
CS 31: Introduction to Computer Systems

16-17: Storage and Memory
March 26-28, 2019

Transition

• First half of course: hardware focus
– How the hardware is constructed
– How the hardware works
– How to interact with hardware / ISA

• Up next: performance and software systems
– Memory performance
– Operating systems
– Standard libraries (strings, threads, etc.)

Slide 6

Efficiency
• How to Efficiently Run Programs

• Good algorithm is critical…

• Many systems concerns to account for too!
– The memory hierarchy and its effect

on program performance
– OS abstractions for running programs efficiently
– Support for parallel programming

Slide 7

Efficiency
• How to Efficiently Run Programs

• Good algorithm is critical…

• Many systems concerns to account for too!
– The memory hierarchy and its effect

on program performance
– OS abstractions for running programs efficiently
– Support for parallel programming

Slide 8

Suppose you’re designing a new computer
architecture. Which type of memory would
you use? Why?

A. low-capacity (~1 MB), fast, expensive

B. medium-capacity (a few GB), medium-speed, moderate
cost

C. high-capacity (100’s of GB), slow, cheap

D. something else (it must exist)

Slide 9

Classifying Memory

• Broadly, two types of memory:
1. Primary storage: CPU instructions can access any

location at any time (assuming OS permission)
2. Secondary storage: CPU can’t access this directly

Slide 10

Random Access Memory (RAM)

• Any location can be accessed directly by CPU
– Volatile Storage: lose power à lose contents

• Static RAM (SRAM)
– Latch-Based Memory (e.g. RS latch), 1 bit per latch
– Faster and more expensive than DRAM

• “On chip”: Registers, Caches

• Dynamic RAM (DRAM)
– Capacitor-Based Memory, 1 bit per capacitor

• “Main memory”: Not part of CPU

Slide 11

Memory Technologies

• Static RAM (SRAM)
– 0.5ns – 2.5ns, $2000 – $5000 per GB

• Dynamic RAM (DRAM)
– 50ns – 100ns, $20 – $75 per GB

(Main memory, “RAM”)

We’ve talked a lot about registers (SRAM) and we’ll cover
caches (SRAM) soon. Let’s look at main memory (DRAM) now.

Slide 12

Dynamic Random Access Memory (DRAM)

CPSC31 Fall 2013, newhall

DRAM
Memory
Chips

Capacitor based:

– cheaper and slower than SRAM

– capacitors are leaky (lose charge over time)

– Dynamic: value needs to be refreshed (every 10-100ms)

Example: DIMM (Dual In-line Memory Module):

Bus Interface

Slide 13

Connecting CPU and Memory

• Components are connected by a bus:
• A bus is a collection of parallel wires that carry

address, data, and control signals.
• Buses are typically shared by multiple devices.

Memory Module Slots

ALU

Register
Register
Register
Register

CPU

Memory Bus

CPU Cache

Slide 14

How Memory Read Works

(1) CPU places address A on the memory bus.
Load operation: movl(A), %eax

Memory Module Slots

ALU

Register
Register
Register
Register

CPU

Memory Bus
CPU Cache

A
Slide 15

Hey memory,
please locate
the value at
address A

Read (cont.)
(2) Main Memory reads address A from

memory, fetches value at that address
and puts it on the bus

Memory Module Slots

ALU

Register
Register
Register
Register

CPU

Memory Bus
CPU Cache

Value
Slide 16

Sending the
value back to
the CPU

Read (cont.)

(3) CPU reads value from the bus, and copies it
into register %eax, a copy also goes
into the on-chip cache memory

Memory Module Slots

ALU

Register
Register
Register
Register

CPU

Memory Bus

CPU Cache

Value

Slide 17

Write
1. CPU writes A to bus, memory reads it
2. CPU writes value to bus, memory reads it
3. Memory stores value, y, at address A

Memory Module Slots

ALU

Register
Register
Register
Register

CPU

Memory Bus

CPU Cache

value, A
Slide 18

Hey memory,
store value at
address A

Secondary Storage

• Disk, Tape Drives, Flash Solid State Drives, …

• Non-volatile: retains data without a charge

• Instructions CANNOT directly access data on
secondary storage
– No way to specify a disk location in an instruction
– Operating System moves data to/from memory

Slide 19

Secondary Storage
Memory Module Slots

ALU

Register
Register
Register
Register

CPU

Memory Bus

I/O
Controller

USB
Controller

IDE
Controller

SATA
Controller …

I/O Bus (e.g., PCI)

Secondary Storage Devices

CPU Cache

Slide 20

What’s Inside A Disk Drive?
Spindle

Arm

Actuator

Platters

Controller Electronics
(includes processor & memory) bus

connector

Image from Seagate Technology

R/W head

Data Encoded as
points of
magnetism on
Platter surfaces

Device Driver (part of OS code)
interacts with Controller to R/W to disk

Slide 21

Reading and Writing to Disk

disk surface

spins at a fixed

rotational rate

~7200 rotations/min

disk arm sweeps across

surface to position

read/write head over a

specific track.

Data blocks located in some Sector of some Track on some Surface

1. Disk Arm moves to correct track (seek time)

2. Wait for sector spins under R/W head (rotational latency)

3. As sector spins under head, data are Read or Written

(transfer time)
sector

Slide 22

Memory Technology

• Static RAM (SRAM)

– 0.5ns – 2.5ns, $2000 – $5000 per GB

• Dynamic RAM (DRAM)
– 50ns – 100ns, $20 – $75 per GB

• Magnetic disk
– 5ms – 15ms, $0.20 – $2 per GB

Like walking:

Down the hall

Across campus

To Seattle

1 ms == 1,000,000 ns

Solid-state disks (flash): 100 us – 1 ms, $2 - $10 per GB

Slide 23

The Memory Hierarchy

Larger
Slower
Cheaper
per byte

Local secondary storage (disk)
~100 M cycles to access

On
Chip

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM) ~100 cycles to access

CPU
instrs

can
directly
access

Registers
1 cycle to access

Cache(s)
(SRAM)

~10’s of cycles to access

Slide 24

The Memory Hierarchy

Local secondary storage (disk)

Larger
Slower
Cheaper
per byte

Remote secondary storage
(tapes, Web servers / Internet)

~100 M cycles to access

On
Chip

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM)

~100 cycles to access

CPU
instrs

can
directly
access

slower
than local

disk to access

Registers
1 cycle to access

Cache(s)
(SRAM)

~10’s of cycles to access

Flash SSD / Local network

Slide 25

Abstraction Goal

• Reality: There is no one type of memory to rule them
all!

• Abstraction: hide the complex/undesirable details of
reality.

• Illusion: We have the speed of SRAM, with the
capacity of disk, at reasonable cost.

Slide 26

Motivating Story / Analogy

• You work at a video rental store (remember Blockbuster?)

• You have a huge warehouse of movies
– 10-15 minutes to find movie, bring to customer
– Customers don’t like waiting…

• You have a small office in the front with shelves, you
choose what goes on shelves
– < 30 seconds to find movie on shelf

Slide 27

The Video Store Hierarchy

Large Warehouse

On
Shelf

Storage

Front Office
Shelves

~10 minutes to find movie

~30 seconds to find movie

Goal: strategically put
movies on office shelf
to reduce trips to
warehouse.

Slide 28

Quick vote: Which movie should we place on
the shelf for tonight?

A. Eternal Sunshine of the Spotless Mind

B. The Godfather

C. Pulp Fiction

D. Rocky V

E. There’s no way for us to know.

Slide 29

Problem: Prediction

• We can’t know the future…

• So… are we out of luck?
What might we look at to help us decide?

• The past is often a pretty good predictor…

Slide 30

Repeat Customer: Bob

• Has rented “Eternal Sunshine of the Spotless Mind”
ten times in the last two weeks.

• You talk to him:
– He just broke up with his girlfriend
– Swears it will be the last time he rents the movie (he’s

said this the last six times)

Slide 31

Quick vote: Which movie should we place on
the shelf for tonight?

A. Eternal Sunshine of the Spotless Mind

B. The Godfather

C. Pulp Fiction

D. Rocky V

E. There’s no way for us to know.

Slide 32

Repeat Customer: Alice

• Alice rented Rocky a month ago

• You talk to her:
– She’s really likes Sylvester Stalone

• Over the next few weeks she rented:
– Rocky II, Rocky III, Rocky IV

Slide 33

Quick vote: Which movie should we place on
the shelf for tonight?

A. Eternal Sunshine of the Spotless Mind

B. The Godfather

C. Pulp Fiction

D. Rocky V

E. There’s no way for us to know.

Slide 34

Critical Concept: Locality

• Locality: we tend to repeatedly access recently
accessed items, or those that are nearby.

• Temporal locality: An item accessed recently is likely
to be accessed again soon. (Bob)

• Spatial locality: We’re likely to access an item that’s
nearby others we just accessed. (Alice)

Slide 35

In the following code, how many examples
are there of temporal / spatial locality?
Where are they?

int i;
int num = read_int_from_user();
int *array = create_random_array(num);
for (i = 0; i < num; i++) {
printf(“At index %d, value: %d”, i, array[i]);

}

A. 1 temporal, 1 spatial
B. 1 temporal, 2 spatial
C. 2 temporal, 1 spatial
D. 2 temporal, 2 spatial
E. Some other number

Slide 36

In the following code, how many examples
are there of temporal / spatial locality?
Where are they? (some of them)

int i;
int num = read_int_from_user();
int *array = create_random_array(num);
for (i = 0; i < num; i++) {

printf(“At index %d, value: %d”, i, array[i]);
}
• Temporal

– Array base access: for every iteration
– i, num: access i and num on every iteration
– printf: access the same instructions multiple times
– printf: format string

• Spatial
– printf: params to function call, and instructions come one after another
– array elements
– input parameters to a function call
– instructions in the code above exhibit spatial locality

Slide 37

Big Picture

Local secondary storage (disk)

Remote secondary storage
(tapes, Web servers / Internet)

Main memory
(DRAM)

Cache(s)
(SRAM)

Flash SSD / Local network

Registers

For memory exhibiting locality
(stuff we’re using / likely to use):

Work hard to keep them up here!

Bulk storage down here.

Move this up on demand.

Slide 38

Big Picture

Local secondary storage (disk)

Remote secondary storage
(tapes, Web servers / Internet)

Main memory
(DRAM)

Cache(s)
(SRAM)

Flash SSD / Local network

Registers

Faster than memory. (On-chip hardware)

Holds a subset of memory.

Faster than disk.

Holds a subset of disk.

Faster than cache.

Holds a VERY small amount.

Slide 39

Cache

• In general: a storage location that holds a subset of a
larger memory, faster to access

• CPU cache: an SRAM on-chip storage location that
holds a subset of DRAM main memory (10-50x faster
to access)

• Goal: choose the right subset, based on past locality,
to achieve our abstraction

When I say “cache”,
assume this for now.

Slide 40

Cache Basics

• CPU real estate
dedicated to cache

• Usually two levels:
– L1: smallest, fastest
– L2: larger, slower

• Same rules apply:
– L1 subset of L2

ALURegs

L2 Cache

L1

Main Memory

Memory Bus

CPU

Slide 41

Cache Basics

• CPU real estate
dedicated to cache

• Usually two levels:
– L1: smallest, fastest
– L2: larger, slower

• We’ll assume one cache
(same principles)

ALURegs

Cache

Main Memory

Memory Bus

CPU

Cache is a subset of main memory.
(Not to scale, memory much bigger!)

Slide 42

Cache Basics: Read from memory

• In parallel:
– Issue read to memory
– Check cache

ALURegs

Cache

Main Memory

Memory Bus

CPU

In cache?

Request data

Slide 43

Cache Basics: Read from memory

• In parallel:
– Issue read to memory
– Check cache

• Data in cache (hit):
– Good, send to register
– Cancel/ignore memory

ALURegs

Cache

Main Memory

Memory Bus

CPU

In cache?

Slide 44

Cache Basics: Read from memory

• In parallel:
– Issue read to memory
– Check cache

• Data in cache (hit):
– Good, send to register
– Cancel/ignore memory

• Data not in cache (miss):
1. Load cache from memory

(might need to evict data)
2. Send to register

ALURegs

Cache

Main Memory

Memory Bus

CPU

In cache?

1.
(~200 cycles)

2.

Slide 45

Cache Basics: Write to memory

• Assume data already cached
– Otherwise, bring it in like read

1. Update cached copy.

2. Update memory?

ALURegs

Cache

Main Memory

Memory Bus

CPU

Data

Slide 46

When should we copy the written data from
cache to memory? Why?

A. Immediately update the data in memory when we
update the cache.

B. Update the data in memory when we evict the data
from the cache.

C. Update the data in memory if the data is needed
elsewhere (e.g., another core).

D. Update the data in memory at some other time.
(When?)

Slide 47

When should we copy the written data from
cache to memory? Why?

A. Immediately update the data in memory when we
update the cache. (“Write-through”)

B. Update the data in memory when we evict the data
from the cache. (“Write-back”)

C. Update the data in memory if the data is needed
elsewhere (e.g., another core).

D. Update the data in memory at some other time.
(When?)

Slide 48

Cache Basics: Write to memory

• Both options (write-through, write-back) viable

• write-though: write to memory immediately
– simpler, accesses memory more often (slower)

• write-back: only write to memory on eviction
– complex (cache inconsistent with memory)
– potentially reduces memory accesses (faster)

Slide 49

Cache Basics: Write to memory

• Both options (write-through, write-back) viable

• write-though: write to memory immediately
– simpler, accesses memory more often (slower)

• write-back: only write to memory on eviction
– complex (cache inconsistent with memory)
– potentially reduces memory accesses (faster)

Sells better.
Servers/Desktops/Laptops Slide 50

Bonus slides: Cache Coherence
• Keeping multiple cores’

memory consistentALURegs

Cache

Main Memory

Memory Bus

CPU

ALURegs

Cache

CPU

Bonus slides: Cache Coherence

• Keeping multiple cores’
memory consistent

• If one core updates data
– Copy data directly from

one cache to the other.
– Avoid (slower) memory

• Lots of HW complexity
here. (beyond 31)

ALURegs

Cache

Main Memory

Memory Bus

CPU

ALURegs

Cache

CPU

Up next:

• Cache details

• How cache is organized
– finding data
– storing data

• How cached subset is chosen (eviction)

Slide 53

