
CS 31: Introduction to Computer Systems

18-19: Caching
April 2-4 2018

Abstraction Goal

• Reality: There is no one type of memory to rule them
all!

• Abstraction: hide the complex/undesirable details of
reality.

• Illusion: We have the speed of SRAM, with the
capacity of disk, at reasonable cost.

Slide 8

The Memory Hierarchy

Local secondary storage (disk)

Larger
Slower
Cheaper
per byte

Remote secondary storage
(tapes, Web servers / Internet)

~100 M cycles to access

On
Chip

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM)

~100 cycles to access

CPU
instrs

can
directly
access

slower
than local

disk to access

Registers
1 cycle to access

Cache(s)
(SRAM)

~10’s of cycles to access

Flash SSD / Local network

Slide 9

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1980 1985 1990 1995 2000 2003 2005 2010

ns
 (1

0-
9
se

c)

Year

Disk seek time
Flash SSD access time
DRAM access time
SRAM access time
CPU cycle time
Effective CPU cycle time

Data Access Time over Years
Over time, gap widens between DRAM, disk, and CPU speeds.

Disk

DRAM

CPU

SSD

SRAM

multicore

Really want to
avoid going to
disk for data

Want to
avoid going to
Main Memory
for data

Slide 10

Recall

• A cache is a smaller, faster memory, that holds a
subset of a larger (slower) memory

• We take advantage of locality to keep data in cache
as often as we can!

• When accessing memory, we check cache to see if it
has the data we’re looking for.

Slide 11

Why we miss…

• Compulsory (cold-start) miss:
– First time we use data, load it into cache.

• Capacity miss:
– Cache is too small to store all the data we’re using.

• Conflict miss:
– To bring in new data to the cache, we evicted other

data that we’re still using.

Slide 12
Slide 12

Cache Design

• Lot’s of characteristics to consider:
– Where should data be stored in the cache?

Main Memory Main Memory

Cache Cache

Slide 13

Cache Design

• Lot’s of characteristics to consider:
– Where should data be stored in the cache?
– What size data chunks should we store? (block size)

Main Memory Main Memory

Cache Cache

Slide 14

Cache Design

• Lot’s of characteristics to consider:
– Where should data be stored in the cache?
– What size data chunks should we store? (block size)

• Goals:
– Maximize hit rate
– Maximize (temporal & spatial) locality benefits
– Reduce cost/complexity of design

Slide 15

Suppose the CPU asks for data, it’s not in cache. We
need to move in into cache from memory. Where in
the cache should it be allowed to go?

A. In exactly one place.

B. In a few places.

C. In most places, but not all.

D. Anywhere in the cache.

ALURegs

Cache

Main Memory

Memory Bus

CPU

? ?

?

Slide 16

A. In exactly one place. (“Direct-mapped”)
– Every location in memory is directly mapped to one

place in the cache. Easy to find data.

B. In a few places. (“Set associative”)
– A memory location can be mapped to (2, 4, 8)

locations in the cache. Middle ground.

C. In most places, but not all.

D. Anywhere in the cache. (“Fully associative”)
– No restrictions on where memory can be placed in the

cache. Fewer conflict misses, more searching.

Slide 17

A larger block size (caching memory in larger
chunks) is likely to exhibit…

A. Better temporal locality

B. Better spatial locality

C. Fewer misses (better hit rate)

D. More misses (worse hit rate)

E. More than one of the above. (Which?)

Slide 18

Block Size Implications

• Small blocks
– Room for more blocks
– Fewer conflict misses

• Large blocks
– Fewer trips to memory
– Longer transfer time
– Fewer cold-start misses

Main Memory Main Memory

Cache Cache

Slide 19

Trade-offs

• There is no single best design for all purposes!

• Common systems question: which point in the design
space should we choose?

• Given a particular scenario:
– Analyze needs
– Choose design that fits the bill

Slide 20

Real CPUs

• Goals: general purpose processing
– balance needs of many use cases
– middle of the road: jack of all trades, master of none

• Some associativity, medium size blocks:
– 8-way associative (memory in one of eight places)
– 16 or 32 or 64-byte blocks

Slide 21

What should we use to determine whether or
not data is in the cache?

A. The memory address of the data.

B. The value of the data.

C. The size of the data.

D. Some other aspect of the data.

Slide 22

What should we use to determine whether or
not data is in the cache?

A. The memory address of the data.
– Memory address is how we identify the data.

B. The value of the data.
– If we knew this, we wouldn’t be looking for it!

C. The size of the data.

D. Some other aspect of the data.

Slide 23

Recall: Memory Reads

CPU places address A on the memory bus.
Load operation: movl (A), %eax

Memory Module Slots

ALU

Register
Register
Register
Register

CPU

Memory Bus

CPU Cache

A

Slide 24

Recall: Memory Reads
Memory retrieves value and sends it across bus.

CPU reads value from the bus, and copies it into register
%eax, a copy also goes into the on-chip cache memory.

Memory Module Slots

ALU

Register
Register
Register
Register

CPU

Memory Bus

CPU Cache

Value

Value

Slide 25

Memory Address Tells Us…

• Is the block containing the byte(s) you want already
in the cache?

• If not, where should we put that block?
– Do we need to kick out (“evict”) another block?

• Which byte(s) within the block do you want?

Slide 26

Memory Addresses

• Like everything else: series of bits (32 or 64)

• Keep in mind:

– N bits gives us 2N unique values.

• 32-bit address:

– 10110001011100101101010001010110

Divide into regions, each with distinct meaning.

Slide 27

A. In exactly one place. (“Direct-mapped”)
– Every location in memory is directly mapped to one

place in the cache. Easy to find data.

B. In a few places. (“Set associative”)
– A memory location can be mapped to (2, 4, 8)

locations in the cache. Middle ground.

C. In most places, but not all.

D. Anywhere in the cache. (“Fully associative”)
– No restrictions on where memory can be placed in the

cache. Fewer conflict misses, more searching.

Slide 28

Direct-Mapped

• One place data can be.

• Example: let’s assume some parameters:
– 1024 cache locations (every block mapped to one)
– Block size of 8 bytes

Slide 29

Direct-Mapped

Line V D Tag Data (8 Bytes)
0
1
2
3
4
… …

1020
1021
1022
1023

Metadata

Slide 30

Cache Metadata

• Valid bit: is the entry valid?
– If set: data is correct, use it if we ‘hit’ in cache
– If not set: ignore ‘hits’, the data is garbage

• Dirty bit: has the data been written?
– Used by write-back caches
– If set, need to update memory before eviction

Slide 31

Direct-Mapped

• Address division:
– Identify byte in block

• How many bits?

– Identify which row (line)
• How many bits?

Line V D Tag Data (8 Bytes)
0
1
2
3
4
… …

1020
1021
1022
1023

Slide 32

Direct-Mapped

• Address division:
– Identify byte in block

• How many bits? 3

– Identify which row (line)
• How many bits? 10

Line V D Tag Data (8 Bytes)
0
1
2
3
4
… …

1020
1021
1022
1023

Slide 33

Direct-Mapped

• Address division: Line V D Tag Data (8 Bytes)
0
1
2
3
4
… …

1020
1021
1022
1023

Index:
Which line (row) should we check?
Where could data be?

Tag (19 bits) Index (10 bits) Byte offset (3 bits)

Slide 34

Direct-Mapped

• Address division: Line V D Tag Data (8 Bytes)
0
1
2
3
4
… …

1020
1021
1022
1023

Index:
Which line (row) should we check?
Where could data be?

Tag (19 bits) Index (10 bits) Byte offset (3 bits)

4

Slide 35

Direct-Mapped

• Address division: Line V D Tag Data (8 Bytes)
0
1
2
3
4 1 4217
… …

1020
1021
1022
1023

In parallel, check:

Tag:
Does the cache hold the data we’re
looking for, or some other block?

Valid bit:
If entry is not valid, don’t trust garbage in
that line (row).

Tag (19 bits) Index (10 bits) Byte offset (3 bits)

4217 4

If tag doesn’t match,
or line is invalid, it’s a miss!

Slide 36

Direct-Mapped

• Address division: Line V D Tag Data (8 Bytes)
0
1
2
3
4 1 4217
… …

1020
1021
1022
1023

Byte offset tells us which subset of block
to retrieve.

Tag (19 bits) Index (10 bits) Byte offset (3 bits)

4217 4

0 1 2 3 4 5 6 7

Slide 37

Direct-Mapped

• Address division: Line V D Tag Data (8 Bytes)
0
1
2
3
4 1 4217
… …

1020
1021
1022
1023

Byte offset tells us which subset of block
to retrieve.

Tag (19 bits) Index (10 bits) Byte offset (3 bits)

4217 4 2

0 1 2 3 4 5 6 7

Slide 38

V D Tag Data

…

=

Tag Index Byte offset

0: miss
1: hit

Select Byte(s)

Data
Input: Memory Address

Slide 39

Direct-Mapped Example

• Suppose our addresses are 16 bits long.

• Our cache has 16 entries, block size of 16 bytes
– 4 bits in address for the index
– 4 bits in address for byte offset
– Remaining bits (8): tag

Slide 40

Direct-Mapped Example

• Let’s say we access
memory at address:
– 0110101100110100

• Step 1:
– Partition address into

tag, index, offset

Slide 41

Line V D Tag Data
(16 Bytes)

0

1

2

3

4

5

…

15

Direct-Mapped Example

• Let’s say we access
memory at address:
– 01101011 0011 0100

• Step 1:
– Partition address into

tag, index, offset

Slide 42

Line V D Tag Data
(16 Bytes)

0

1

2

3

4

5

…

15

Direct-Mapped Example

• Let’s say we access
memory at address:
– 01101011 0011 0100

• Step 2:
– Use index to find line

(row)
– 0011 -> 3

Line V D Tag Data
(16 Bytes)

0

1

2

3

4

5

…

15

Slide 43

Line V D Tag Data
(16 Bytes)

0

1

2

3

4

5

…

15

Direct-Mapped Example

• Let’s say we access
memory at address:
– 01101011 0011 0100

• Step 2:
– Use index to find line

(row)
– 0011 -> 3

Slide 44

Line V D Tag Data
(16 Bytes)

0

1

2

3

4

5

…

15

Direct-Mapped Example

• Let’s say we access

memory at address:

– 01101011 0011 0100

• Note:

– ANY address with 0011

(3) as the middle four

index bits will map to this

cache line.

– e.g. 11111111 0011 0000

So, which data is here?

Data from address

0110101100110100

OR

1111111100110000?

Use tag to store high-order bits.

Let’s us determine which data is

here! (many addresses map here)

Slide 45

Line V D Tag Data
(16 Bytes)

0

1

2

3 01101011

4

5

…

15

Direct-Mapped Example

• Let’s say we access
memory at address:
– 01101011 0011 0100

• Step 3:
– Check the tag
– Is it 01101011 (hit)?
– Something else (miss)?
– (Must also ensure valid)

Slide 46

Eviction

• If we don’t find what we’re looking for (miss), we need to
bring in the data from memory.

• Make room by kicking something out.
– If line to be evicted is dirty, write it to memory first.

• Another important systems distinction:
– Mechanism: An ability or feature of the system.

What you can do.
– Policy: Governs the decisions making for using the

mechanism. What you should do.

Slide 47

Eviction

• For direct-mapped cache:
– Mechanism: overwrite bits in cache line, updating

• Valid bit
• Tag
• Data

– Policy: not many options for direct-mapped
• Overwrite at the only location it could be!

Slide 48

Eviction: Direct-Mapped

• Address division: Line V D Tag Data (8 Bytes)
0

1

2

3

4

… …

1020 1 0 1323 57883

1021

1022

1023

Find line:

Tag doesn’t match, bring in from memory.

If dirty, write back first!

Tag (19 bits) Index (10 bits) Byte offset (3 bits)

3941 1020

Slide 49

Eviction: Direct-Mapped

• Address division: Line V D Tag Data (8 Bytes)
0
1
2
3
4
… …

1020 1 0 1323 57883
1021
1022
1023

Tag (19 bits) Index (10 bits) Byte offset (3 bits)

3941 1020

Main Memory

1. Send address to
read main memory.

Slide 50

Eviction: Direct-Mapped

• Address division: Line V D Tag Data (8 Bytes)
0
1
2
3
4
… …

1020 1 0 3941 92
1021
1022
1023

Tag (19 bits) Index (10 bits) Byte offset (3 bits)

3941 1020

Main Memory

1. Send address to
read main memory.

2. Copy data from memory.
Update tag.

Slide 51

Suppose we had 8-bit addresses, a cache
with 8 lines, and a block size of 4 bytes.

• How many bits would we use for:
– Tag?
– Index?
– Offset?

Slide 52

How would the cache change if we performed
the following memory operations?

Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01110000 (Value: 7)
Read 10101010 (Value: 12)
Write 01101100 (Value: 2)

Line V D Tag Data
(4 Bytes)

0 1 0 111 17

1 1 0 011 9

2 0 0 101 15

3 1 1 001 8

4 1 0 011 4

5 0 0 111 6

6 0 0 101 32

7 1 0 110 3

Memory address

Slide 53

How would the cache change if we performed
the following memory operations?

Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01110000 (Value: 7)
Read 10101010 (Value: 12)
Write 01101100 (Value: 2)

Line V D Tag Data
(4 Bytes)

0 1 0 111 17

1 1 0 011 010 9 5

2 0 0 101 15

3 1 1 001 8

4 1 0 011 4

5 0 0 111 6

6 0 0 101 32

7 1 0 110 3

Memory address

Slide 54

How would the cache change if we performed
the following memory operations?

Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01110000 (Value: 7)
Read 10101010 (Value: 12)
Write 01101100 (Value: 2)

Line V D Tag Data
(4 Bytes)

0 1 0 111 17

1 1 0 011 010 9 5

2 0 0 101 15

3 1 1 001 8

4 1 0 011 4

5 0 0 111 6

6 0 0 101 32

7 1 0 110 3

Memory address

No change necessary.

Slide 55

How would the cache change if we performed
the following memory operations?

Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01110000 (Value: 7)
Read 10101010 (Value: 12)
Write 01101100 (Value: 2)

Line V D Tag Data (4
Bytes)

0 1 0 111 17

1 1 0 011 010 9 5

2 0 0 101 15

3 1 1 001 8

4 1 0
1

011 4 7

5 0 0 111 6

6 0 0 101 32

7 1 0 110 3

Memory address

Slide 56

How would the cache change if we performed
the following memory operations?

Read 01000100 (Value: 5)

Read 11100010 (Value: 17)

Write 01110000 (Value: 7)

Read 10101010 (Value: 12)

Write 01101100 (Value: 2)

Line V D Tag Data (4
Bytes)

0 1 0 111 17

1 1 0 011 010 9 5

2
0
1

0 101 101 15 12

3 1 1 001 8

4
1 0

1
011 4 7

5 0 0 111 6

6 0 0 101 32

7 1 0 110 3

Memory address

Note: tag happened to
match, but line was invalid.

Slide 57

How would the cache change if we performed
the following memory operations?

Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01110000 (Value: 7)
Read 10101010 (Value: 12)
Write 01101100 (Value: 2)

Line V D Tag Data (4
Bytes)

0 1 0 111 17

1 1 0 011 010 9 5

2 0
1

0 101 101 15 12

3 1 1
1

001 011 8 2

4 1 0
1

011 4 7

5 0 0 111 6

6 0 0 101 32

7 1 0 110 3

Memory address

1. Write dirty line to memory.
2. Load new value, set it to 2,

mark it dirty (write).

Slide 58

Associativity

• Problem: suppose we’re only using a small amount of
data (e.g., 8 bytes, 4-byte block size)

• Bad luck: (both) blocks map to same cache line

– Constantly evicting one another

– Rest of cache is going unused!

• Associativity: allow a set blocks to be stored at the
same index. Goal: reduce conflict misses.

Slide 59

Comparison

Direct-mapped
• Tag tells you if you found

the correct data.
• Offset specifies which byte

within block.
• Middle bits (index) tell you

which 1 line to check.

• (+) Low complexity, fast.
• (-) Conflict misses.

N-way set associative
• Tag tells you if you found

the correct data.
• Offset specifies which byte

within block.
• Middle bits (set) tell you

which N lines to check.

• (+) Fewer conflict misses.
• (-) More complex, slower,

consumes more power.

Slide 60

Comparison: 1024 Lines
(For the same cache size, in bytes.)

Direct-mapped
• 1024 indices (10 bits)

2-way set associative
• 512 sets (9 bits)

– Tag slightly (1 bit) larger.
V D Tag Data (8 Bytes)

…

Set # V D Tag Data (8 Bytes)
0
1
2
3
4
… …

508
509
510
511

Slide 61

2-Way Set Associative

V D Tag Data (8 Bytes)

1 0 3941
…

Set # V D Tag Data (8 Bytes)
0
1
2
3
4 1 1 4063
… …

508
509
510
511

Tag (20 bits) Set (9 bits) Byte offset (3 bits)

3941 4

Same capacity as previous example:
1024 rows with 1 entry vs.
512 rows with 2 entries

Slide 62

2-Way Set Associative

V D Tag Data (8 Bytes)

1 0 3941
…

Set # V D Tag Data (8 Bytes)
0
1
2
3
4 1 1 4063
… …

508
509
510
511

Tag (20 bits) Set (9 bits) Byte offset (3 bits)

3941 4

Check all locations in the set, in parallel.

Slide 63

2-Way Set Associative

V D Tag Data (8 Bytes)

1 0 3941
…

Set # V D Tag Data (8 Bytes)
0
1
2
3
4 1 1 4063
… …

508
509
510
511

Tag (20 bits) Set (9 bits) Byte offset (3 bits)

3941 4

0 1 2 3 4 5 6 70 1 2 3 4 5 6 7

Multiplexer Select correct value.

Slide 64

4-Way Set Associative Cache

Clearly, more
complexity here!

Slide 65

Eviction

• Mechanism is the same…
– Overwrite bits in cache line: update tag, valid, data

• Policy: choose which line in the set to evict
– Pick a random line in set
– Choose an invalid line first
– Choose the least recently used block

• Has exhibited the least locality, kick it out!

Common
combo in
practice.

Slide 66

Least Recently Used (LRU)

• Intuition: if it hasn’t been used in a while, we have
no reason to believe it will be used soon.

• Need extra state to keep track of LRU info.

V D Tag Data (8 Bytes)

1 0 3941

…

Set # LRU V D Tag Data (8 Bytes)
0 0

1 1

2 1

3 0

4 1 1 1 4063

… …

Slide 67

Least Recently Used (LRU)

• Intuition: if it hasn’t been used in a while, we have
no reason to believe it will be used soon.

• Need extra state to keep track of LRU info.

• For perfect LRU info:
– 2-way: 1 bit

– 4-way: 8 bits

– N-way: N * log2 N bits

Another reason why associativity
often maxes out at 8 or 16.

These are metadata bits, not
“useful” program data storage.

(Approximations make it not quite
as bad.)

Slide 68

How would the cache change if we performed the
following memory operations? (2-way set)

Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01100100 (Value: 7)
Read 01000110 (Value: 5)
Write 01100000 (Value: 2)

V D Tag Data (4 Bytes)
1 0 001 17
1 0 010 5

… …

Set # LRU V D Tag Data (4 Bytes)
0 1 0 0 111 4
1 0 1 1 111 9
2 … …
3
4
5
6
7

LRU of 0 means the left line in
the set was least recently used.
1 means the right line was used
least recently.

Slide 69

Cache Conscious Programming

• Knowing about caching and designing code around it
can significantly effect performance

(ex) 2D array accesses

Algorithmically, both O(N * M).

Is one faster than the other?

for(i=0; i < N; i++) {
for(j=0; j< M; j++) {

sum += arr[i][j];
}}

for(j=0; j < M; j++) {
for(i=0; i< N; i++) {

sum += arr[i][j];
}}

Slide 70

Cache Conscious Programming

• Knowing about caching and designing code around it
can significantly effect performance

(ex) 2D array accesses

Algorithmically, both O(N * M).

Is one faster than the other?

for(i=0; i < N; i++) {
for(j=0; j< M; j++) {

sum += arr[i][j];
}}

for(j=0; j < M; j++) {
for(i=0; i< N; i++) {

sum += arr[i][j];
}}

A. is faster. B. is faster.

C. Both would exhibit
roughly equal performance.

Slide 71

Cache Conscious Programming
The first nested loop is more efficient if the cache block size
is larger than a single array bucket
(for arrays of basic C types, it will be).

(ex) 1 miss every 4 buckets vs. 1 miss every bucket

for(i=0; i < N; i++) {
for(j=0; j< M; j++) {

sum += arr[i][j];
}}

for(j=0; j < M; j++) {
for(i=0; i< N; i++) {

sum += arr[i][j];
}}

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

. . .

.

.

.

1 . . .

2

3

4

.

.

.

Slide 72

Program Efficiency and Memory
• Be aware of how your program accesses data
– Sequentially, in strides of size X, randomly, …
– How data is laid out in memory

• Will allow you to structure your code to run much
more efficiently based on how it accesses its data

• Don’t go nuts…
– Optimize the most important parts, ignore the rest
– “Premature optimization is the root of all evil.” -Knuth

Slide 73

Amdahl’s Law
Idea: an optimization can improve total runtime at
most by the fraction it contributes to total runtime

If program takes 100 secs to run, and you optimize a
portion of the code that accounts for 2% of the runtime,
the best your optimization can do is improve the runtime
by 2 secs.

Amdahl’s Law tells us to focus our optimization efforts
on the code that matters:

Speed-up what is accounting for the largest portion of
runtime to get the largest benefit. And, don’t waste
time on the small stuff.

Slide 74

Up Next:

• Operating systems, Processes
• Virtual Memory

Slide 75

