
CS 31: Introduction to Computer Systems

09-10: Pointers, Memory
February 19, 21

2

“If you can do
logic gates in your
head, please
confirm you are
not a replicant”

http://smbc-comics.com/comic/logic-gates

Reading Quiz

Last Class

• ISA defines what programmer can do on hardware
– Which instructions are available
– How to access state (registers, memory, etc.)
– This is the architecture’s assembly language

• In this course, we’ll be using IA-32
– Instructions for:

• moving data (movl)
• arithmetic (addl, subl, imull, orl, sall, etc.)
• control (jmp, je, jne, etc.)

– Condition codes for making control decisions
• If the result is zero (ZF)
• If the result’s first bit is set (negative if signed) (SF)
• If the result overflowed (assuming unsigned) (CF)
• If the result overflowed (assuming signed) (OF)

Slide 7

Today

• How to reference the location of a variable in
memory

• Where variables are placed in memory

• How to make this information useful
– Allocating memory
– Calling functions with pointer arguments

Slide 8

Pointers

• Pointer: A variable that stores a reference to a
memory location.

• Pointer: sequence of bits that should be interpreted
as an index into memory.

• Where have we seen this before?

Slide 9

Pointers

• Pointer: A variable that stores a reference to a
memory location.

• Pointer: sequence of bits that should be interpreted
as an index into memory.

• We’ve seen this examples of this already!

Slide 10

Recall: Arrays

int january_temps[31]; // Daily high temps

• Array variable name means, to the compiler, the
beginning of the memory chunk. (address)

“january_temps”
Location of [0] in
memory.

[0] [1] [2] [3] [4] [29][30]
…

Array bucket indices.

Slide 11

0x0:

0x4:

0x8:

0xC:

…

0x1A64

0x1A68 42

0x1A6C

0x1A70

…

0xFFFFFFFF:

Recall: Addressing Modes

• movl (%ecx), %eax
– Use the address in register ecx to access memory,

store result in register eax

name value

%eax 42

%ecx 0x1A68

…

CPU Registers (Memory)

1. Index into memory using the
address in ecx.

2. Copy value at that
address to eax.

Slide 12

Recall: Program Counter

32-bit Register #0WE
Data in

32-bit Register #1WE
Data in

32-bit Register #2WE
Data in

32-bit Register #3WE
Data in

…

MUX

MUX

Register File

A
L
U

Program Counter (PC): Memory address of next instr
0:
1:
2:
3:
4:
…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

IA32 refers to
the PC as %eip.

Instruction
Pointer

Slide 13

Pointers in C

• Like any other variable, must be declared:
– Using the format: type *name;

• Example:
– int *myptr;
– This is a promise to the compiler:

• This variable holds a memory address. If you follow what it points
to in memory (dereference it), you’ll find an integer.

• A note on syntax:
– int* myptr; int * myptr; int *myptr;
– These all do the same thing. (note the * position)

Slide 17

Dereferencing a Pointer

• To follow the pointer, we dereference it.

• Dereferencing re-uses the * symbol.

• If iptr is declared as an integer pointer,
*iptr will follow the address it stores to find an
integer in memory.

Slide 18

Putting a * in front of a variable…

• When you declare the variable:
– Declares the variable to be a pointer
– It stores a memory address

• When you use the variable (dereference):
– Like putting () around a register name
– Follows the pointer out to memory
– Acts like the specified type (e.g., int, float, etc.)

Slide 19

Suppose we set up a pointer like the one
below. Which expression gives us 5, and
which gives us a memory address?

int *iptr = (the location of that memory);

A. Memory address: *iptr, Value 5: iptr

B. Memory address: iptr, Value 5: *iptr

5

10

2

…

…

Slide 20

Suppose we set up a pointer like the one
below. Which expression gives us 5, and
which gives us a memory address?

int *iptr = (the location of that memory);

A. Memory address: *iptr, Value 5: iptr

B. Memory address: iptr, Value 5: *iptr

5

10

2

…

…

Slide 21

So we declared a pointer…

• How do we make it point to something?
1. Assign it the address of an existing variable
2. Copy some other pointer
3. Allocate some memory and point to it

• First, let’s look at how memory is organized.
– From the perspective of one executing program.

Slide 22

Memory

• Behaves like a big array
of bytes, each with an
address (bucket #).

• By convention, we
divide it into regions.

• The region at the lowest
addresses is usually
reserved for the OS.

0x0

0xFFFFFFFF

Operating system

Slide 23

Memory - Text

• After the OS, we store
the program’s code.

• Instructions generated
by the compiler.

0x0

0xFFFFFFFF

Operating system

Code (aka. Text)

Slide 24

Memory – (Static) Data

• Next, there’s a fixed-size
region for static data.

• This stores static
variables that are
known at compile time.
– Global variables

0x0

0xFFFFFFFF

Operating system

Code (aka. Text)

Data

Slide 25

Memory - Stack

• At high addresses, we
keep the stack.

• This stores local
(automatic) variables.
– The kind we’ve been

using in C so far.
– e.g., int x;

0x0

0xFFFFFFFF

Operating system

StackX:

Code (aka. Text)

Data

Slide 26

Memory - Stack

• The stack grows upwards
towards lower addresses
(negative direction).

• Example: Allocating array
– int array[4];

• (Note: this differs from
Python.)

0x0

0xFFFFFFFF

Operating system

StackX:

array [0]

[4]

Code (aka. Text)

Data

Slide 27

Memory - Heap

• The heap stores
dynamically allocated
variables.

• When programs
explicitly ask the OS for
memory, it comes from
the heap.
– malloc() function

0x0

0xFFFFFFFF

Operating system

StackX:

Code (aka. Text)

Data

Heap

Slide 28

If we can declare variables on the stack, why
do we need to dynamically allocate things on
the heap?

A. There is more space available on the heap.

B. Heap memory is better. (Why?)

C. We may not know a variable’s size in advance.

D. The stack grows and shrinks automatically.

E. Some other reason.

Slide 29

Memory - Heap

• The heap grows
downwards, towards
higher addresses.

• I know you want to ask
a question…

0x0

0xFFFFFFFF

Operating system

StackX:

Code (aka. Text)

Data

Heap

Slide 30

Memory - Heap

• “What happens if the
heap and stack collide?”

• This picture is not to scale
– the gap is huge.

• The OS works really hard
to prevent this.
– Would likely kill your

program before it could
happen.

0x0

0xFFFFFFFF

Operating system

StackX:

Code (aka. Text)

Data

Heap

Slide 31

Which region would we expect the PC
register (program counter) to point to?

A. OS

B. Text

C. Data

D. Heap

E. Stack

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

Slide 32

What should happen if we try to access an
address that’s NOT in one of these regions?

A. The address is allocated to
your program.

B. The OS warns your program.

C. The OS kills your program.

D. The access fails, try the next
instruction.

E. Something else

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

Slide 33

Segmentation Violation

Slide 34

Segmentation Violation

• Each region also known as
a memory segment.

• Accessing memory outside
a segment is not allowed.

• Can also happen if you try
to access a segment in an
invalid way.
– OS not accessible to users
– Text is usually read-only

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

Slide 35

Recap

0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

• & gives us the address of a variable (a pointer)
• * allows us to follow the address to memory,

accessing the item (dereference the pointer)

• Memory model:
• So far, all variables on stack.

• Up next: using the heap.
– We may not know the size of

a variable in advance. (dynamic)

Slide 36

So we declared a pointer…

• How do we make it point to something?
1. Assign it the address of an existing variable
2. Copy some other pointer
3. Allocate some memory and point to it

Slide 37

The Address Of (&)

• You can create a pointer to anything by taking its
address with the address of operator (&).

Slide 38

The Address Of (&)

int main() {
int x = 7;
int *iptr = &x;

return 0;
}

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

7X:

iptr:

Slide 39

What would this print?

int main() {
int x = 7;
int *iptr = &x;
int *iptr2 = &x;

printf(“%d %d ”, x, *iptr);
*iptr2 = 5;
printf(“%d %d ”, x, *iptr);

return 0;
}

0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

7X:

iptr:

A. 7 7 7 7 B. 7 7 7 5 C. 7 7 5 5 D. Something else
Slide 40

So we declared a pointer…

• How do we make it point to something?
1. Assign it the address of an existing variable
2. Copy some other pointer
3. Allocate some memory and point to it

Slide 41

Copying a Pointer

• We can perform assignment on pointers to copy the
stored address.

int x = 7;
int *iptr, *iptr2;
iptr = &x;
iptr2 = iptr;

Stack7X:

iptr: iptr2:

Slide 42

Pointer Types

• By default, we can only assign a pointer if the type
matches what C expects.

• “Warning: initialization from incompatible pointer
type” (Don’t ignore this!)

int x = 7;
int *iptr = &x;

int x = 7;
float *fptr = &x;

Slide 43

void *

• There exists a special type, void *, which represents
“generic pointer” type.
– Can be assigned to any pointer variable
– int *iptr = (void *) &x; // Doesn’t matter what x is

• This is useful for cases when:
1. You want to create a generic “safe value” that you can

assign to any pointer variable.
2. You want to pass a pointer to / return a pointer from a

function, but you don’t know its type.
3. You know better than the compiler that what you’re

doing is safe, and you want to eliminate the warning.

Slide 44

NULL: A special pointer value.

• You can assign NULL to any pointer, regardless of
what type it points to (it’s a void *).
– int *iptr = NULL;
– float *fptr = NULL;

• NULL is equivalent to pointing at memory address
0x0. This address is NEVER in a valid segment of your
program’s memory.
– This guarantees a segfault if you try to deref it.
– Generally a good ideal to initialize pointers to NULL.

Slide 45

What will this do?

int main() {
int *ptr;
printf(“%d”, *ptr);

}

A. Print 0

B. Print a garbage value

C. Segmentation fault

D. Something else

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

Takeaway: If you’re not immediately assigning it something

when you declare it, initialize your pointers to NULL.

Slide 46

So we declared a pointer…

• How do we make it point to something?
1. Assign it the address of an existing variable
2. Copy some other pointer
3. Allocate some memory and point to it

Slide 47

Allocating (Heap) Memory

• The standard C library (#include <stdlib.h>) includes
functions for allocating memory

void *malloc(size_t size)
– Allocate size bytes on the heap and return a pointer

to the beginning of the memory block

void free(void *ptr)
– Release the malloc()ed block of memory starting

at ptr back to the system

Slide 48

Recall: void *

• void * is a special type that represents “generic pointer”.
– Can be assigned to any pointer variable

• This is useful for cases when:
1. You want to create a generic “safe value” that you can assign

to any pointer variable.
2. You want to pass a pointer to / return a pointer from a

function, but you don’t know its type.
3. You know better than the compiler that what you’re doing is

safe, and you want to eliminate the warning.

• When malloc() gives you bytes, it doesn’t know or care what
you use them for…

Slide 49

Size Matters

void *malloc(size_t size)
– Allocate size bytes on the heap and return a pointer

to the beginning of the memory block

• How much memory should we ask for?

• Use C’s sizeof() operator:
int *iptr = NULL;
iptr = malloc(sizeof(int));

Slide 50

Example

int *iptr = NULL;

iptr = malloc(sizeof(int));

*iptr = 5;

0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

Slide 51

Example

int *iptr = NULL;

iptr = malloc(sizeof(int));

*iptr = 5;

0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

Create an integer pointer,
named iptr, on the stack.

Assign it NULL.

iptr:

Slide 52

Example

int *iptr = NULL;

iptr = malloc(sizeof(int));

*iptr = 5;

0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

Allocate space for an integer on
the heap (4 bytes), and return a
pointer to that space.

Assign that pointer to iptr.

iptr:

What value is stored in
that area right now?

Who knows… Garbage.

?

Slide 53

Example

int *iptr = NULL;

iptr = malloc(sizeof(int));

*iptr = 5;

0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

Use the allocated heap space by
dereferencing the pointer.

iptr:

5

Slide 54

Example

int *iptr = NULL;

iptr = malloc(sizeof(int));

*iptr = 5;

free(iptr);

0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

Free up the heap memory we used.

iptr:

Slide 55

Example

int *iptr = NULL;

iptr = malloc(sizeof(int));

*iptr = 5;

free(iptr);
iptr = NULL;

0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

Clean up this pointer, since it’s
no longer valid.

iptr:

Slide 56

sizeof()

• Despite the ()’s, it’s an operator, not a function
– Other operators:

• addition / subtraction (+ / -)
• address of (&)
• indirection (*) (dereference a pointer)

• Works on any type to tell you how much memory it
needs.

Slide 57

sizeof()example

struct student {
char name[40];
int age;
double gpa;

}

struct student *bob = NULL;
bob = malloc(sizeof(struct student));

I don’t ever want to see a number hard-coded in here!

How many bytes is this?
Who cares…
Let the compiler figure that out.

Slide 58

You’re designing a system. What should
happen if a program requests memory and
the system doesn’t have enough available?

A. The OS kills the requesting program.
B. The OS kills another program to make room.
C. malloc gives it as much memory as is available.
D. malloc returns NULL.
E. Something else.

Slide 59

Running out of Memory

• If you’re ever unsure of malloc / free’s behavior:
$ man malloc

• According to the C standard:
“The malloc() function returns a pointer to the allocated memory
that is suitably aligned for any kind of variable. On error, this
function returns NULL.”

• Further down in the “Notes” section of the manual:
“[On Linux], when malloc returns non-NULL there is no guarantee
that memory is really available. If the system is out of memory, one
or more processes will be killed by the OOM killer.”

Slide 60

Running out of Memory

• If you’re ever unsure of malloc / free’s behavior:
$ man malloc

• According to the C standard:
“The malloc() function returns a pointer to the allocated memory
that is suitably aligned for any kind of variable. On error, this
function returns NULL.”

• Further down in the “Notes” section of the manual:
“[On Linux], when malloc returns non-NULL there is no guarantee
that memory is really available. If the system is out of memory, one
or more processes will be killed by the OOM killer.”

You should check for NULL after every malloc():

struct student *bob = NULL;
bob = malloc(sizeof(struct student));

if (bob == NULL) {
/* Handle this. Often, print and exit. */

} Slide 61

What do you expect to happen to the 100-
byte chunk if we do this?

// What happens to these 100 bytes?

int *ptr = malloc(100);

ptr = malloc(2000);

A. The 100-byte chunk will be lost.

B. The 100-byte chunk will be automatically freed (garbage collected) by the OS.

C. The 100-byte chunk will be automatically freed (garbage collected) by C.

D. The 100-byte chunk will be the first 100 bytes of the 2000-byte chunk.

E. The 100-byte chunk will be added to the 2000-byte chunk (2100 bytes total).

Slide 62

“Memory Leak”

• Memory that is allocated, and not freed, for which
there is no longer a pointer.

• In many languages (Java, Python, …), this memory
will be cleaned up for you.
– “Garbage collector” finds unreachable memory

blocks, frees them.
– C doesn’t does NOT do this for you!

Slide 63

Why doesn’t C do garbage collection?

A. It’s impossible in C.

B. It requires a lot of resources.

C. It might not be safe to do so. (break programs)

D. It hadn’t been invented at the time C was developed.

E. Some other reason.

Slide 64

Memory Bookkeeping

• To free a chunk, you MUST call free with the same

pointer that malloc gave you. (or a copy)

• The standard C library keeps track of the chunks that

have been allocated to your program.

– This is called “metadata” – data about your data.

• Wait, where does it store that information?

– It’s not like it can use malloc() to get memory…

Slide 65

Where should we store this metadata?

A. In the CPU (where?)

B. In main memory (how?)

C. On the disk

D. Somewhere else

Slide 66

Metadata
Heap

int *iptr = malloc(8);

Slide 67

Metadata
Heap

First
Byte

… … …

… … … Last
Byte

int *iptr = malloc(8);

Slide 68

Metadata
Heap

Meta Data Meta Data

First
Byte

… … …

… … … Last
Byte

int *iptr = malloc(8);

• C Library: “Let me record this
allocation’s info here.”
– Size of allocation
– Maybe other info

Slide 69

Metadata
Heap

Meta Data Meta Data

First
Byte

… … …

… … … Last
Byte

Meta Data Meta Data

Other

Data

int *iptr = malloc(8);

• For all you know, there could
be another chunk after yours.

Slide 70

Metadata
Heap

Meta Data Meta Data

First
Byte

… … …

… … … Last
Byte

Meta Data Meta Data

Other

Data

int *iptr = malloc(8);

• Takeaway: very important that
you stay within the memory
chunks you allocate.

• If you corrupt the metadata, you
will get weird behavior.

Valgrind is your new best friend.
Slide 71

Pointers as Arrays

• “Why did you allocate 8 bytes for an int pointer?
Isn’t an int only 4 bytes?”
– int *iptr = malloc(8);

• Recall: an array variable acts like a pointer to a block
of memory. The number in [] is an offset from
bucket 0, the first bucket.

• We can treat pointers in the same way!

Slide 72

Heap

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));

Pointers as Arrays

Slide 73

Pointers as Arrays

Heap

1st integer

2nd integer

3rd integer

4th integer

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));

Slide 74

Pointers as Arrays

Heap

1st integer

2nd integer

3rd integer

4th integer

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));

The C compiler knows how big an
integer is.

As an alternative way of dereferencing,
you can use []’s like an array.

The C compiler will jump ahead the
right number of bytes, based on the
type.

Slide 75

Pointers as Arrays

Heap

iptr[0]

iptr[1]

iptr[2]

iptr[3]

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));

Slide 76

Pointers as Arrays

Heap

iptr[0]

iptr[1]

iptr[2]

iptr[3]

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));

iptr[2] = 7;

1. Start from the base of iptr.

Slide 77

Pointers as Arrays

Heap

iptr[0]

iptr[1]

iptr[2]

iptr[3]

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));

iptr[2] = 7;

1. Start from the base of iptr.

2. Skip forward by
the size of two ints.

Slide 78

Pointers as Arrays

Heap

iptr[0]

iptr[1]

7

iptr[3]

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));

iptr[2] = 7;

1. Start from the base of iptr.

2. Skip forward by
the size of two ints.

3. Treat the result as an int.
(Access the memory location
like a typical dereference.)

Slide 79

Pointers as Arrays

• This is one of the most common ways you’ll use
pointers:
– You need to dynamically allocate space for a collection

of things (ints, structs, whatever).
– You don’t know how many at compile time.

float *student_gpas = NULL;
student_gpas = malloc(n_students * sizeof(int));
…
student_gpas[0] = …;
student_gpas[1] = …;

Slide 80

Pointer Arithmetic

• Addition and subtraction work on pointers.

• C automatically increments by the size of the type
that’s pointed to.

Slide 81

Pointer Arithmetic

Heap

1st integer

2nd integer

3rd integer

4th integer

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));

Slide 82

Pointer Arithmetic

Heap

1st integer

2nd integer

3rd integer

4th integer

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));

int *iptr2 = iptr + 3;

Skip ahead by 3 times the size of iptr’s
type (integer, size: 4 bytes).

Slide 83

Other uses for pointers…

1. Allowing a function to modify a variable.

2. Allowing a function to return memory.

3. Many more…

Slide 84

Function Arguments

• Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {
a = a + 5;
return a - b;

}

int main() {
int x, y; // declare two integers
x = 4;
y = 7;
y = func(x, y);
printf(“%d, %d”, x, y);

}

Stack

main:
x:

y:

func:
a:

b:

4

7

4

7

4

7

Slide 85

Function Arguments

• Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {
a = a + 5;
return a - b;

}

int main() {
int x, y; // declare two integers
x = 4;
y = 7;
y = func(x, y);
printf(“%d, %d”, x, y);

}

Stack

main:
x:

y:

4

7

4

7

It doesn’t matter what func
does with a and b. The value
of x in main doesn’t change.

Slide 86

Function Arguments

• Arguments can be pointers!
– The function gets the address of the passed variable!

void func(int *a) {
*a = *a + 5;

}

int main() {
int x = 4;

func(&x);
printf(“%d”, x);

}

Stack

main:

Slide 87

Pointer Arguments

• Arguments can be pointers!
– The function gets the address of the passed variable!

void func(int *a) {
*a = *a + 5;

}

int main() {
int x = 4;

func(&x);
printf(“%d”, x);

}

Stack

main:

x: 4

Slide 88

Pointer Arguments

• Arguments can be pointers!
– The function gets the address of the passed variable!

void func(int *a) {
*a = *a + 5;

}

int main() {
int x = 4;

func(&x);
printf(“%d”, x);

}

Stack

main:

func:
a:

x: 4

Slide 89

Pointer Arguments

• Arguments can be pointers!
– The function gets the address of the passed variable!

void func(int *a) {
*a = *a + 5;

}

int main() {
int x = 4;

func(&x);
printf(“%d”, x);

}

Stack

main:

func:
a:

x: 9

Dereference
pointer, set value
that a points to.

Slide 90

Pointer Arguments

• Arguments can be pointers!
– The function gets the address of the passed variable!

void func(int *a) {
*a = *a + 5;

}

int main() {
int x = 4;

func(&x);
printf(“%d”, x);

}

Stack

main:

x: 9

Prints: 9

Haven’t we seen this
somewhere before? Slide 91

Readfile Library

• We saw this in lab 2 with read_int, read_float.
– This is why you needed an &.
– e.g.,

int value;
status_code = read_int(&value);

• You’re asking read_int to modify a parameter, so you
give it a pointer to that parameter.
– read_int will dereference it and set it.

Slide 92

Other uses for pointers…

1. Allowing a function to modify a variable.

2. Allowing a function to return memory.

3. Many more…

Slide 93

Can you return an array?

• Suppose you wanted to write a function that copies an
array (of 5 integers).
– Given: array to copy

copy_array(int array[]) {
int result[5];
result[0] = array[0];
…
result[4] = array[4];
return result;

}

As written above, this would be a terrible way of implementing this.
(Don’t worry, compiler wont let you do this anyway.) Slide 94

Consider the memory…

copy_array(int array[]) {
int result[5];
result[0] = array[0];
…
result[4] = array[4];
return result;

}

(In main):
copy = copy_array(…)

copy_array:

main:

copy:

result

Slide 95

Consider the memory…

copy_array(int array[]) {
int result[5];
result[0] = array[0];
…
result[4] = array[4];
return result;

}

(In main):
copy = copy_array(…)

copy_array:

main:

copy:

resultresult

Slide 96

Consider the memory…

copy_array(int array[]) {
int result[5];
result[0] = array[0];
…
result[4] = array[4];
return result;

}

(In main):
copy = copy_array(…)

main:

copy:

When we return from copy_array,
its stack frame is gone!

Left with a pointer to nowhere.

Slide 97

Using the Heap

int *copy_array(int num, int array[]) {
int *result = malloc(num * sizeof(int));

result[0] = array[0];
…

return result;
}

0x0

0xFFFFFFFF

Operating system

Stack

Text
Data
Heap

result:

malloc memory is on the heap.

Doesn’t matter what happens on the
stack (function calls, returns, etc.)

Slide 98

Other uses for pointers…

1. Allowing a function to modify a variable.

2. Allowing a function to return memory.

• These are both very common.
You’ll use them in lab 4.

Slide 99

Pointers to Pointers

• Why stop at just one pointer?

int **double_iptr;

• “A pointer to a pointer to an int.”
– Dereference once: pointer to an int
– Dereference twice: int

• Commonly used to:
– Allow a function to modify a pointer (data structures)
– Dynamically create an array of pointers.
– (Program command line arguments use this.)

Slide 100

Up Next:

• Function calls and stack management

Slide 101

