
CS 31: Introduction to Computer Systems

14-15: Arrays and Pointers
March 21-26

Announcements

• Everything up to Lab 5 graded
– Check Github repos for comments
– Check Gradesource for grades

• Midterm debrief last 15 minutes
• Final Exam Time Posted:
– May 12 9 – 12pm SCI 199

• Please choose partners for Lab 7!

Slide 2

Data Collections in C
• Many complex data types out there (CS 35)

• C has a few simple ones built-in:
– Arrays
– Structures (struct)
– Strings (arrays of characters)

• Often combined in practice, e.g.:
– An array of structs
– A struct containing strings

Today

• Accessing things via an offset
– Arrays, Structs, Unions

• How complex structures are stored in memory
– Multi-dimensional arrays & Structs

Slide 11

So far: Primitive Data Types

• We’ve been using ints, floats, chars, pointers

• Simple to place these in memory:
– They have an unambiguous size
– They fit inside a register*
– The hardware can operate on them directly

(*There are special registers for floats and doubles that
use the IEEE floating point format.)

Slide 12

Composite Data Types

• Combination of one or more existing types into a new
type. (e.g., an array of multiple ints, or a struct)

• Example: a queue
– Might need a value (int) plus a link to the next item

(pointer)

struct queue_node{
int value;
struct queue_node *next;

}

Slide 13

Recall: Arrays in Memory

Heap (or Stack)

iptr[0]

iptr[1]

iptr[2]

iptr[3]

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));

Slide 14

Recall: Assembly While Loop

movl $0 eax //return value

movl $0 edx //loop counter

loop:
addl (%ecx), %eax
addl $4, %ecx
addl $1, %edx
cmpl $5, %edx
jne loop

Using (dereferencing) the
memory address to access
memory at that location.

ecx was a pointer to the
beginning of the array.
Manipulating the pointer to
point to something else.

Note: This did NOT read or
write the memory that is
pointed to. Slide 15

Pointer Manipulation: Necessary?

• Previous example: advance %ecx to point to next item in
array.

iptr = malloc(…);
sum = 0;
while (i < 4) {

sum += *iptr;
iptr += 1;
i += 1;

}

Heap

iptr[0]

iptr[1]

iptr[2]

iptr[3]

Slide 16

moves +1 by size
of the data type!

Pointer Manipulation: Necessary?

• Previous example: advance %ecx to point to next item in
array.

iptr = malloc(…);
sum = 0;
while (i < 4) {

sum += *iptr;
iptr += 1;
i += 1;

}

Heap

iptr[0]

iptr[1]

iptr[2]

iptr[3]…

1st

2nd

3rd

iptr:

Reminder: addition on a pointer advances by
that many of the type (e.g., ints), not bytes. Slide 17

Pointer Manipulation: Necessary?

• Problem: iptr is changing!

• What if we wanted to free it?

• What if we wanted something like this:
iptr = malloc(…);
sum = 0;
while (i < 4) {

sum += iptr[0] + iptr[i];
iptr += 1;
i += 1;

} Changing the pointer would be
really inconvenient now!

Slide 18

Base + Offset

• We know that arrays act as a pointer to the first
element. For bucket [N], we just skip forward N.

• “We’re goofy computer scientists who count starting
from zero.”

int val[5];

val[0] val[1] val[2] val[3] val[4]

Slide 19

Base + Offset

• We know that arrays act as a pointer to the first
element. For bucket [N], we just skip forward N.

• “We’re goofy computer scientists who count starting
from zero.”

int val[5];

val[0] val[1] val[2] val[3] val[4]

Slide 20

Base + Offset

• We know that arrays act as a pointer to the first
element. For bucket [N], we just skip forward N.

int val[5];
val[0] val[1] val[2] val[3] val[4]

Base Offset (stuff in [])

This is why we start counting from zero!
Skipping forward with an offset of zero ([0]) gives us the first bucket… Slide 21

Which expression would compute the
address of iptr[3]?

A. 0x0824 + 3 * 4

B. 0x0824 + 4 * 4

C. 0x0824 + 0xC

D. More than one (which?)

E. None of these

Heap

0x0824: iptr[0]

0x0828: iptr[1]

0x082C: iptr[2]

0x0830: iptr[3]

Slide 22

Which expression would compute the
address of iptr[3]?

A. 0x0824 + 3 * 4

B. 0x0824 + 4 * 4

C. 0x0824 + 0xC

D. More than one (which?)

E. None of these

Heap

0x0824: iptr[0]

0x0828: iptr[1]

0x082C: iptr[2]

0x0830: iptr[3]

Slide 23

Which expression would compute the
address of iptr[3]?

A. 0x0824 + 3 * 4 (requires an extra multiplication step)

B. 0x0824 + 4 * 4

C. 0x0824 + 0xC

D. More than one (which?)

E. None of these

Heap

0x0824: iptr[0]

0x0828: iptr[1]

0x082C: iptr[2]

0x0830: iptr[3]

What if this isn’t known at compile
time?

Slide 24

Indexed Addressing Mode

• What we’d like in IA32 is to express accesses like iptr[N],
where iptr doesn’t change – it’s a base.

• Displacement mode works, if we know which offset to use
at compile time:
– Variables on the stack: -4(%ebp)
– Function arguments: 8(%ebp)
– Accessing [5] of an integer array: 20(%base_register)

• If we only know at run time?
– How do we express i(%ecx)?

Slide 25

Indexed Addressing Mode

• General form:
displacement(%base, %index, scale)

• Translation: Access the memory at address…
– base + (index * scale) + displacement

• Rules:
– Displacement can be any 1, 2, or 4-byte value
– Scale can be 1, 2, 4, or 8.

Slide 26

Suppose i is at %ebp - 8, and equals 2.

User says:
iptr[i] = 9;

Translates to:
movl -8(%ebp), %edx

Heap

0x0824: iptr[0]

0x0828: iptr[1]

0x082C: iptr[2]

0x0830: iptr[3]

Example

%ecx 0x0824

%edx 2
Registers:

ECX: Array base address

Slide 27

Suppose i is at %ebp - 8, and equals 2.

User says:
iptr[i] = 9;

Translates to:
movl -8(%ebp), %edx

Heap

0x0824: iptr[0]

0x0828: iptr[1]

0x082C: iptr[2]

0x0830: iptr[3]

Example

%ecx 0x0824
%edx 2

Registers:

Slide 28

Suppose i is at %ebp - 8, and equals 2.

User says:
iptr[i] = 9;

Translates to:
movl -8(%ebp), %edx
movl $9, (%ecx, %edx, 4)

Heap

0x0824: iptr[0]

0x0828: iptr[1]

0x082C: iptr[2]

0x0830: iptr[3]

Example

%ecx 0x0824
%edx 2

Registers:

Slide 29

Suppose i is at %ebp - 8, and equals 2.

User says:
iptr[i] = 9;

Translates to:
movl -8(%ebp), %edx
movl $9, (%ecx, %edx, 4)

0x0824 + (2 * 4) + 0
0x0824 + 8 = 0x082C

Heap

0x0824: iptr[0]

0x0828: iptr[1]

0x082C: iptr[2]

0x0830: iptr[3]

Example

%ecx 0x0824
%edx 2

Registers:

Slide 30

Suppose i is at %ebp - 8, and equals 2.

User says:

iptr[i] = 9;

Translates to:

movl -8(%ebp), %edx
movl $9, (%ecx, %edx, 4)

0x0824 + (2 * 4) + 0
0x0824 + 8 = 0x082C

Heap

0x0824: iptr[0]

0x0828: iptr[1]

0x082C: iptr[2]

0x0830: iptr[3]

Example:

%ecx 0x0824

%edx 2
Registers:

Slide 31

Allowed us to preserve ecx, and compute
an offset without changing the pointer to
the base of our array

What is the final state after this code?

addl $4, %eax
movl (%eax), %eax
sall $1, %eax
movl %edx, (%ecx, %eax, 2)

%eax 0x2464

%ecx 0x246C

%edx 7

(Initial state)
Registers:

Memory:
Heap

0x2464: 5

0x2468: 1

0x246C: 42

0x2470: 3

0x2474: 9

Slide 32

displacement(%base, %index, scale)
base + (index * scale) + displacement

What is the final state after this code?

addl $4, %eax
movl (%eax), %eax
sall $1, %eax
movl %edx, (%ecx, %eax, 2)

%eax 0x2464
%ecx 0x246C
%edx 7

(Initial state)
Registers:

Memory:
Heap

0x2464: 5

0x2468: 1

0x246C: 42

0x2470: 3

0x2474: 9

Slide 33

What is the final state after this code?

addl $4, %eax

movl (%eax), %eax

sall $1, %eax

movl %edx, (%ecx, %eax, 2)

%eax 0x2464

%ecx 0x246C

%edx 7

(Initial state)
Registers:

Memory:

Heap

0x2464: 5

0x2468: 1

0x246C: 42

0x2470: 3

0x2474: 9

Slide 34

Add 4 to eax = 0x2468

What is the final state after this code?

addl $4, %eax
movl (%eax), %eax
sall $1, %eax
movl %edx, (%ecx, %eax, 2)

%eax 0x2468

%ecx 0x246C

%edx 7

(Initial state)
Registers:

Memory:
Heap

0x2464: 5

0x2468: 1

0x246C: 42

0x2470: 3

0x2474: 9

Slide 35

1. Add 4 to %eax = 0x2468

What is the final state after this code?

addl $4, %eax
movl (%eax), %eax
sall $1, %eax
movl %edx, (%ecx, %eax, 2)

%eax 0x2468

%ecx 0x246C

%edx 7

(Initial state)
Registers:

Memory:
Heap

0x2464: 5

0x2468: 1

0x246C: 42

0x2470: 3

0x2474: 9

Slide 36

1. Add 4 to %eax = 0x2468
2. Overwriting the value of eax with 1

What is the final state after this code?

addl $4, %eax
movl (%eax), %eax
sall $1, %eax
movl %edx, (%ecx, %eax, 2)

%eax 1

%ecx 0x246C

%edx 7

(Initial state)
Registers:

Memory:
Heap

0x2464: 5

0x2468: 1

0x246C: 42

0x2470: 3

0x2474: 9

Slide 37

1. Add 4 to %eax = 0x2468
2. Overwriting the value of eax with 1

What is the final state after this code?

addl $4, %eax
movl (%eax), %eax
sall $1, %eax
movl %edx, (%ecx, %eax, 2)

%eax 1

%ecx 0x246C

%edx 7

(Initial state)
Registers:

Memory:
Heap

0x2464: 5

0x2468: 1

0x246C: 42

0x2470: 3

0x2474: 9

Slide 38

1. Add 4 to %eax = 0x2468
2. Overwriting the value of eax with 1
3. shifting left by 1 = overwriting to 2

What is the final state after this code?

addl $4, %eax
movl (%eax), %eax
sall $1, %eax
movl %edx, (%ecx, %eax, 2)

%eax 2

%ecx 0x246C

%edx 7

(Initial state)
Registers:

Memory:
Heap

0x2464: 5

0x2468: 1

0x246C: 42

0x2470: 3

0x2474: 9

Slide 39

1. Add 4 to %eax = 0x2468
2. Overwriting the value of eax with 1
3. shifting left by 1 = overwriting to 2

displacement(%base, %index, scale)
base + (index * scale) + displacement

What is the final state after this code?

addl $4, %eax
movl (%eax), %eax
sall $1, %eax
movl %edx, (%ecx, %eax, 2)

%eax 2

%ecx 0x246C

%edx 7

(Initial state)
Registers:

Memory:
Heap

0x2464: 5

0x2468: 1

0x246C: 42

0x2470: 3

0x2474: 9

Slide 40

1. Add 4 to %eax = 0x2468
2. Overwriting the value of %eax with 1
3. shifting left by 1 = overwriting to 2
4. 0x246C + 2*2 = 0x2470

moving edx to the memory address

displacement(%base, %index, scale)
base + (index * scale) + displacement

What is the final state after this code?

addl $4, %eax

movl (%eax), %eax

sall $1, %eax

movl %edx, (%ecx, %eax, 2)

%eax 2

%ecx 0x246C

%edx 7

(Initial state)
Registers:

Memory:

Heap

0x2464: 5

0x2468: 1

0x246C: 42

0x2470: 7

0x2474: 9

Slide 41

1. Add 4 to %eax = 0x2468
2. Overwriting the value of %eax with 1
3. shifting left by 1 = overwriting to 2
4. 0x246C + 2*2 = 0x2470

moving edx to the memory address

displacement(%base, %index, scale)
base + (index * scale) + displacement

Indexed Addressing Mode

• General form:
displacement(%base, %index, scale)

• You have seen these probably in your maze.

Slide 42

Two-dimensional Arrays

• Why stop at an array of ints?
How about an array of arrays of ints?

int twodims[3][4];

• “Give me three sets of four integers.”

• How should these be organized in memory?

Slide 43

Two-dimensional Arrays

int twodims[3][4];
for(i=0; i<3; i++) {
for(j=0; j<4; j++) {

twodims[i][j] = i+j;
}

}
0 1 2 3

1 2 3 4

2 3 4 5

twodims[0]

twodims[1]

twodims[2]

[0][0] [0][1] [0][2] [0][3]

[1][0] [1][1] [1][2] [1][3]

[2][0] [2][1] [2][2] [2][3]

Slide 44

Two-dimensional Arrays: Matrix

int twodims[3][4];
for(i=0; i<3; i++) {
for(j=0; j<4; j++) {

twodims[i][j] = i+j;
}

}
0 1 2 3twodims[0]

1 2 3 4twodims[1]

2 3 4 5twodims[2]

Slide 45

Memory Layout

• Matrix: 3 rows, 4 columns

0 1 2 3
1 2 3 4
2 3 4 5

0xf260 0 twodim[0][0]

0xf264 1 twodim[0][1]

0xf268 2 twodim[0][2]

0xf26c 3 twodim[0][3]

0xf270 1 twodim[1][0]

0xf274 2 twodim[1][1]

0xf278 3 twodim[1][2]

0xf27c 4 twodim[1][3]

0xf280 2 twodim[2][0]

0xf284 3 twodim[2][1]

0xf288 4 twodim[2][2]

0xf28c 5 twodim[2][3]

Row Major Order:
all Row 0 buckets,
followed by
all Row 1 buckets

Slide 46

Memory Layout

• Matrix: 3 rows, 4 columns

0 1 2 3
1 2 3 4
2 3 4 5

twodim[1][3]:

base addr + row offset + col offset

twodim + 1*ROWSIZE*4 + 3*4

0xf260 + 16 + 12 = 0xf27c

0xf260 0 twodim[0][0]

0xf264 1 twodim[0][1]

0xf268 2 twodim[0][2]

0xf26c 3 twodim[0][3]

0xf270 1 twodim[1][0]

0xf274 2 twodim[1][1]

0xf278 3 twodim[1][2]

0xf27c 4 twodim[1][3]

0xf280 2 twodim[2][0]

0xf284 3 twodim[2][1]

0xf288 4 twodim[2][2]

0xf28c 5 twodim[2][3]

Slide 47

Memory Layout

• Matrix: 3 rows, 4 columns

0 1 2 3
1 2 3 4
2 3 4 5

twodim[1][3]:

base addr + row offset + col offset

twodim + 1*ROWSIZE*4 + 3*4

0xf260 + 16 + 12 = 0xf27c

0xf260 0 twodim[0][0]

0xf264 1 twodim[0][1]

0xf268 2 twodim[0][2]

0xf26c 3 twodim[0][3]

0xf270 1 twodim[1][0]

0xf274 2 twodim[1][1]

0xf278 3 twodim[1][2]

0xf27c 4 twodim[1][3]

0xf280 2 twodim[2][0]

0xf284 3 twodim[2][1]

0xf288 4 twodim[2][2]

0xf28c 5 twodim[2][3]

Slide 48

Memory Layout

• Matrix: 3 rows, 4 columns

0 1 2 3
1 2 3 4
2 3 4 5

twodim[1][3]:

base addr + row offset + col offset

twodim + 1*ROWSIZE*4 + 3*4

0xf260 + 16 + 12 = 0xf27c

0xf260 0 twodim[0][0]

0xf264 1 twodim[0][1]

0xf268 2 twodim[0][2]

0xf26c 3 twodim[0][3]

0xf270 1 twodim[1][0]

0xf274 2 twodim[1][1]

0xf278 3 twodim[1][2]

0xf27c 4 twodim[1][3]

0xf280 2 twodim[2][0]

0xf284 3 twodim[2][1]

0xf288 4 twodim[2][2]

0xf28c 5 twodim[2][3]

Slide 49

If we declared int matrix[5][3];,
and the base of matrix is 0x3420, what is
the address of matrix[3][2]?

A. 0x3438
B. 0x3440
C. 0x3444
D. 0x344C
E. None of these

Slide 50

base addr + row offset + col offset

If we declared int matrix[5][3];,
and the base of matrix is 0x3420, what is
the address of matrix[3][2]?

A. 0x3438

B. 0x3440

C. 0x3444

D. 0x344C

E. None of these

Slide 51

0x3420 + 3 * ROWSIZE * 4 (int data type) + 2 (2 ints forward) * 4
(int data type)

base addr + row offset + col offset

If we declared int matrix[5][3];,
and the base of matrix is 0x3420, what is
the address of matrix[3][2]?

A. 0x3438

B. 0x3440

C. 0x3444

D. 0x344C

E. None of these

Slide 52

0x3420 + 3 * ROWSIZE * 4 (int data type) + 2 (2 ints forward) * 4
(int data type)
0x3420 + [36 + 8 = (44) = 0x2C] = 0x344C

base addr + row offset + col offset

Composite Data Types

• Combination of one or more existing types into a new
type. (e.g., an array of multiple ints, or a struct)

• Example: a queue
– Might need a value (int) plus a link to the next item

(pointer)

struct queue_node{
int value;
struct queue_node *next;

}

Slide 53

Structs

• Laid out contiguously by field
– In order of field declaration.

struct student{
int age;
float gpa;
int id;

};

struct student s;

… Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

Slide 54

Structs

• Struct fields accessible as a base + displacement
– Compiler knows (constant) displacement of each field

struct student{
int age;
float gpa;
int id;

};

struct student s;

… Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

Slide 55

Structs

• Laid out contiguously by field
– In order of field declaration.
– May require some padding, for alignment.

struct student{
int age;
float gpa;
int id;

};

struct student s;

… Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

Slide 56

Data Alignment:

• Where (which address) can a field be located?

• char (1 byte): can be allocated at any address:
0x1230, 0x1231, 0x1232, 0x1233, 0x1234, …

• short (2 bytes): must be aligned on 2-byte addresses:
0x1230, 0x1232, 0x1234, 0x1236, 0x1238, …

• int (4 bytes): must be aligned on 4-byte addresses:
0x1230, 0x1234, 0x1238, 0x123c, 0x1240, …

Slide 57

Why do we want to align data on multiples of
the data size?

A. It makes the hardware faster.

B. It makes the hardware simpler.

C. It makes more efficient use of memory space.

D. It makes implementing the OS easier.

E. Some other reason.

Slide 58

Why do we want to align data on multiples of
the data size?

A. It makes the hardware faster.

B. It makes the hardware simpler.

C. It makes more efficient use of memory space.

D. It makes implementing the OS easier.

E. Some other reason.

Slide 59

Data Alignment: Why?

• Simplify hardware
– e.g., only read ints from multiples of 4
– Don’t need to build wiring to access 4-byte chunks at

any arbitrary location in hardware

• Inefficient to load/store single value across alignment
boundary (1 vs. 2 loads)

• Simplify OS:
– Prevents data from spanning virtual pages
– Atomicity issues with load/store across boundary

Slide 60

Structs

• Laid out contiguously by field
– In order of field declaration.
– May require some padding, for alignment.

struct student{
int age;
float gpa;
int id;

};

struct student s;

… Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…
Slide 61

Structs

struct student{
char name[11];
short age;
int id;

};

Slide 62

How much space do we need to store one of
these structures?

struct student{
char name[11];
short age;
int id;

};

A.17 bytes
B.18 bytes
C.20 bytes
D.22 bytes
E.24 bytes

Slide 63

Structs

struct student{
char name[11];
short age;
int id;

};

• Size of data: 17 bytes
• Size of struct: 20 bytes

Memory …

0x1234 s.name[0]

0x1235 s.name[1]

… … …

0x123d s.name[9]

0x123e s.name[10]

0x123f padding

0x1240 s.age

0x1231 s.age

0x1232 padding

0x1233 padding

0x1234 s.id

0x1235 s.id

0x1236 s.id

0x1237 s.id

0x1238 …

padding

padding

Use sizeof() when allocating
structs with malloc()!

Slide 64

Alternative Layout

struct student{
int id;
short age;
char name[11];

};

Same fields, declared in
a different order.

Slide 65

Alternative Layout

struct student{
int id;
short age;
char name[11];

};

• Size of data: 17 bytes
• Size of struct: 17 bytes!

Memory …

0x1234 s.id

0x1235 s.id

0x1236 s.id

0x1237 s.id

0x1238 s.age

0x1239 s.age

0x1240 s.name[0]

0x1231 s.name[1]

0x1232 s.name[2]

… … …

0x1234 s.name[9]

0x1235 s.name[10]

0x1236 …

In general, this isn’t a big deal on a
day-to-day basis. Don’t go out and
rearrange all your struct declarations. Slide 66

Cool, so we can get rid of this padding by
being smart about declarations?

A. Yes (why?)

B. No (why not?)

Slide 67

Cool, so we can get rid of this padding by
being smart about declarations?

A. Yes (why?)

B. No (why not?)

Slide 68

Cool, so we can get rid of this padding by
being smart about declarations?

• Answer: Maybe.

• Rearranging helps, but often padding after the struct
can’t be eliminated.
struct T1 { struct T2 {

char c1; int x;
char c2; char c1;
int x; char c2;

}; };

T2: x c1 c2 2bytesT1: c1 c2 2bytes x

Slide 69

“External” Padding

• Array of Structs
Field values in each bucket must be properly aligned:

struct T2 arr[3];

Buckets must be on a 4-byte aligned address

0

x c1 c2 2bytes

1

x c1 c2 2bytes

2

x c1 c2 2bytesarr:

x x + 8 x + 12

Slide 70

A note on struct syntax…

struct student {
int id;
short age;
char name[11];

};
struct student s;

s.id = 406432;
s.age = 20;
strcpy(s.name, “Alice”);

Slide 71

A note on struct syntax…

struct student {
int id;
short age;
char name[11];

};
struct student *s = malloc(sizeof(struct student));

(*s).id = 406432;
(*s).age = 20;
strcpy((*s).name, “Alice”);

s->id = 406432;
s->age = 20;
strcpy(s->name, “Alice”);

Not a struct, but a
pointer to a struct!

This works, but is very ugly.

Access the struct field from a pointer with ->
Does a dereference and gets the field.

Slide 72

Stack Padding

• Memory alignment applies elsewhere too.

int x; vs. double y;
char ch[5]; int x;
short s; short s;
double y; char ch[5];

Slide 73

Unions

• Declared like a struct, but only contains one field,
rather than all of them.

• Struct: field 1 and field 2 and field 3 …
• Union: field 1 or field 2 or field 3 …

• Intuition: you know you only need to store one of N
things, don’t waste space.

Slide 74

Unions

struct my_struct {
char ch[2];
int i;
short s;

}

union my_union {
char ch[2];
int i;
short s;

}

ch

padding

i

s

my_struct in memory

Same
memory
used for all
fields!

my_union in memory
Slide 75

Unions

my_union u;

u.i = 7;

union my_union {
char ch[2];
int i;
short s;

}
7
7
7
7

Same
memory
used for all
fields!

my_union in memory
Slide 76

Unions

my_union u;

u.i = 7;

u.s = 2;

union my_union {
char ch[2];
int i;
short s;

}
2
2
7
7

Same
memory
used for all
fields!

my_union in memory
Slide 77

Unions

my_union u;

u.i = 7;

u.s = 2;

u.ch[0] = ‘a’;

Reading i or s here would be bad!

union my_union {
char ch[2];
int i;
short s;

}
a
2
7
7

Same
memory
used for all
fields!

my_union in memory
Slide 78

Unions

union my_union {
char ch[2];
int i;
short s;

}
5
5
5
5

Same
memory
used for all
fields!

my_union in memory

my_union u;

u.i = 7;

u.s = 2;

u.ch[0] = ‘a’;

Reading i or s here would be bad!

u.i = 5;

Slide 79

Unions

union my_union {
char ch[2];
int i;
short s;

}
5
5
5
5

Same
memory
used for all
fields!

my_union in memory

• You probably won’t use
these often.

• Use when you need
mutually exclusive types.

• Can save memory.

Slide 80

Recall: Characters and Strings

• A character (type char) is numerical value that

holds one letter.

char my_letter = ‘w’; // Note: single quotes

• What is the numerical value?

– printf(“%d %c”, my_letter, my_letter);

– Would print: 119 w

• Why is ‘w’ equal to 119?

– ASCII Standard says so.

Slide 81

Characters
and Strings

Slide 82

Recall: Characters and Strings

• A character (type char) is numerical value that
holds one letter.

• A string is a memory block containing characters, one
after another…, with a
null terminator (numerical 0) at the end.

• Examples:

char name[6] = “Pizza”;

P i z z a

[0] [1] [2] [3] [4]

name (Other memory)

Hmm, suppose we used
printf and %s to print name.

How does it know where
the string ends and other
memory begins?

Slide 83

Recall: How can we tell where a string ends?

A. Mark the end of the string with a special character.

B. Associate a length value with the string, and use that to
store its current length.

C. A string is always the full length of the array it’s contained
within (e.g., char name[20] must be of length 20).

D. All of these could work (which is best?).

E. Some other mechanism (such as?).

Slide 84

Recall: How can we tell where a string ends?

A. Mark the end of the string with a special character (what C
does).

B. Associate a length value with the string, and use that to
store its current length.

C. A string is always the full length of the array it’s contained
within (e.g., char name[20] must be of length 20).

D. All of these could work (which is best?).

E. Some other mechanism (such as?).

Slide 85

Characters
and Strings

Special
stuff over
here in
the lower
values.

Slide 86

Recall: Characters and Strings

• A character (type char) is numerical value that

holds one letter.

• A string is a memory block containing characters, one

after another, with a

null terminator (numerical 0) at the end.

• Examples:

char name[20] = “Pizza”;

P i z z a

[0] [1] [2] [3] [4]

\0

[5]

…

[6] [7] [18][19]

Slide 87

Recall: Strings in C
• C String library functions: #include <string.h>

– Common functions (strlen, strcpy, etc.) make strings easier
– Less friendly than Python strings

• More on strings later, in labs.

• For now, remember about strings:
– Allocate enough space for null terminator!
– If you’re modifying a character array (string), don’t forget to set

the null terminator!
– If you see crazy, unpredictable behavior with strings, check

these two things!
Slide 88

Strings

• Strings are character arrays

• Layout is the same as:
– char name[10];

• Often accessed as (char *)

name[0]
name[1]
name[2]
name[3]
name[4]
name[5]
name[6]
name[7]
name[8]
name[9]

Slide 89

String Functions

• C library has many built-in functions that operate on
char *’s:
– strcpy, strdup, strlen, strcat, strcmp, strstr

char name[10];
strcpy(name, “CS 31”);

name[0]
name[1]
name[2]
name[3]
name[4]
name[5]
name[6]
name[7]
name[8]
name[9]

Slide 90

String Functions

• C library has many built-in functions that operate on
char *’s:
– strcpy, strdup, strlen, strcat, strcmp, strstr

char name[10];
strcpy(name, “CS 31”);

• Null terminator (\0) ends string.
– We don’t know/care what comes after

C name[0]
S name[1]

name[2]
3 name[3]
1 name[4]
\0 name[5]
? name[6]
? name[7]
? name[8]
? name[9]

Slide 91

String Functions

• C library has many built-in functions that operate on
char *’s:
– strcpy, strdup, strlen, strcat, strcmp, strstr

• Seems simple on the surface.
– That null terminator is tricky, strings error-prone.
– Strings used everywhere!

• You will implement these functions in a future lab.

Slide 92

