
CS 31: Introduction to Computer Systems

14-15: Arrays and Pointers
March 21-26



Announcements

• Everything up to Lab 5 graded 
– Check Github repos for comments
– Check Gradesource for grades

• Midterm debrief last 15 minutes
• Final Exam Time Posted: 
– May 12 9 – 12pm SCI 199

• Please choose partners for Lab 7! 
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Data Collections in C
• Many complex data types out there (CS 35)

• C has a few simple ones built-in:
– Arrays
– Structures (struct)
– Strings (arrays of characters)

• Often combined in practice, e.g.:
– An array of structs
– A struct containing strings



Today

• Accessing things via an offset
– Arrays, Structs, Unions

• How complex structures are stored in memory
– Multi-dimensional arrays & Structs
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So far: Primitive Data Types

• We’ve been using ints, floats, chars, pointers

• Simple to place these in memory:
– They have an unambiguous size
– They fit inside a register*
– The hardware can operate on them directly

(*There are special registers for floats and doubles that 
use the IEEE floating point format.)
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Composite Data Types

• Combination of one or more existing types into a new 
type.  (e.g., an array of multiple ints, or a struct)

• Example: a queue
– Might need a value (int) plus a link to the next item 

(pointer)

struct queue_node{
int value;
struct queue_node *next;

}
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Recall: Arrays in Memory

Heap (or Stack)

iptr[0]

iptr[1]

iptr[2]

iptr[3]

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));
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Recall: Assembly While Loop

movl $0 eax //return value

movl $0 edx //loop counter

loop:
addl (%ecx), %eax
addl $4, %ecx
addl $1, %edx
cmpl $5, %edx
jne loop

Using (dereferencing) the 
memory address to access 
memory at that location.

ecx was a pointer to the 
beginning of the array. 
Manipulating the pointer to 
point to something else.

Note: This did NOT read or 
write the memory that is 
pointed to. Slide 15



Pointer Manipulation: Necessary? 

• Previous example: advance %ecx to point to next item in 
array.

iptr = malloc(…);
sum = 0;
while (i < 4) {

sum += *iptr;
iptr += 1;
i += 1;

}

Heap

iptr[0]

iptr[1]

iptr[2]

iptr[3]
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moves +1 by size 
of the data type!



Pointer Manipulation: Necessary? 

• Previous example: advance %ecx to point to next item in 
array.

iptr = malloc(…);
sum = 0;
while (i < 4) {

sum += *iptr;
iptr += 1;
i += 1;

}

Heap

iptr[0]

iptr[1]

iptr[2]

iptr[3]…

1st

2nd

3rd

iptr:

Reminder: addition on a pointer advances by 
that many of the type (e.g., ints), not bytes. Slide 17



Pointer Manipulation: Necessary? 

• Problem: iptr is changing!

• What if we wanted to free it?

• What if we wanted something like this:
iptr = malloc(…);
sum = 0;
while (i < 4) {

sum += iptr[0] + iptr[i];
iptr += 1;
i += 1;

} Changing the pointer would be 
really inconvenient now!
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Base + Offset

• We know that arrays act as a pointer to the first 
element.  For bucket [N], we just skip forward N.

• “We’re goofy computer scientists who count starting 
from zero.”

int val[5];

val[0] val[1] val[2] val[3] val[4]
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Base + Offset

• We know that arrays act as a pointer to the first 
element.  For bucket [N], we just skip forward N.

• “We’re goofy computer scientists who count starting 
from zero.”

int val[5];

val[0] val[1] val[2] val[3] val[4]
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Base + Offset

• We know that arrays act as a pointer to the first 
element.  For bucket [N], we just skip forward N.

int val[5];
val[0] val[1] val[2] val[3] val[4]

Base Offset (stuff in [])

This is why we start counting from zero!
Skipping forward with an offset of zero ([0]) gives us the first bucket… Slide 21



Which expression would compute the 
address of iptr[3]?

A. 0x0824 + 3 * 4

B. 0x0824 + 4 * 4

C. 0x0824 + 0xC

D. More than one (which?)

E. None of these

Heap

0x0824: iptr[0]

0x0828:            iptr[1]

0x082C:            iptr[2]

0x0830:            iptr[3]
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Which expression would compute the 
address of iptr[3]?

A. 0x0824 + 3 * 4

B. 0x0824 + 4 * 4

C. 0x0824 + 0xC

D. More than one (which?)

E. None of these

Heap

0x0824: iptr[0]

0x0828:            iptr[1]

0x082C:            iptr[2]

0x0830:            iptr[3]
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Which expression would compute the 
address of iptr[3]?

A. 0x0824 + 3 * 4 (requires an extra multiplication step)

B. 0x0824 + 4 * 4

C. 0x0824 + 0xC

D. More than one (which?)

E. None of these

Heap

0x0824: iptr[0]

0x0828:            iptr[1]

0x082C:            iptr[2]

0x0830:            iptr[3]

What if this isn’t known at compile 
time?
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Indexed Addressing Mode

• What we’d like in IA32 is to express accesses like iptr[N], 
where iptr doesn’t change – it’s a base.

• Displacement mode works, if we know which offset to use 
at compile time:
– Variables on the stack: -4(%ebp)
– Function arguments: 8(%ebp)
– Accessing [5] of an integer array: 20(%base_register)

• If we only know at run time?
– How do we express i(%ecx)?
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Indexed Addressing Mode

• General form:
displacement(%base, %index, scale)

• Translation: Access the memory at address…
– base + (index * scale) + displacement

• Rules:
– Displacement can be any 1, 2, or 4-byte value
– Scale can be 1, 2, 4, or 8.
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Suppose i is at %ebp - 8, and equals 2.

User says:
iptr[i] = 9;

Translates to:
movl -8(%ebp), %edx

Heap

0x0824: iptr[0]

0x0828:            iptr[1]

0x082C:            iptr[2]

0x0830:            iptr[3]

Example

%ecx 0x0824

%edx 2
Registers:

ECX: Array base address
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Suppose i is at %ebp - 8, and equals 2.

User says:
iptr[i] = 9;

Translates to:
movl -8(%ebp), %edx

Heap

0x0824: iptr[0]

0x0828:            iptr[1]

0x082C:            iptr[2]

0x0830:            iptr[3]

Example

%ecx 0x0824
%edx 2

Registers:
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Suppose i is at %ebp - 8, and equals 2.

User says:
iptr[i] = 9;

Translates to:
movl -8(%ebp), %edx
movl $9, (%ecx, %edx, 4)

Heap

0x0824: iptr[0]

0x0828:            iptr[1]

0x082C:            iptr[2]

0x0830:            iptr[3]

Example

%ecx 0x0824
%edx 2

Registers:
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Suppose i is at %ebp - 8, and equals 2.

User says:
iptr[i] = 9;

Translates to:
movl -8(%ebp), %edx
movl $9, (%ecx, %edx, 4)

0x0824 + (2 * 4) + 0
0x0824 + 8 = 0x082C

Heap

0x0824: iptr[0]

0x0828:            iptr[1]

0x082C:            iptr[2]

0x0830:            iptr[3]

Example

%ecx 0x0824
%edx 2

Registers:
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Suppose i is at %ebp - 8, and equals 2.

User says:

iptr[i] = 9;

Translates to:

movl -8(%ebp), %edx
movl $9, (%ecx, %edx, 4)

0x0824 + (2 * 4) + 0
0x0824 + 8 = 0x082C

Heap

0x0824: iptr[0]

0x0828:            iptr[1]

0x082C:            iptr[2]

0x0830:            iptr[3]

Example: 

%ecx 0x0824

%edx 2
Registers:
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Allowed us to preserve ecx, and compute 
an offset without changing the pointer to 
the base of our array



What is the final state after this code?

addl $4, %eax
movl (%eax), %eax
sall $1, %eax
movl %edx, (%ecx, %eax, 2)

%eax 0x2464

%ecx 0x246C

%edx 7

(Initial state)
Registers:

Memory:
Heap

0x2464: 5

0x2468: 1

0x246C:            42

0x2470:            3

0x2474:            9
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displacement(%base, %index, scale) 
base + (index * scale) + displacement



What is the final state after this code?

addl $4, %eax
movl (%eax), %eax
sall $1, %eax
movl %edx, (%ecx, %eax, 2)

%eax 0x2464
%ecx 0x246C
%edx 7

(Initial state)
Registers:

Memory:
Heap

0x2464: 5

0x2468: 1

0x246C:            42

0x2470:            3

0x2474:            9
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What is the final state after this code?

addl $4, %eax

movl (%eax), %eax

sall $1, %eax

movl %edx, (%ecx, %eax, 2)

%eax 0x2464

%ecx 0x246C

%edx 7

(Initial state)
Registers:

Memory:

Heap

0x2464: 5

0x2468: 1

0x246C:            42

0x2470:            3

0x2474:            9

Slide 34

Add 4 to eax = 0x2468



What is the final state after this code?

addl $4, %eax
movl (%eax), %eax
sall $1, %eax
movl %edx, (%ecx, %eax, 2)

%eax 0x2468

%ecx 0x246C

%edx 7

(Initial state)
Registers:

Memory:
Heap

0x2464: 5

0x2468: 1

0x246C:            42

0x2470:            3

0x2474:            9

Slide 35

1. Add 4 to %eax = 0x2468



What is the final state after this code?

addl $4, %eax
movl (%eax), %eax
sall $1, %eax
movl %edx, (%ecx, %eax, 2)

%eax 0x2468

%ecx 0x246C

%edx 7

(Initial state)
Registers:

Memory:
Heap

0x2464: 5

0x2468: 1

0x246C:            42

0x2470:            3

0x2474:            9
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1. Add 4 to %eax = 0x2468
2. Overwriting the value of eax with 1



What is the final state after this code?

addl $4, %eax
movl (%eax), %eax
sall $1, %eax
movl %edx, (%ecx, %eax, 2)

%eax 1

%ecx 0x246C

%edx 7

(Initial state)
Registers:

Memory:
Heap

0x2464: 5

0x2468: 1

0x246C:            42

0x2470:            3

0x2474:            9
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1. Add 4 to %eax = 0x2468
2. Overwriting the value of eax with 1



What is the final state after this code?

addl $4, %eax
movl (%eax), %eax
sall $1, %eax
movl %edx, (%ecx, %eax, 2)

%eax 1

%ecx 0x246C

%edx 7

(Initial state)
Registers:

Memory:
Heap

0x2464: 5

0x2468: 1

0x246C:            42

0x2470:            3

0x2474:            9
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1. Add 4 to %eax = 0x2468
2. Overwriting the value of eax with 1
3. shifting left by 1 = overwriting to 2



What is the final state after this code?

addl $4, %eax
movl (%eax), %eax
sall $1, %eax
movl %edx, (%ecx, %eax, 2)

%eax 2

%ecx 0x246C

%edx 7

(Initial state)
Registers:

Memory:
Heap

0x2464: 5

0x2468: 1

0x246C:            42

0x2470:            3

0x2474:            9
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1. Add 4 to %eax = 0x2468
2. Overwriting the value of eax with 1
3. shifting left by 1 = overwriting to 2

displacement(%base, %index, scale) 
base + (index * scale) + displacement



What is the final state after this code?

addl $4, %eax
movl (%eax), %eax
sall $1, %eax
movl %edx, (%ecx, %eax, 2)

%eax 2

%ecx 0x246C

%edx 7

(Initial state)
Registers:

Memory:
Heap

0x2464: 5

0x2468: 1

0x246C:            42

0x2470:            3

0x2474:            9
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1. Add 4 to %eax = 0x2468
2. Overwriting the value of %eax with 1
3. shifting left by 1 = overwriting to 2
4. 0x246C + 2*2 = 0x2470

moving edx to the memory address

displacement(%base, %index, scale) 
base + (index * scale) + displacement



What is the final state after this code?

addl $4, %eax

movl (%eax), %eax

sall $1, %eax

movl %edx, (%ecx, %eax, 2)

%eax 2

%ecx 0x246C

%edx 7

(Initial state)
Registers:

Memory:

Heap

0x2464: 5

0x2468: 1

0x246C:            42

0x2470:           7

0x2474:            9
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1. Add 4 to %eax = 0x2468
2. Overwriting the value of %eax with 1
3. shifting left by 1 = overwriting to 2
4. 0x246C + 2*2 = 0x2470

moving edx to the memory address

displacement(%base, %index, scale) 
base + (index * scale) + displacement



Indexed Addressing Mode

• General form:
displacement(%base, %index, scale)

• You have seen these probably in your maze.
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Two-dimensional Arrays

• Why stop at an array of ints?
How about an array of arrays of ints?

int twodims[3][4];

• “Give me three sets of four integers.”

• How should these be organized in memory?
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Two-dimensional Arrays

int twodims[3][4];
for(i=0; i<3; i++) {
for(j=0; j<4; j++) {

twodims[i][j] = i+j;
}

}
0 1 2 3

1 2 3 4

2 3 4 5

twodims[0]

twodims[1]

twodims[2]

[0][0] [0][1] [0][2] [0][3]

[1][0] [1][1] [1][2] [1][3]

[2][0] [2][1] [2][2] [2][3]
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Two-dimensional Arrays: Matrix

int twodims[3][4];
for(i=0; i<3; i++) {
for(j=0; j<4; j++) {

twodims[i][j] = i+j;
}

}
0 1 2 3twodims[0]

1 2 3 4twodims[1]

2 3 4 5twodims[2]
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Memory Layout

• Matrix: 3 rows, 4 columns

0 1 2 3
1 2 3 4
2 3 4 5

0xf260 0 twodim[0][0]

0xf264 1 twodim[0][1]

0xf268 2 twodim[0][2]

0xf26c 3 twodim[0][3]

0xf270 1 twodim[1][0]

0xf274 2 twodim[1][1]

0xf278 3 twodim[1][2]

0xf27c 4 twodim[1][3]

0xf280 2 twodim[2][0]

0xf284 3 twodim[2][1]

0xf288 4 twodim[2][2]

0xf28c 5 twodim[2][3]

Row Major Order:
all Row 0 buckets,
followed by
all Row 1 buckets
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Memory Layout

• Matrix: 3 rows, 4 columns

0 1 2 3
1 2 3 4
2 3 4 5

twodim[1][3]:

base addr + row offset + col offset

twodim + 1*ROWSIZE*4 + 3*4

0xf260 + 16 + 12 = 0xf27c

0xf260 0 twodim[0][0]

0xf264 1 twodim[0][1]

0xf268 2 twodim[0][2]

0xf26c 3 twodim[0][3]

0xf270 1 twodim[1][0]

0xf274 2 twodim[1][1]

0xf278 3 twodim[1][2]

0xf27c 4 twodim[1][3]

0xf280 2 twodim[2][0]

0xf284 3 twodim[2][1]

0xf288 4 twodim[2][2]

0xf28c 5 twodim[2][3]
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Memory Layout

• Matrix: 3 rows, 4 columns

0 1 2 3
1 2 3 4
2 3 4 5

twodim[1][3]:

base addr + row offset + col offset

twodim + 1*ROWSIZE*4 + 3*4

0xf260 + 16 + 12 = 0xf27c

0xf260 0 twodim[0][0]

0xf264 1 twodim[0][1]

0xf268 2 twodim[0][2]

0xf26c 3 twodim[0][3]

0xf270 1 twodim[1][0]

0xf274 2 twodim[1][1]

0xf278 3 twodim[1][2]

0xf27c 4 twodim[1][3]

0xf280 2 twodim[2][0]

0xf284 3 twodim[2][1]

0xf288 4 twodim[2][2]

0xf28c 5 twodim[2][3]
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Memory Layout

• Matrix: 3 rows, 4 columns

0 1 2 3
1 2 3 4
2 3 4 5

twodim[1][3]:

base addr + row offset + col offset

twodim + 1*ROWSIZE*4 + 3*4

0xf260 + 16 + 12 = 0xf27c

0xf260 0 twodim[0][0]

0xf264 1 twodim[0][1]

0xf268 2 twodim[0][2]

0xf26c 3 twodim[0][3]

0xf270 1 twodim[1][0]

0xf274 2 twodim[1][1]

0xf278 3 twodim[1][2]

0xf27c 4 twodim[1][3]

0xf280 2 twodim[2][0]

0xf284 3 twodim[2][1]

0xf288 4 twodim[2][2]

0xf28c 5 twodim[2][3]
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If we declared int matrix[5][3];, 
and the base of matrix is 0x3420, what is 
the address of matrix[3][2]?

A. 0x3438
B. 0x3440
C. 0x3444
D. 0x344C
E. None of these

Slide 50

base addr + row offset + col offset



If we declared int matrix[5][3];, 
and the base of matrix is 0x3420, what is 
the address of matrix[3][2]?

A. 0x3438

B. 0x3440

C. 0x3444

D. 0x344C

E. None of these
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0x3420 + 3 * ROWSIZE * 4 (int data type) + 2 (2 ints forward) * 4 
(int data type)

base addr + row offset + col offset



If we declared int matrix[5][3];, 
and the base of matrix is 0x3420, what is 
the address of matrix[3][2]?

A. 0x3438

B. 0x3440

C. 0x3444

D. 0x344C

E. None of these
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0x3420 + 3 * ROWSIZE * 4 (int data type) + 2 (2 ints forward) * 4 
(int data type)
0x3420 + [ 36 + 8 = (44) = 0x2C] = 0x344C

base addr + row offset + col offset



Composite Data Types

• Combination of one or more existing types into a new 
type.  (e.g., an array of multiple ints, or a struct)

• Example: a queue
– Might need a value (int) plus a link to the next item 

(pointer)

struct queue_node{
int value;
struct queue_node *next;

}
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Structs

• Laid out contiguously by field
– In order of field declaration.

struct student{                
int age; 
float gpa; 
int id; 

};

struct student s;

…   Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…
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Structs

• Struct fields accessible as a base + displacement
– Compiler knows (constant) displacement of each field

struct student{                
int age; 
float gpa; 
int id; 

};

struct student s;

…   Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…
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Structs

• Laid out contiguously by field
– In order of field declaration.
– May require some padding, for alignment.

struct student{                
int age; 
float gpa; 
int id; 

};

struct student s;

…   Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…
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Data Alignment:

• Where (which address) can a field be located?

• char (1 byte): can be allocated at any address:
0x1230, 0x1231, 0x1232, 0x1233, 0x1234, …

• short (2 bytes): must be aligned on 2-byte addresses:
0x1230, 0x1232, 0x1234, 0x1236, 0x1238, …

• int (4 bytes): must be aligned on 4-byte addresses:
0x1230, 0x1234, 0x1238, 0x123c, 0x1240, …
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Why do we want to align data on multiples of 
the data size?

A. It makes the hardware faster.

B. It makes the hardware simpler.

C. It makes more efficient use of memory space.

D. It makes implementing the OS easier.

E. Some other reason.
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Why do we want to align data on multiples of 
the data size?

A. It makes the hardware faster.

B. It makes the hardware simpler.

C. It makes more efficient use of memory space.

D. It makes implementing the OS easier.

E. Some other reason.
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Data Alignment: Why?

• Simplify hardware
– e.g., only read ints from multiples of 4
– Don’t need to build wiring to access 4-byte chunks at 

any arbitrary location in hardware

• Inefficient to load/store single value across alignment 
boundary (1 vs. 2 loads)

• Simplify OS:
– Prevents data from spanning virtual pages
– Atomicity issues with load/store across boundary
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Structs

• Laid out contiguously by field
– In order of field declaration.
– May require some padding, for alignment.

struct student{                
int age; 
float gpa; 
int id; 

};

struct student s;

…   Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…
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Structs

struct student{                
char name[11];
short age;
int id;

};

Slide 62



How much space do we need to store one of 
these structures?

struct student{                
char name[11];
short age;
int id;

};

A.17 bytes
B.18 bytes
C.20 bytes
D.22 bytes
E.24 bytes
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Structs

struct student{                
char name[11];
short age;
int id;

};

• Size of data: 17 bytes
• Size of struct: 20 bytes

Memory …   

0x1234 s.name[0]

0x1235 s.name[1]

… … …

0x123d s.name[9]

0x123e s.name[10]

0x123f padding

0x1240 s.age

0x1231 s.age

0x1232 padding

0x1233 padding

0x1234 s.id

0x1235 s.id

0x1236 s.id

0x1237 s.id

0x1238 …

padding

padding

Use sizeof() when allocating 
structs with malloc()!
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Alternative Layout

struct student{
int id;
short age;
char name[11];

};

Same fields, declared in 
a different order.
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Alternative Layout

struct student{
int id;
short age;
char name[11];

};

• Size of data: 17 bytes
• Size of struct: 17 bytes!

Memory …   

0x1234 s.id

0x1235 s.id

0x1236 s.id

0x1237 s.id

0x1238 s.age

0x1239 s.age

0x1240 s.name[0]

0x1231 s.name[1]

0x1232 s.name[2]

… … …

0x1234 s.name[9]

0x1235 s.name[10]

0x1236 …

In general, this isn’t a big deal on a 
day-to-day basis.  Don’t go out and 
rearrange all your struct declarations. Slide 66



Cool, so we can get rid of this padding by 
being smart about declarations?

A. Yes (why?)

B. No (why not?)
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Cool, so we can get rid of this padding by 
being smart about declarations?

A. Yes (why?)

B. No (why not?)
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Cool, so we can get rid of this padding by 
being smart about declarations?

• Answer: Maybe.

• Rearranging helps, but often padding after the struct
can’t be eliminated.
struct T1 { struct T2 {

char c1; int x;
char c2; char c1;
int x;             char c2;

}; };

T2: x c1 c2 2bytesT1: c1 c2 2bytes x
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“External” Padding

• Array of Structs
Field values in each bucket must be properly aligned:

struct T2 arr[3];

Buckets must be on a 4-byte aligned address

0

x c1 c2 2bytes

1

x c1 c2 2bytes

2

x c1 c2 2bytesarr:

x x + 8 x + 12
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A note on struct syntax…

struct student {
int id;
short age;
char name[11];

};
struct student s;

s.id = 406432;
s.age = 20;
strcpy(s.name, “Alice”);
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A note on struct syntax…

struct student {
int id;
short age;
char name[11];

};
struct student *s = malloc(sizeof(struct student));

(*s).id = 406432;
(*s).age = 20;
strcpy((*s).name, “Alice”);

s->id = 406432;
s->age = 20;
strcpy(s->name, “Alice”);

Not a struct, but a 
pointer to a struct!

This works, but is very ugly.

Access the struct field from a pointer with ->
Does a dereference and gets the field.
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Stack Padding

• Memory alignment applies elsewhere too.

int x;         vs.     double y;
char ch[5];            int x;
short s;               short s;
double y;              char ch[5];
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Unions

• Declared like a struct, but only contains one field, 
rather than all of them.

• Struct: field 1 and field 2 and field 3 …
• Union: field 1 or field 2 or field 3 …

• Intuition: you know you only need to store one of N 
things, don’t waste space.
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Unions

struct my_struct {
char ch[2];
int i;
short s;

}

union my_union {
char ch[2];
int i;
short s;

}

ch

padding

i

s

my_struct in memory

Same 
memory 
used for all 
fields!

my_union in memory
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Unions

my_union u;

u.i = 7;

union my_union {
char ch[2];
int i;
short s;

}
7
7
7
7

Same 
memory 
used for all 
fields!

my_union in memory
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Unions

my_union u;

u.i = 7;

u.s = 2;

union my_union {
char ch[2];
int i;
short s;

}
2
2
7
7

Same 
memory 
used for all 
fields!

my_union in memory
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Unions

my_union u;

u.i = 7;

u.s = 2;

u.ch[0] = ‘a’;

Reading i or s here would be bad!

union my_union {
char ch[2];
int i;
short s;

}
a
2
7
7

Same 
memory 
used for all 
fields!

my_union in memory
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Unions

union my_union {
char ch[2];
int i;
short s;

}
5
5
5
5

Same 
memory 
used for all 
fields!

my_union in memory

my_union u;

u.i = 7;

u.s = 2;

u.ch[0] = ‘a’;

Reading i or s here would be bad!

u.i = 5;
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Unions

union my_union {
char ch[2];
int i;
short s;

}
5
5
5
5

Same 
memory 
used for all 
fields!

my_union in memory

• You probably won’t use 
these often.

• Use when you need 
mutually exclusive types.

• Can save memory.

Slide 80



Recall: Characters and Strings

• A character (type char) is numerical value that 

holds one letter.

char my_letter = ‘w’;   // Note: single quotes

• What is the numerical value?

– printf(“%d   %c”, my_letter, my_letter);

– Would print:  119   w

• Why is ‘w’ equal to 119? 

– ASCII Standard says so.
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Characters 
and Strings
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Recall: Characters and Strings

• A character (type char) is numerical value that 
holds one letter.

• A string is a memory block containing characters, one 
after another…, with a
null terminator (numerical 0) at the end.

• Examples:

char name[6] = “Pizza”;

P i z z a

[0] [1] [2] [3] [4]

name (Other memory)

Hmm, suppose we used 
printf and %s to print name.

How does it know where 
the string ends and other 
memory begins?
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Recall: How can we tell where a string ends?

A. Mark the end of the string with a special character.

B. Associate a length value with the string, and use that to 
store its current length.

C. A string is always the full length of the array it’s contained 
within (e.g., char name[20] must be of length 20).

D. All of these could work (which is best?).

E. Some other mechanism (such as?).
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Recall: How can we tell where a string ends?

A. Mark the end of the string with a special character (what C 
does). 

B. Associate a length value with the string, and use that to 
store its current length.

C. A string is always the full length of the array it’s contained 
within (e.g., char name[20] must be of length 20).

D. All of these could work (which is best?).

E. Some other mechanism (such as?).
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Characters 
and Strings

Special 
stuff over 
here in 
the lower 
values.
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Recall: Characters and Strings

• A character (type char) is numerical value that 

holds one letter.

• A string is a memory block containing characters, one 

after another, with a

null terminator (numerical 0) at the end.

• Examples:

char name[20] = “Pizza”;

P i z z a

[0] [1] [2] [3] [4]

\0

[5]

…

[6] [7] [18][19]
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Recall: Strings in C
• C String library functions: #include <string.h>

– Common functions (strlen, strcpy, etc.) make strings easier
– Less friendly than Python strings

• More on strings later, in labs.

• For now, remember about strings:
– Allocate enough space for null terminator!
– If you’re modifying a character array (string), don’t forget to set 

the null terminator!
– If you see crazy, unpredictable behavior with strings, check 

these two things!
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Strings

• Strings are character arrays

• Layout is the same as:
– char name[10];

• Often accessed as (char *)

name[0]
name[1]
name[2]
name[3]
name[4]
name[5]
name[6]
name[7]
name[8]
name[9]
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String Functions

• C library has many built-in functions that operate on 
char *’s:
– strcpy, strdup, strlen, strcat, strcmp, strstr

char name[10];
strcpy(name, “CS 31”);

name[0]
name[1]
name[2]
name[3]
name[4]
name[5]
name[6]
name[7]
name[8]
name[9]
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String Functions

• C library has many built-in functions that operate on 
char *’s:
– strcpy, strdup, strlen, strcat, strcmp, strstr

char name[10];
strcpy(name, “CS 31”);

• Null terminator (\0) ends string.
– We don’t know/care what comes after

C name[0]
S name[1]

name[2]
3 name[3]
1 name[4]
\0 name[5]
? name[6]
? name[7]
? name[8]
? name[9]
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String Functions

• C library has many built-in functions that operate on 
char *’s:
– strcpy, strdup, strlen, strcat, strcmp, strstr

• Seems simple on the surface.
– That null terminator is tricky, strings error-prone.
– Strings used everywhere!

• You will implement these functions in a future lab.
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