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OS Big Picture Goals

• OS is an extra code layer between user programs and 
hardware.

• Goal: Make life easier for users and programmers.

• How can the OS do that?



If you were asked to design a layer between 
user programs and the hardware, what 
might your layer provide?

• What sort of services might the programs you’ve 
written need?

• (Discuss with your neighbors.)



Key OS Responsibilities

1. Simplifying abstractions for programs

2. Resource sharing

3. Hardware gatekeeping and protection



OS: Turn undesirable into desirable

• Turn undesirable inconveniences: reality
– Complexity of hardware
– Single processor
– Limited memory



Before Operating Systems

• One program executed at a time…



Why is it not ideal to have only a single 
program available to the hardware?

A. The hardware might run out of work to do.

B. The hardware won’t execute as quickly.

C. The hardware’s resources won’t be used as 
efficiently.

D. Some other reason(s).  (What?)
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Today: Multiprogramming

• Multiprogramming: have multiple programs available 
to the machine, even if you only have one CPU core 
that can execute them.
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Multiprogramming 
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Running multiple programs

• Benefits: when I/O issued, CPU not needed
– Allow another program to run
– Requires yielding and sharing memory

• Challenges: what if one running program…
– Monopolizes CPU, memory?
– Reads/writes another’s memory?
– Uses I/O device being used by another?

More than 200 processes running on a typical desktop! 



OS: Turn undesirable into desirable

• Turn undesirable inconveniences: reality
– Complexity of hardware
– Single processor
– Limited memory

• Into desirable conveniences: illusions
– Simple, easy-to-use resources
– Multiple/unlimited number of processors
– Large/unlimited amount of memory



Virtualization

• Rather than exposing real hardware, introduce a 
“virtual”, abstract notion of the resource

• Multiple virtual processors
– By rapidly switching CPU use

• Multiple virtual memories
– By memory partitioning and re-addressing

• Virtualized devices
– By simplifying interfaces, and using other resources to 

enhance function



We’ll focus on the OS ‘kernel’

• “Operating system” has many interpretations
– E.g., all software on machine minus applications (user 

or even limited to 3rd party)

• Our focus is the kernel
– What’s necessary for everything else to work
– Low-level resource control
– Originally called the nucleus in the 60’s



The Kernel

• All programs depend on it
– Loads and runs them
– Exports system calls to programs

• Works closely with hardware
– Accesses devices
– Responds to interrupts

• Allocates basic resources
– CPU time, memory space
– Controls I/O devices: display, keyboard, disk, network

TRON



Kernel provides common functions

• Some functions useful to many programs
– I/O device control
– Memory allocation

• Place these functions in central place (kernel)
– Called by programs (system calls)
– Or accessed implicitly

• What should functions be?
– How many programs should benefit?
– Might kernel get too big?



OS Kernel

• Big Design Issue: How do we make the OS efficient, reliable, and 
extensible?

• General OS Philosophy: The design and implementation of an OS 

involves a constant tradeoff between simplicity and performance. 

• As a general rule, strive for simplicity.

– except when you have a strong reason to believe that you need to make a 
particular component complicated to achieve acceptable performance

– (strong reason = simulation or evaluation study)
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Main Abstraction: The Process

• Abstraction of a running program
– “a program in execution”

• Dynamic
– Has state, changes over time
– Whereas a program is static

• Basic operations
– Start/end
– Suspend/resume



Basic Resources for Processes

• To run, process needs some basic resources:
– CPU
• Processing cycles (time)
• To execute instructions

– Memory
• Bytes or words (space)
• To maintain state

– Other resources (e.g., I/O)
• Network, disk, terminal, printer, etc.



What sort of information might the OS 
need to store to keep track of a running 
process?

• That is, what MUST an OS know about a process?

• (Discuss with your neighbors.)



Machine State of a Process

• CPU or processor context
– PC (program counter)
– SP (stack pointer)
– General purpose registers

• Memory
– Code
– Global Variables
– Stack of activation records / frames
– Other (registers, memory, kernel-related state)

Must keep track of these 
for every running process !



Resource Sharing

Reality
• Multiple processes
• Small number of CPUs
• Finite memory

Abstraction
• Process is all alone
• Process is always running
• Process has all the memory

P1

P2

P3

time

CPU: Time Memory: Space

P1
P2

P3



Resource: CPU

• Many processes, limited number of CPUs.

• Each process needs to make progress over time.  
Insight: processes don’t know how quickly they 
should be making progress.

• Illusion: every process is making progress in parallel.



Timesharing: Sharing the CPUs

• Abstraction goal: make every process think it’s running 
on the CPU all the time.
– Alternatively: If a process was removed from the CPU and 

then given it back, it shouldn’t be able to tell

• Reality: put a process on CPU, let it run for a short time 
(~10 ms), switch to another, … 

• Mechanism: context switching)



Resource: Memory

• Abstraction goal: make every process 
think it has the same memory layout.
– MUCH simpler for compiler if the stack 

always starts at 0xFFFFFFFF, etc.

Operating system
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Memory

• Abstraction goal: make every process 
think it has the same memory layout.
– MUCH simpler for compiler if the stack 

always starts at 0xFFFFFFFF, etc.

• Reality: there’s only so much memory 
to go around, and no two processes 
should use the same (physical) memory 
addresses (unless they’re sharing).

Process 1

Process 3

Process 3

OS

Process 2

Process 1

OS (with help from hardware) will keep track 
of who’s using each memory region.



Virtual Memory: Sharing Storage

• Like CPU cache, memory is a cache for disk.

• Processes never need to know where their memory 
truly is, OS translates virtual addresses into physical 
addresses for them.
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Kernel Execution

• Great, the OS is going to somehow give us these nice 
abstractions.

• So…how / when should the kernel execute to make 
all this stuff happen?



The operating system kernel…

A. Executes as a process.

B. Is always executing, in support of other processes.

C. Should execute as little as possible.

D. More than one of the above. (Which ones?)

E. None of the above.
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Process vs. Kernel

• Is the kernel itself a process?
– No, it supports processes and devices

• OS only runs when necessary…
– as an extension of a process making system call
– in response to a device issuing an interrupt



Process vs. Kernel

• The kernel is the code that supports processes
– System calls: fork ( ), exit ( ), read ( ), write ( ), …
– System management: context switching, scheduling, 

memory management



Kernel vs. Userspace: Model
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Kernel vs. Userspace: Model
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Kernel vs. Userspace: Model
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OS has control.  It will 
take care of process’s 
request, but it might 
take a while.

It can context switch 
(and usually does at 
this point).



Kernel vs. Userspace: Model
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Kernel vs. Userspace: Model
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System call example

• C program invoking printf() library call, which 
calls write() system call



Control over the CPU

• To context switch processes, kernel must get control:

1. Running process can give up control voluntarily
– To block, call yield () to give up CPU
– Process makes a blocking system call, e.g., read ()
– Control goes to kernel, which dispatches new process

2. CPU is forcibly taken away: preemption



How might the OS forcibly take control of a 
CPU?

A. Ask the user to give it the CPU.

B. Require a program to make a system call.

C. Enlist the help of a hardware device.

D. Some other means of seizing control (how?).



How might the OS forcibly take control of a 
CPU?

A. Ask the user to give it the CPU.

B. Require a program to make a system call.

C. Enlist the help of a hardware device.

D. Some other means of seizing control (how?).



CPU Preemption

1. While kernel is running, set a hardware timer.

2. When timer expires, a hardware interrupt is 
generated.  (device asking for attention)

3. Interrupt pauses process on CPU, forces control to 
go to OS kernel.

4. OS is free to perform a context switch.



Up next…

• How we create/manage processes.

• How we provide the illusion of the same enormous 
memory space for all processes.



Anatomy of a Process

• Abstraction of a running program
– a dynamic “program in execution”

• OS keeps track of process state
– What each process is doing
– Which one gets to run next

• Basic operations
– Suspend/resume (context switch)
– Start (spawn), terminate (kill)



Processes
• Process: dynamic execution context of an executing program

• A process is not a program!

• A process is one instance of a program in execution. Many 
processes can be running the same program. Processes are 
independent entities. 

• Several processes may run the same program, but each is a 
distinct process with its own state (e.g., Tabs in Chrome).

• A process executes sequentially, one instruction at a time



Resource Sharing

Reality
• Multiple processes
• Small number of CPUs
• Finite memory

Abstraction
• Process is all alone
• Process is always running
• Process has all the memory
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Resource: CPU

• Many processes, limited number of CPUs.

• Each process needs to make progress over time.  
Insight: processes don’t know how quickly they 
should be making progress.

• Illusion: every process is making progress in parallel.



Timesharing: Sharing the CPUs

• Abstraction goal: make every process think it’s running 
on the CPU all the time.
– Alternatively: If a process was removed from the CPU and 

then given it back, it shouldn’t be able to tell

• Reality: put a process on CPU, let it run for a short time 
(~10 ms), switch to another, … 

• Mechanism: context switching)



How is Timesharing Implemented?

• Kernel keeps track of progress of each process
• Characterizes state of process’s progress
– Running: actually making progress, using CPU

(C) Calvin and Hobbes



How is Timesharing Implemented?

• Kernel keeps track of progress of each process
• Characterizes state of process’s progress
– Ready: able to make progress, but not using CPU

(C) Calvin and Hobbes



How is Timesharing Implemented?

• Kernel keeps track of progress of each process
• Characterizes state of process’s progress
– Blocked: not able to make progress, can’t use CPU

(C) Calvin and Hobbes



How is Timesharing Implemented?

• Kernel keeps track of progress of each process
• Characterizes state of process’s progress
– Running: actually making progress, using CPU
– Ready: able to make progress, but not using CPU
– Blocked: not able to make progress, can’t use CPU

• Kernel selects a ready process, lets it run
– Eventually, the kernel gets back control
– Selects another ready process to run, …



Why might a process be blocked (unable to 
make progress / use CPU)?

A. It’s waiting for another process to do something.

B. It’s waiting for memory to find and return a value.

C. It’s waiting for an I/O device to do something.

D. More than one of the above. (Which ones?)

E. Some other reason(s).
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Process State Diagram

• State transitions
– Dispatch: allocate the CPU to a process
– Preempt: take away CPU from process
– Sleep: process gives up CPU to wait for event
– Wakeup: event occurred, make process ready

Ready Running

Blocked

dispatch

preempt

sleepwake up
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Process State Diagram

• State transitions
– Dispatch: allocate the CPU to a process
– Preempt: take away CPU from process
– Sleep: process gives up CPU to wait for event
– Wakeup: event occurred, make process ready

Ready Running

Blocked

dispatch

preempt

sleepwake up



Kernel Maintains Process Table

• Table: List of processes and their states
– Also sometimes called “process control block (PCB)”

• Other state info includes
– contents of CPU context
– areas of memory being used
– other information

Process ID (PID) State Other info
1534 Ready Saved context, …

34 Running Memory areas used, …

487 Ready Saved context, …

9 Blocked Condition to unblock, …

Values of registers 
in use by process



Multiprogramming

• Given a running process

– At some point, it needs a resource, e.g., I/O device

– If resource is busy (or slow), process can’t proceed

– “Voluntarily” gives up CPU to another process

• Mechanism: Context switching



Context Switching

• Allocating CPU from one process to another
– First, save context of currently running process
– Next, load context of next process to run



Context Switching

• Allocating CPU from one process to another
– First, save context of currently running process
– Next, load context of next process to run

• Loading the context
– Load general registers, stack pointer, etc.
– Load program counter (must be last instruction!)



How a Context Switch Occurs

• Process makes system call or is interrupted
– These are the only ways of entering the kernel



How a Context Switch Occurs

• In hardware
– Switch from user to kernel mode: amplifies power
– Go to fixed kernel location: interrupt/syscall handler



How a Context Switch Occurs

• In software (in the kernel code)
– Save context of last-running process
– Conditionally
• Select new process from those that are ready
• Restore context of selected process

– OS returns control to a process from 
interrupt/syscall



Context Switch: Loading the PC last
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Why shouldn’t processes control context 
switching?

A. It would cause too much overhead (costs too much 
resources: time/mem.).

B. They could refuse to give up the CPU.

C. They don’t have enough information about other 
processes.

D. Some other reason(s).



Why shouldn’t processes control context 
switching?

A. It would cause too much overhead (costs too much 
resources: time/mem. – have to implement their 
own context switching) - true

B. They could refuse to give up the CPU (also true)

C. They don’t have enough information about other 
processes (more fundamental problem)

D. Some other reason(s).



Time Sharing / Multiprogramming

• Given a running process

– At some point, it needs a resource, e.g., I/O device

– If resource is busy (or slow), process can’t proceed

– “Voluntarily” gives up CPU to another process

• Mechanism: Context switching

• Policy: CPU scheduling



The CPU Scheduling Problem

• Given multiple processes, but only one CPU
• How much CPU time does each process get?
• Which process do we run next?

• Possibilities
– Keep CPU till done
– Each process uses CPU a bit and passes it on
– Each process gets proportional to what they pay



Which CPU scheduling policy is the best?

A. Processes keep CPU until done (maximize 
throughput)

B. Processes use a fraction of CPU and pass it on 
(ensure fairness)

C. Processes receive CPU in proportion to their priority 
or what they pay (prioritize importance)

D. Other (explain)



There is No Single Best Policy

• Depends on the goals of the system

• Different for…
– Your personal computer
– Large time-shared (super) computer
– Computer controlling a nuclear power plant

• Often have multiple (conflicting) goals



Common Policies

• Details beyond scope of this course (Take OS)

• Different classes of processes
– Those blessed by administrator (high/low priority)
– Everything else



Common Policies

• Special class gets special treatment (varies)

• Everything else: roughly equal time quantum
– “Round robin”
– Give priority boost to processes that frequently perform 

I/O
– Why?

• “I/O bound” processes frequently block.
– If we want them to get equal CPU time, we need to give 

them the CPU more often.



Linux’s Policy
(You’re not responsible for this.)

• Special “real time” process classes (high prio)

• Other processes:
– Keep red-black BST of process, organized by how much 

CPU time they’ve received.
– Pick the ready with process that has run for the shortest 

time thus far.
– Run it, update it’s CPU usage time, add to tree.

• Interactive processes: Usually blocked, low total run 
time, high priority.



Managing Processes

• Processes created by calling fork()
– “Spawning” a new process

• “Parent” process spawns “Child” process
– Brutal relationship involving “zombies”, “killing” and 

“reaping”.  (I’m not making this up!)

• Processes interact with one another by sending 
signals.



Managing Processes

• Given a process, how do we make it execute the 
program we want?

• Model: fork() a new process, execute program



fork()

• System call (function provided by OS kernel)

• Creates a duplicate of the requesting process
– Process is cloning itself:

• CPU context
• Memory “address space”
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fork() return value

• The two processes are identical in every way, except 
for the return value of fork().
– The child gets a return value of 0.
– The parent gets a return value of child’s PID.

pid_t pid = fork(); // both continue after call
if (pid == 0) { 

printf("hello from child\n");
} else { 

printf("hello from parent\n");
}

Which process executes next?  Child? Parent? Some other process?

Up to OS to decide.  No guarantees.  Don’t rely on particular behavior!



How many hello’s will be printed?

fork();
printf(“hello”);
if (fork()) {

printf(“hello”);
}
fork();
printf(“hello”);

A.6
B.8
C.12
D.16
E.18
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How many hello’s will be printed?

int main(){
fork();
printf(“hello”);
if (fork()) {

printf(“hello”);
}
fork();
printf(“hello”);
} Processes in green execute the  

print statement



How many hello’s will be printed?

int main(){
fork();
printf(“hello”);
if (fork()) {

printf(“hello”);
}
fork();
printf(“hello”);
}
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How many hello’s will be printed?

int main(){
fork();
printf(“hello”);
if (fork()) {

printf(“hello”);
}
fork();
printf(“hello”);
}

Child
Child

Parent does not enter the if-
condition block



How many hello’s will be printed?

int main(){
fork();
printf(“hello”);
if (fork()) {

printf(“hello”);
}
fork();
printf(“hello”);
} Outside the if-condition, all the 

processes execute the fork call.



How many hello’s will be printed?

int main(){
fork();
printf(“hello”);
if (fork()) {

printf(“hello”);
}
fork();
printf(“hello”);
}



How many hello’s will be printed?

int main(){
fork();
printf(“hello”);
if (fork()) {

printf(“hello”);
}
fork();
printf(“hello”);
} Total of 12 print statements



Common fork() usage: Shell

• A “shell” is the program controlling your terminal 
(e.g., bash).

• It fork()’s to create new processes, but we don’t 
want a clone (another shell).

• We want the child to execute some other program: 
exec() family of functions.



exec()

• Family of functions (execl, execlp, execv, …).

• Replace the current process with a new one.

• Loads program from disk:
– Old process is overwritten in memory.
– Does not return unless error.



Common fork() usage: Shell

1. fork()child process.

2. exec()desired program to replace child’s address 
space.

2. wait()for child process to terminate.

3. repeat…

The parent and child each do 
something different next.



Common fork() usage: Shell

1. fork()child process.

Shell

fork()

Shell
(p)

Shell
(c)



Common fork() usage: Shell

2. parent: wait()for child to finish

Shell

fork()

Shell
(p)

Shell
(c)

wait()



Common fork() usage: Shell

2. child: exec()user-requested program

Shell

fork()

Shell
(p)

Shell
(c)

wait() exec()



Common fork() usage: Shell

2. child: exec()user-requested program
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wait() exec()

Runs to completion



Common fork() usage: Shell

3. child program terminates, cycle repeats
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Child terminates



Common fork() usage: Shell

3. child program terminates, cycle repeats

Shell

fork()

Shell
(p)

Shell
new
prog

wait() exec()

Runs to completion

Child terminatesShell
(p)

Original parent 
shell resumes



Process Termination

• When does a process die?
– It calls exit(int status);
– It returns (an int) from main
– It receives a termination signal (from the OS or another 

process)

• Key observation: the dying process produces status 
information.

• Who looks at this?
• The parent process!



Reaping Children
(Bet you didn’t expect to see THAT title on a slide when you signed up for CS 31?)

• wait(): parents reap their dead children
– Given info about why child died, exit status, etc.

• Two variants:
– wait(): wait for and reap next child to exit
– waitpid(): wait for and reap specific child

• This is how the shell determines whether or not the 
program you executed succeeded.



Common fork() usage: Shell

1. fork()child process.

2. exec()desired program to replace child’s address 
space.

3. wait()for child process to terminate.
– Check child’s result, notify user of errors.

4. repeat…



“Zombie” Processes

• Zombie: A process that has terminated but not been 
reaped by parent. (AKA defunct process)

• Does not respond to signals (can’t be killed)

• OS keeps their entry in process table:
– Parent may still reap them, want to know status
– Don’t want to re-use the process ID yet

Basically, they’re kept around for bookkeeping purposes, but that’s much less exciting...



Signals

• How does a parent process know that a child has 
exited (and that it needs to call wait)?

• Signals: inter-process notification mechanism
– Info that a process (or OS) can send to a process.

• Please terminate yourself (SIGTERM)

• Stop NOW (SIGKILL)

• Your child has exited (SIGCHLD)

• You’ve accessed an invalid memory address (SIGSEGV)

• Many more (SIGWINCH, SIGUSR1, SIGPIPE, …)



Signal Handlers

• By default, processes react to signals according to the 
signal type:
– SIGKILL, SIGSEGV, (others): process terminates
– SIGCHLD, SIGUSR1: process ignores signal

• You can define “signal handler” functions that execute 
upon receiving a signal.
– Drop what program was doing, execute handler, go back to 

what it was doing.
– Example: got a SIGCHLD? Enter handler, call wait()
– Example: got a SIGUSR1? Reopen log files.

• Some signals (e.g., SIGKILL) cannot be handled.



Summary

• Processes cycled off and on CPU rapidly
– Mechanism: context switch
– Policy: CPU scheduling

• Processes created by fork()ing

• Other functions to manage processes:
– exec(): replace address space with new program
– exit(): terminate process
– wait(): reap child process, get status info

• Signals one mechanism to notify a process of something


