
release(l);

return a;
}

main ()
{ int a,b;

acquire(l);
a = getShared();
b = 20;
a = a - b;
saveShared(a);
release(l);

return a;
}

s = 40;
Lock l;

shared
memory

Thread A Thread B

Lock Held by:
Nobody

Using Locks

main ()
{ int a,b;

acquire(l);
a = getShared();
b = 10;
a = a + b;
saveShared(a);
release(l);

return a;
}

main ()
{ int a,b;

acquire(l);
a = getShared();
b = 20;
a = a - b;
saveShared(a);
release(l);

return a;
}

s = 40;
Lock l;

shared
memory

Thread A Thread B

Lock held by:
Thread A

Using Locks

main ()
{ int a,b;

acquire(l);
a = getShared();
b = 10;
a = a + b;
saveShared(a);
release(l);

return a;
}

main ()
{ int a,b;

acquire(l);
a = getShared();
b = 20;
a = a - b;
saveShared(a);
release(l);

return a;
}

s = 40;
Lock l;

shared
memory

Thread A Thread B

Lock held by:
Thread A

Using Locks

main ()
{ int a,b;

acquire(l);
a = getShared();
b = 10;
a = a + b;
saveShared(a);
release(l);

return a;
}

main ()
{ int a,b;

acquire(l);
a = getShared();
b = 20;
a = a - b;
saveShared(a);
release(l);

return a;
}

s = 40;
Lock l;

shared
memory

Thread A Thread B

Lock held by:
Thread A

Using Locks

main ()
{ int a,b;

acquire(l);
a = getShared();
b = 10;
a = a + b;
saveShared(a);
release(l);

return a;
}

main ()
{ int a,b;

acquire(l);
a = getShared();
b = 20;
a = a - b;
saveShared(a);
release(l);

return a;
}

s = 40;
Lock l;

shared
memory

Thread A Thread B

Lock Held by:
Nobody

Using Locks

main ()
{ int a,b;

acquire(l);
a = getShared();
b = 10;
a = a + b;
saveShared(a);
release(l);

return a;
}

main ()
{ int a,b;

acquire(l);
a = getShared();
b = 20;
a = a - b;
saveShared(a);
release(l);

return a;
}

s = 40;
Lock l;

shared
memory

Thread A Thread B

Lock held by:
Thread B

Using Locks

main ()
{ int a,b;

acquire(l);
a = getShared();
b = 10;
a = a + b;
saveShared(a);
release(l);

return a;
}

main ()
{ int a,b;

acquire(l);
a = getShared();
b = 20;
a = a - b;
saveShared(a);
release(l);

return a;
}

s = 40;
Lock l;

shared
memory

Thread A Thread B

Lock Held by:
Nobody

Using Locks

main ()
{ int a,b;

acquire(l);
a = getShared();
b = 10;
a = a + b;
saveShared(a);
release(l);

return a;
}

main ()
{ int a,b;

acquire(l);
a = getShared();
b = 20;
a = a - b;
saveShared(a);
release(l);

return a;
}

s = 40;
Lock l;

shared
memory

Thread A Thread B

Lock Held by:
Nobody

• No matter how we order threads or when we context switch,
result will always be 30, like we expected (and probably wanted).

“Deadly Embrace”

• The Structure of the THE-Multiprogramming System
(Edsger Dijkstra, 1968)

• Also introduced semaphores

• Deadlock is as old as synchronization

What is Deadlock?

• Deadlock is a problem that can arise:
– When processes compete for access to limited resources
– When threads are incorrectly synchronized

• Definition:
– Deadlock exists among a set of threads if every thread is

waiting for an event that can be caused only by another
thread in the set.

What is Deadlock?

• Set of threads are permanently blocked
– Unblocking of one relies on progress of another
– But none can make progress!

• Example
– Threads A and B
– Resources X and Y
– A holding X, waiting for Y
– B holding Y, waiting for X
– Each is waiting for the other; will wait forever

A

X

Y

B

waiting
for

waiting
for

holding

holding

Traffic Jam as Example of Deadlock

• Cars A, B, C, D

• Road W, X, Y, Z

• Car A holds road space
Y, waiting for space Z

• “Gridlock”

W X

Y Z

C

A

B

D

Cars deadlocked
in an intersection

Traffic Jam as Example of Deadlock

A

Z

B

D

W

C

Y X

Resource Allocation
Graph

W X

Y Z

C

A

B

D

Cars deadlocked
in an intersection

Four Conditions for Deadlock

1. Mutual Exclusion
– Only one thread may use a resource at a time.

2. Hold-and-Wait
– Thread holds resource while waiting for another.

3. No Preemption
– Can’t take a resource away from a thread.

4. Circular Wait
– The waiting threads form a cycle.

Four Conditions for Deadlock

1. Mutual Exclusion
– Only one thread may use a resource at a time.

2. Hold-and-Wait
– Thread holds resource while waiting for another.

3. No Preemption
– Can’t take a resource away from a thread.

4. Circular Wait
– The waiting threads form a cycle.

Examples of Deadlock

• Memory (a reusable resource)
– total memory = 200KB
– T1 requests 80KB
– T2 requests 70KB
– T1 requests 60KB (wait)
– T2 requests 80KB (wait)

• Messages (a consumable resource)
– T1: receive M2 from P2

– T2: receive M1 from P1

T1

T2

T1

M1

M2

T2

Four Conditions for Deadlock

1. Mutual Exclusion
– Only one thread may use a resource at a time.

2. Hold-and-Wait
– Thread holds resource while waiting for another.

3. No Preemption
– Can’t take a resource away from a thread.

4. Circular Wait
– The waiting threads form a cycle.

How to Attack the Deadlock Problem

• What should your OS do to help you?

• Deadlock Prevention
– Make deadlock impossible by removing a condition

• Deadlock Avoidance
– Avoid getting into situations that lead to deadlock

• Deadlock Detection
– Don’t try to stop deadlocks
– Rather, if they happen, detect and resolve

How to Attack the Deadlock Problem

• What should your OS do to help you?

• Deadlock Prevention
– Make deadlock impossible by removing a condition

• Deadlock Avoidance
– Avoid getting into situations that lead to deadlock

• Deadlock Detection
– Don’t try to stop deadlocks
– Rather, if they happen, detect and resolve

How Can We Prevent a Traffic Jam?

• Do intersections usually
look like this one?

• We have road infrastructure
(mechanisms)

• We have road rules
(policies)

W X

Y Z

C

A

B

D

Cars deadlocked
in an intersection

Suppose we add north/south stop signs.
Which condition would that eliminate?

W X

Y Z

C

A

B

D
A. Mutual exclusion

B. Hold and wait

C. No preemption

D. Circular wait

E. More than one (which?)

Suppose we add north/south stop signs.
Which condition would that eliminate?

W X

Y Z

C

A

B

D
A. Mutual exclusion

B. Hold and wait

C. No preemption

D. Circular wait

E. More than one (which?)

Deadlock Prevention

• Simply prevent any single condition for deadlock
1. Mutual exclusion
– Make all resources sharable

2. Hold-and-wait
– Get all resources simultaneously (wait until all free)
– Only request resources when it has none

Deadlock Prevention

• Simply prevent any single condition for deadlock
3. No preemption
– Allow resources to be taken away (at any time)

4. Circular wait
– Order all the resources, force ordered acquisition

Which of these conditions is easiest to give up
to prevent deadlocks?

A. Mutual exclusion (make everything sharable)

B. Hold and wait (must get all resources at once)

C. No preemption (resources can be taken away)

D. Circular wait (total order on resource requests)

E. I’m not willing to give up any of these!

Which of these conditions is easiest to give up
to prevent deadlocks?

A. Mutual exclusion (make everything sharable)

B. Hold and wait (must get all resources at once)

C. No preemption (resources can be taken away)

D. Circular wait (total order on resource requests)

E. I’m not willing to give up any of these!

How to Attack the Deadlock Problem

• Deadlock Prevention
– Make deadlock impossible by removing a condition

• Deadlock Avoidance
– Avoid getting into situations that lead to deadlock

• Deadlock Detection
– Don’t try to stop deadlocks
– Rather, if they happen, detect and resolve

How Can We Avoid a Traffic Jam?

• What are the incremental

resources?

• Safe* state:

– No possibility of deadlock

– <= 3 cars in intersection

• Unsafe state:

– Deadlock possible, don’t allow

C

A

B

D
*Don’t try this while driving…

Deadlock Avoidance

• Eliminates deadlock

• Must know max resource usage in advance
– Do we always know resources at compile time?
– Do we specify resources at run time? Could we?

How to Attack the Deadlock Problem

• Deadlock Prevention
– Make deadlock impossible by removing a condition

• Deadlock Avoidance
– Avoid getting into situations that lead to deadlock

• Deadlock Detection
– Don’t try to stop deadlocks
– Rather, if they happen, detect and resolve

Deadlock Detection and Recovery

• Do nothing special to prevent/avoid deadlocks
– If they happen, they happen
– Periodically, try to detect if a deadlock occurred
– Do something to resolve it

• Reasoning
– Deadlocks rarely happen (hopefully)
– Cost of prevention or avoidance not worth it
– Deal with them in special way (may be very costly)

Which type of deadlock-handling scheme
would you expect to see in a modern OS
(Linux/Windows/OS X) ?

A. Deadlock prevention

B. Deadlock avoidance

C. Deadlock detection/recovery

D. Something else

Which type of deadlock-handling scheme
would you expect to see in a modern OS
(Linux/Windows/OS X) ?

A. Deadlock prevention

B. Deadlock avoidance

C. Deadlock detection/recovery

D. Something else

“Ostrich Algorithm”

How to Attack the Deadlock Problem

• Deadlock Prevention
– Make deadlock impossible by removing a condition

• Deadlock Avoidance
– Avoid getting into situations that lead to deadlock

• Deadlock Detection
– Don’t try to stop deadlocks
– Rather, if they happen, detect and resolve

• These all have major drawbacks…

Other Thread Complications

• Deadlock is not the only problem

• Performance: too much locking?

• Priority inversion

• …

Priority Inversion

• Problem: Low priority thread holds lock, high priority
thread waiting for lock.
– What needs to happen: boost low priority thread so

that it can finish, release the lock
– What sometimes happens in practice: low priority

thread not scheduled, can’t release lock

• Example: Mars Pathfinder (1997)

What Happened: Priority Inversion

Time

H

M

L Low priority task, running happily.

What Happened: Priority Inversion

Time

H

M

L

Low priority task acquires mutex lock.

What Happened: Priority Inversion

Time

H

M

L Blocked

Medium task starts up, takes CPU.

What Happened: Priority Inversion

Time

H

M

L Blocked

High priority task tries to acquire
mutex, can’t because it’s already held.

Blocked

What Happened: Priority Inversion

Time

H

M

L Blocked

High priority task tries to acquire
mutex, can’t because it’s already held.

Low priority task can’t give up
the lock because it can’t run -
medium task trumps it.

Blocked

What Happened: Priority Inversion

Time

H

M

L Blocked

Blocked

High priority is
taking too long.

Reboot!

Solution: Priority Inheritance

Time

H

M

L -> H Blocked

High priority task tries to acquire
mutex, can’t because it’s already held.

Blocked

Give to blue red’s (higher) priority!

Solution: Priority Inheritance

Time

H

M

Blocked

Blocked

Blocked

…

L

Release lock, revert to low priority.

High priority finishes in time.

Sojourner Rover on Mars

Mars Rover

• Three periodic tasks:
1. Low priority: collect meteorological data
2. Medium priority: communicate with NASA
3. High priority: data storage/movement

• Tasks 1 and 3 require exclusive access to a hardware
bus to move data.
– Bus protected by a mutex.

Mars Rover

JPL engineers later confessed that one or two system resets had occurred in their
months of pre-flight testing. They had never been reproducible or
explainable, and so the engineers, in a very human-nature
response of denial, decided that they probably weren't
important, using the rationale "it was probably caused by a hardware glitch".

Deadlock Summary

• Deadlock occurs when threads are waiting on each other
and cannot make progress.

• Deadlock requires four conditions:
– Mutual exclusion, hold and wait, no resource preemption,

circular wait

• Approaches to dealing with deadlock:
– Ignore it – Living life on the edge (most common!)
– Prevention – Make one of the four conditions impossible
– Avoidance – Banker’s Algorithm (control allocation)
– Detection and Recovery – Look for a cycle, preempt/abort

Agenda

• Classic thread patterns

• Pthreads primitives and examples of other forms of
synchronization:
– Condition variables
– Barriers
– RW locks
– Message passing

• Message passing: alternative to shared memory

Common Thread Patterns

• Producer / Consumer (a.k.a. Bounded buffer)

• Thread pool (a.k.a. work queue)

• Thread per client connection

The Producer/Consumer Problem

• Producer produces data, places it in shared buffer
• Consumer consumes data, removes from buffer
• Cooperation: Producer feeds Consumer
– How does data get from Producer to Consumer?
– How does Consumer wait for Producer?

Producer Consumer3 5 4 92

in

out
buf

Producer/Consumer: Shared Memory

• Data transferred in shared memory buffer.

Producer
while (TRUE) {

buf[in] = Produce ();
in = (in + 1)%N;

}

Consumer
while (TRUE) {

Consume (buf[out]);
out = (out + 1)%N;

}

shared int buf[N], in = 0, out = 0;

Producer/Consumer: Shared Memory

• Data transferred in shared memory buffer.

• Is there a problem with this code?
A. Yes, this is broken.
B. No, this ought to be fine.

Producer
while (TRUE) {

buf[in] = Produce ();
in = (in + 1)%N;

}

Consumer
while (TRUE) {

Consume (buf[out]);
out = (out + 1)%N;

}

shared int buf[N], in = 0, out = 0;

Producer/Consumer: Shared Memory

• Data transferred in shared memory buffer.

• Is there a problem with this code?
A. Yes, this is broken (producer overwrites existing data in

the buffer, or consumer tries to consume from an empty
buffer).

B. No, this ought to be fine.

Producer
while (TRUE) {

buf[in] = Produce ();
in = (in + 1)%N;

}

Consumer
while (TRUE) {

Consume (buf[out]);
out = (out + 1)%N;

}

shared int buf[N], in = 0, out = 0;

Adding Semaphores

Producer
while (TRUE) {

wait (X);
buf[in] = Produce ();
in = (in + 1)%N;
signal (Y);

}

Consumer
while (TRUE) {

wait (Z);
Consume (buf[out]);
out = (out + 1)%N;
signal (W);

}

shared int buf[N], in = 0, out = 0;
shared sem filledslots = 0, emptyslots = N;

• Recall semaphores:
– wait(): decrement sem and block if sem value < 0
– signal(): increment sem and unblock a waiting process (if any)

Suppose we now have two semaphores to
protect our array. Where do we use them?

Producer
while (TRUE) {

wait (X);
buf[in] = Produce ();
in = (in + 1)%N;
signal (Y);

}

Consumer
while (TRUE) {

wait (Z);
Consume (buf[out]);
out = (out + 1)%N;
signal (W);

}

shared int buf[N], in = 0, out = 0;
shared sem filledslots = 0, emptyslots = N;

Answer choice X Y Z W
A. emptyslots emptyslots filledslots filledslots
B. emptyslots filledslots filledslots emptyslots
C. filledslots emptyslots emptyslots filledslots

Wait = decrements, blocks at zero
Signal = increment and unblocking semaphore

Suppose we now have two semaphores to
protect our array. Where do we use them?

Producer
while (TRUE) {

wait (emptyslots);
buf[in] = Produce ();
in = (in + 1)%N;
signal (filledslots);

}

Consumer
while (TRUE) {

wait (filledslots);
Consume (buf[out]);
out = (out + 1)%N;
signal (emptyslots);

}

shared int buf[N], in = 0, out = 0;
shared sem filledslots = 0, emptyslots = N;

Answer choice X Y Z W
A. emptyslots emptyslots filledslots filledslots
B. emptyslots filledslots filledslots emptyslots
C. filledslots emptyslots emptyslots filledslots

Wait = decrements, blocks at zero
Signal = increment and unblocking semaphore

Add Semaphores for Synchronization

• Buffer empty, Consumer waits
• Buffer full, Producer waits
• Don’t confuse synchronization with mutual exclusion

Producer
while (TRUE) {

wait (emptyslots);
buf[in] = Produce ();
in = (in + 1)%N;
signal (filledslots);

}

Consumer
while (TRUE) {

wait (filledslots);
Consume (buf[out]);
out = (out + 1)%N;
signal (emptyslots);

}

shared int buf[N], in = 0, out = 0;
shared sem filledslots = 0, emptyslots = N;

Synchronization: More than Mutexes

• “I want to block a thread until something specific
happens.”
– Condition variable: wait for a condition to be true

Condition Variables

• In the pthreads library:
– pthread_cond_init: Initialize CV
– pthread_cond_wait: Wait on CV
– pthread_cond_signal: Wakeup one waiter
– pthread_cond_broadcast: Wakeup all waiters
– pthread_cond_destroy: free resources

• Condition variable is associated with a mutex:
1. Lock mutex, realize conditions aren’t ready yet
2. Temporarily give up mutex until CV signaled
3. Reacquire mutex and wake up when ready

Condition Variable Pattern

while (TRUE) {
//independent code

lock(m); //lock mutex
while (conditions bad)

wait(cond, m); //pass in mutex, because
//atomically waiting on cond. var. and
// unlocking mutex someone else can make
// cond. good.

//upon waking up, proceed knowing that
conditions are now good

signal (other_cond); // Let other thread
know that you finished your work.

unlock(m);
}

Synchronization: More than Mutexes

• “I want to block a thread until something specific
happens.”
– Condition variable: wait for a condition to be true

• “I want all my threads to sync up at the same point.”
– Barrier: wait for everyone to catch up.

Barriers

• Used to coordinate threads, but also other forms of
concurrent execution.

• Often found in simulations that have discrete rounds.
(e.g., game of life)

Barrier Example, N Threads
shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {
while (…) {
compute_sim_round()
barrier_wait(&b)

}
}

T1T0 T2 T3 T4

Barrier (0 waiting)

Time

Barrier Example, N Threads
shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {
while (…) {
compute_sim_round()
barrier_wait(&b)

}
}

Time

T1

T0 T2

T3

T4

Barrier (0 waiting)

Threads make progress computing
current round at different rates.

Barrier Example, N Threads
shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {
while (…) {
compute_sim_round()
barrier_wait(&b)

}
}

Time

Barrier (3 waiting)

Threads that make it to barrier must
wait for all others to get there.

T1

T0 T2

T3

T4

Barrier Example, N Threads
shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {
while (…) {
compute_sim_round()
barrier_wait(&b)

}
}

Time

Barrier (5 waiting)

Barrier allows threads to pass when
N threads reach it.

T1T0 T2 T3 T4

Matches

Barrier Example, N Threads
shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {
while (…) {
compute_sim_round()
barrier_wait(&b)

}
}

Barrier (0 waiting)

Threads compute next round, wait
on barrier again, repeat…

T1

T0 T2 T3

T4

Time

Synchronization: More than Mutexes

• “I want to block a thread until something specific
happens.”
– Condition variable: wait for a condition to be true

• “I want all my threads to sync up at the same point.”
– Barrier: wait for everyone to catch up.

• “I want my threads to share a critical section when
they’re reading, but still safely write.”
– Readers/writers lock: distinguish how lock is used

Readers/Writers

• Readers/Writers Problem:
– An object is shared among several threads
– Some threads only read the object, others only write it
– We can safely allow multiple readers
– But only one writer

• pthread_rwlock_t:
– pthread_rwlock_init: initialize rwlock
– pthread_rwlock_rdlock: lock for reading
– pthread_rwlock_wrlock: lock for writing

Message Passing

• Operating system mechanism for IPC
– send (destination, message_buffer)
– receive (source, message_buffer)

• Data transfer: in to and out of kernel message buffers
• Synchronization: can’t receive until message is sent

send (to, buf) receive (from, buf)

kernel

P1 P2

Suppose we’re using message passing, will
this code operate correctly?

A. No, there is a race condition.
B. No, we need to protect item.
C. Yes, this code is correct.

Producer
int item;

while (TRUE) {
item = Produce ();
send (Consumer, &item);

}

Consumer
int item;

while (TRUE) {
receive (Producer, &item);
Consume (item);

}

/* NO SHARED MEMORY */

Suppose we’re using message passing, will
this code operate correctly?

A. No, there is a race condition.
B. No, we need to protect item.
C. Yes, this code is correct.

Producer
int item;

while (TRUE) {
item = Produce ();
send (Consumer, &item);

}

Consumer
int item;

while (TRUE) {
receive (Producer, &item);
Consume (item);

}

/* NO SHARED MEMORY */

This code is correct and relatively simple. Why
don’t we always just use message passing (vs
semaphores, etc.)?

A. Message passing copies more data.
B. Message passing only works across a network.
C. Message passing is a security risk.
D. We usually do use message passing!

Producer
int item;

while (TRUE) {
item = Produce ();
send (Consumer, &item);

}

Consumer
int item;

while (TRUE) {
receive (Producer, &item);
Consume (item);

}

/* NO SHARED MEMORY */

Message Passing

• Operating system mechanism for IPC
– send (destination, message_buffer)
– receive (source, message_buffer)

• Data transfer: in to and out of kernel message buffers
• Synchronization: can’t receive until message is sent

send (to, buf) receive (from, buf)

kernel

P1 P2

Issues with Message Passing

• Who should messages be addressed to?
– ports (mailboxes) rather than processes/threads

• What if it wants to receive from anyone?
– pid = receive (*, msg)

• Synchronous (blocking) vs. asynchronous (non-
blocking)

• Kernel buffering: how many sends w/o receives?
• Good paradigm for IPC over networks

Summary

• Many ways to solve the same classic problems
– Producer/Consumer: semaphores, CVs, messages

• There’s more to synchronization than just mutual
exclusion!
– Condition variables, barriers, RWlocks, and others.

• Message passing doesn’t require shared mem.
– Useful for “threads” on different machines.

