CS 31: Introduction to Computer Systems

03: Binary Arithmetic
January 29

WiCS!

Swarthmore Women in Computer Science

Today

- Binary Arithmetic
- Unsigned addition
- Subtraction
- Representation
- Signed magnitude
- Two's complement
- Signed overflow
- Bit operations

Reading Quiz

Abstraction

Last Class: Binary Digits: (BITS)

Representation: $1 \times 2^{7}+0 \times 2^{6} \ldots \ldots+1 \times 2^{3}+1 \times 2^{2}+1 \times 2^{1}+$ 1×2^{0}
$10001111=143$
one byte is the smallest addressable unit - contains 8 bits

Last Class: Unsigned Integers

- Suppose we had one byte
- Can represent 2^{8} (256) values
- If unsigned (strictly non-negative): 0-255

C types and their (typical!) sizes

- 1 byte (8 bits $=2^{8}$ unique values):
- char, unsigned char
- 2 bytes (16 bits $=2^{16}$ unique values):
- short, unsigned short
- 4 bytes (32 bits $=232$ unique values):
- int, unsigned int, float
- 8 bytes (64 bits $=2^{64}$ unique values):
- long long, unsigned long long, double
- 4 or 8 bytes: long, unsigned long
unsigned long v1;
short s1;
long long ll;

Last Class: Unsigned Integers

- Suppose we had one byte
- Can represent 2^{8} (256) values
- If unsigned (strictly non-negative): 0-255
$252=11111100$
$253=11111101$
$254=11111110$
$255=11111111$

Traditional number line:

$$
\text { Addition } \longrightarrow
$$

Last Class: Unsigned Integers

- Suppose we had one byte
- Can represent 2^{8} (256) values
- If unsigned (strictly non-negative): 0-255
$252=11111100$
$253=11111101$
$254=11111110$
$255=11111111$
What if we add one more?

Car odometer "rolls over".
gyyyyyy

Any time we are dealing with a finite storage space we cannot represent an infinite number of values!

Last Class: Unsigned Integers

Suppose we had one byte

- Can represent 2^{8} (256) values
- If unsigned (strictly non-negative): 0-255
$252=11111100$
$253=11111101$
$254=11111110$
$255=11111111$
What if we add one more?

Modular arithmetic: Here, all values are modulo 256.

Last Class: Unsigned Addition (4-bit)

Addition works like grade school addition:

Four bits give us range: 0-15

Last Class: Unsigned Addition (4-bit)

- Addition works like grade school addition:

$$
\begin{aligned}
& 1 \\
& 0110 \\
& +0100 \\
& \hline 1010
\end{aligned} \begin{array}{r}
6 \\
\hline 10
\end{array} \begin{array}{r}
1100 \\
+\begin{array}{l}
1010 \\
\text { ^carry out }
\end{array}
\end{array}
$$

Four bits give us range: 0-15
Overflow!

Suppose we want to support signed values (positive and negative) in 8 bits, where should we put -1 and -127 on the circle? Why?

C: Put them somewhere else.

Suppose we want to support signed values (positive and negative) in 8 bits, where should we put -1 and -127 on the circle? Why?

C: Put them somewhere else.

Signed Magnitude

- One bit (usually left-most) signals:
- 0 for positive
- 1 for negative

For one byte:

$$
1=00000001,-1=10000001
$$

Pros: Negation (negative value of a
 number) is very simple!

Signed Magnitude

- One bit (usually left-most) signals:
- 0 for positive
- 1 for negative

For one byte:
$0=00000000$
What about 10000000?
Major con: Two ways to represent zero.

Two's Complement (signed)

- Borrow nice property from number line:

Only one instance of zero!
Implies: -1 and 1 on either side of it.

Two's Complement

- Borrow nice property from number line:

Only one instance of zero! Implies: -1 and 1 on either side of it.

For an 8 bit range we can express 256 unique values:

- 128 non-negative values (0 to 127)
- 128 negative values (-1 to -128)

Two's Complement

- Only one value for zero
- With N bits, can represent the range:
- $-2^{\mathrm{N}-1}$ to $2^{\mathrm{N}-1}-1$
- Most significant bit still designates positive (0) /negative (1)
- Negating a value is slightly more complicated:

$$
1=\underline{0} 0000001, \quad-1=\underline{1} 1111111
$$

From now on, unless we explicitly say otherwise, we'll assume all integers are stored using two's complement! This is the standard!

Two's Compliment

- Each two's compliment number is now:

$$
\left[-2^{n-1 *} d_{n-1}\right]+\left[2^{n-2 *} d_{n-2}\right]+\ldots+\left[2^{1 *} d_{1}\right]+\left[2^{0 *} d_{0}\right]
$$

Note the negative sign on just the most significant bit. This is why first bit tells us whether the value is negative vs. positive.

If we interpret 11001 as a two's complement number, what is the value in decimal?

Each two's compliment number is now:

$$
\left[-2^{n-1 *} d_{n-1}\right]+\left[2^{n-2 *} d_{n-2}\right]+\ldots+\left[2^{1 *} d_{1}\right]+\left[2^{0 *} d_{0}\right]
$$

A. -2
B. -7
C. -9
D. -25

If we interpret 11001 as a two's complement number, what is the value in decimal?

Each two's compliment number is now:

$$
\left[-2^{n-1 *} d_{n-1}\right]+\left[2^{n-2 *} d_{n-2}\right]+\ldots+\left[2^{1 *} d_{1}\right]+\left[2^{0 *} d_{0}\right]
$$

A. -2
B. $-7 \quad-16+8+1=-7$
C. -9
D. -25

"If we interpret..."

What is the decimal value of 1100 ?

- ...as unsigned, 4-bit value: 12 (\%u)
- ...as signed (two's comp), 4-bit value: -4 (\%d)
- ...as an 8-bit value: 12. (i.e., 0000 1100)

Two's Complement Negation

- To negate a value x, we want to find y such that $x+y$
$=0$.
- For N bits, $\mathrm{y}=2^{\mathrm{N}}-\mathrm{x}$

Negation Example (8 bits)

- For N bits, $\mathrm{y}=2^{\mathrm{N}}-\mathrm{x}$
- Negate the value (2) 00000010
- $2^{8}-2=256-2=254$
- Our wheel only goes to 127 !
- Put - 2 where 254 would be if wheel was unsigned.
- 254 in binary is 11111110

Given 11111110, it's 254 if interpreted as unsigned and -2 interpreted as signed.

Negation Shortcut

- A much easier, faster way to negate:
- Flip the bits (0's become 1's, 1's become 0's)
- Add 1
- Negate 00101110 (46)
- Formally:
$-2^{8}-46=256-46=210$
-210 in binary is 11010010

46:
00101110
Flip the bits: 11010001
Add 1
$+1$
-46:
11010010

Addition \& Subtraction

- Addition is the same as for unsigned
- One exception: different rules for overflow
- Can use the same hardware for both
- Subtraction is the same operation as addition
- Just need to negate the second operand...
- 6-7 = $6+(-7)=6+(\sim 7+1)$
$-\sim 7$ is shorthand for "flip the bits of 7"

Subtraction Hardware

Negate and add 1 to second operand:
Can use the same circuit for add and subtract:
$6-7==6+\sim 7+1$
input 1

By switching to two's complement, have we solved this value "rolling over" (overflow) problem?
A. Yes, it's gone.
B. Nope, it's still there.
C. It's even worse now.

This is an issue we need to be aware of when adding and subtracting!

Overflow, Revisited

If we add a positive number and a negative number, will we have overflow? (Assume they are the same \# of bits)
A. Always
B. Sometimes
C. Never

Signed Overflow

- Overflow: IFF the sign bits of operands are the same, but the sign bit of result is different.
- Not enough bits to store result!

Signed addition (and subtraction):

$2+-1=1$	$2+-2=0$	$2+-4=-2$
0010	0010	0010
+1111	$\frac{+1110}{0000}$	$\frac{+1100}{1110}$

No chance of overflow here - signs of operands are different!

Signed Overflow

- Overflow: IFF the sign bits of operands are the same, but the sign bit of result is different.
- Not enough bits to store result!

Signed addition (and subtraction):

$2+-1=1$	$2+-2=0$	$2+-4=-2$	$2+7=-7$	$-2+-7=7$
0010	0010	0010	0010	1110
$\frac{+1111}{10001}$	$\frac{+1110}{0000}$	$\frac{+1100}{1110}$	$\frac{+0111}{1001}$	$\frac{+1001}{0111}$

Overflow here! Operand signs are the same, and they don't match output sign!

Overflow Rules

- Signed:
- The sign bits of operands are the same, but the sign bit of result is different.
- Can we formalize unsigned overflow?
- Need to include subtraction too, skipped it before.

Recall Subtraction Hardware

Negate and add 1 to second operand:
Can use the same circuit for add and subtract:
6-7== $6+\sim 7+1$
input 1
input 2 --> possible bit flipper
possible +1 input--------> ADD CIRCUIT $--->$ result

Let's call this +1 input: "Carry in"

How many of these unsigned operations have overflowed?

4 bit unsigned values (range 0 to 15):

Subtraction (carry-in = 1)
(-3)
$6-3=0110+1100+1=10011$
$3-6=0011+1010+1=01101$
A. 1
B. 2
C. 3
D. 4
E. 5

How many of these unsigned operations have overflowed?

Interpret these as 4-bit unsigned values (range 0 to 15):

Addition (carry-in $=0$)				$\begin{gathered} \text { carry-in } \\ \downarrow \end{gathered}$	$\begin{gathered} \text { can } \\ \downarrow \end{gathered}$	-out		
$9+11$	$=$	$1001+$	1011	$+0=$	1	0100	$=$	4
$9+6$	$=$	$1001+$	0110	$+0=$	0	1111	$=$	15
$3+6$	$=$	$0011+$	0110	$+0=$	0	1001		9

Subtraction (carry-in = 1)

$$
\begin{aligned}
& 6-3=0110+1100+1=1=0011=3 \\
& 3-6=011+1010+1=13
\end{aligned}
$$

A. 1
B. 2 Pattern?
C. 3
D. 4
E. 5

Overflow Rule Summary

- Signed overflow:
- The sign bits of operands are the same, but the sign bit of result is different.
- Unsigned: overflow
- The carry-in bit is different from the carry-out.

$C_{\text {in }}$	C $_{\text {out }}$	C in $_{\text {in }}$ XOR $C_{\text {out }}$
0	0	0
0	1	1
1	0	1
1	1	0

So far, all arithmetic on values that were the same size. What if they're different?

Sign Extension

- When combining signed values of different sizes, expand the smaller to equivalent larger size:

```
char y=2, x=-13;
short z = 10;
    z = z + y;
        z = z + x;
0000000000001010
+ 00000010
0000000000000010
```

Fill in high-order bits with sign-bit value to get same numeric value in larger number of bytes.

Let's verify that this works

4 -bit signed value, sign extend to 8 -bits, is it the same value?

0111 ---> 00000111 obviously still 7
1010 ----> 11111010 is this still -6?

$-128+64+32+16+8+0+2+0=-6$ yes!

Operations on Bits

- For these, doesn't matter how the bits are interpreted (signed vs. unsigned)
- Bit-wise operators (AND, OR, NOT, XOR)
- Bit shifting

Bit-wise Operators

- bit operands, bit result (interpret as you please)

	\& (AND)		(OR)		$\sim(N O T)$			$\wedge(X O R)$			
A	B		\&		A	+	B	\sim A	A	,	B
0	0		0			0		1		0	
0	1		0			1		1		1	
1	0		0			1		0		1	
1	1		1			1		0		0	
	1010101			10				01010		~ 10	0101111
	0100001	\&	101	11			0	01001			1010000
	1110101			10				00011			

More Operations on Bits

- Bit-shift operators: << left shift, >> right shift

```
01010101 << 2 is 01010100
    2 high-order bits shifted out
    2 ~ l o w - o r d e r ~ b i t s ~ f i l l e d ~ w i t h ~ 0 ~
01101010 << 4 is 10100000
01010101 >> 2 is 00010101
01101010 >> 4 is 00000110
1 0 1 0 1 1 0 0 ~ \gg ~ 2 ~ i s ~ 0 0 1 0 1 0 1 1 ~ ( l o g i c a l ~ s h i f t )
or 11101011 (arithmetic shift)
```

Arithmetic right shift: fills high-order bits w/sign bit C automatically decides which to use based on type: signed: arithmetic, unsigned: logical

Up Next!

- C programming

