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Today

• Binary Arithmetic
– Unsigned addition 
– Subtraction

• Representation
– Signed magnitude
– Two’s complement
– Signed overflow

• Bit operations
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Reading Quiz



Abstraction

User / Programmer
Wants low complexity

Applications
Specific functionality

Software library
Reusable functionality

Complex devices
Compute & I/O

Operating system
Manage resources
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Last Class: Binary Digits: (BITS)

Representation: 1 x 27 + 0 x 26 ….. + 1 x 23 + 1 x 22 + 1 x 21 + 
1 x 20

10001111 = 143

10001111Most significant bit Least significant bit
7 6 5 4 3 2 1 0
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one byte is the smallest addressable unit - contains 8 bits 



Last Class: Unsigned Integers

• Suppose we had one byte
– Can represent 28 (256) values
– If unsigned (strictly non-negative): 0 – 255

What if we add one more?
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C types and their (typical!) sizes
• 1 byte (8 bits = 28 unique values):  

– char, unsigned char

• 2 bytes (16 bits = 216 unique values):

– short, unsigned short

• 4 bytes (32 bits = 232 unique values): 

– int, unsigned int, float

• 8 bytes (64 bits = 264 unique values): 

– long long, unsigned long long, double

• 4 or 8 bytes: long, unsigned long

unsigned long v1;

short s1;

long long ll;
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Last Class: Unsigned Integers

• Suppose we had one byte
– Can represent 28 (256) values

– If unsigned (strictly non-negative): 0 – 255

252 = 11111100

253 = 11111101

254 = 11111110

255 = 11111111

What if we add one more?

0 255 Larger
Values

Traditional number line:

Addition
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Last Class: Unsigned Integers

• Suppose we had one byte
– Can represent 28 (256) values

– If unsigned (strictly non-negative): 0 – 255

252 = 11111100

253 = 11111101

254 = 11111110

255 = 11111111

What if we add one more?

Car odometer “rolls over”.

Any time we are dealing with a 
finite storage space we cannot 
represent an infinite number of 
values!
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Last Class: Unsigned Integers
Suppose we had one byte

• Can represent 28 (256) values

• If unsigned (strictly non-negative): 

0 – 255

252 = 11111100

253 = 11111101

254 = 11111110

255 = 11111111

What if we add one more?

0

128 
(10000000)

64192

255 (11111111)

Addition

Modular arithmetic: Here, all values are modulo 256. Slide 11



Last Class: Unsigned Addition (4-bit)

Addition works like grade school addition:

1
0110    6       1100    12

+ 0100 + 4 + 1010 +10
1010   10     1 0110     6

^carry out

Four bits give us range: 0 - 15
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Last Class: Unsigned Addition (4-bit)

• Addition works like grade school addition:

1
0110    6       1100    12

+ 0100 + 4 + 1010 +10
1010   10     1 0110     6

^carry out

Four bits give us range: 0 - 15 Overflow!
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Suppose we want to support signed values 
(positive and negative) in 8 bits, where should 
we put -1 and -127 on the circle?  Why? 

0

-1

-127 (11111111)
0

-127

-1 (11111111)

A B

C: Put them somewhere else. Slide 14



Suppose we want to support signed values 
(positive and negative) in 8 bits, where should 
we put -1 and -127 on the circle?  Why? 

0

-1

-127 (11111111)
0

-127

-1 (11111111)

A: signed 
magnitude

B: Two’s 
complement

C: Put them somewhere else. Slide 15



Signed Magnitude

• One bit (usually left-most) signals:
– 0 for positive
– 1 for negative

For one byte:
1 = 00000001, -1 = 10000001

Pros: Negation (negative value of a 
number) is very simple!

0

-1

-127

A

1
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Signed Magnitude

• One bit (usually left-most) signals:
– 0 for positive
– 1 for negative

For one byte:
0 = 00000000
What about 10000000?

Major con: Two ways to represent zero.

0

-1

-127 1

A

-0
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Two’s Complement (signed)

• Borrow nice property from number line:

0
-1 1

Only one instance of zero!
Implies: -1 and 1 on either side of it.
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Two’s Complement

• Borrow nice property from number line:

0

-1 1

Only one instance of zero!
Implies: -1 and 1 on either side of it.

-128
Slide 19

For an 8 bit range we can express 256 
unique values:
• 128 non-negative values (0 to 127)
• 128 negative values (-1 to -128)

0
-1 1

-127 127

B



Two’s Complement

• Only one value for zero

• With N bits, can represent the range:
§ -2N-1 to 2N-1 – 1

• Most significant bit still designates positive (0) 
/negative (1)

• Negating a value is slightly more complicated:

1 = 00000001, -1 = 11111111

From now on, unless we explicitly say otherwise, we’ll assume all integers 
are stored using two’s complement!  This is the standard! Slide 20



Two’s Compliment

• Each two’s compliment number is now:
[-2n-1*dn-1] + [2n-2*dn-2] +…+ [21*d1] + [20*d0]

Note the negative sign on just the most significant bit.  This is 
why first bit tells us whether the value is negative vs. positive.
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If we interpret 11001 as a two’s complement 
number, what is the value in decimal?

Each two’s compliment number is now:
[-2n-1*dn-1] + [2n-2*dn-2] +…+ [21*d1] + [20*d0]

A. -2

B. -7

C. -9

D. -25
Slide 22



If we interpret 11001 as a two’s complement 
number, what is the value in decimal?

Each two’s compliment number is now:
[-2n-1*dn-1] + [2n-2*dn-2] +…+ [21*d1] + [20*d0]

A. -2

B. -7

C. -9

D. -25
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-16 + 8 + 1 = -7



“If we interpret…”

What is the decimal value of 1100?

• …as unsigned, 4-bit value: 12  (%u)
• …as signed (two’s comp), 4-bit value: -4  (%d)

• …as an 8-bit value: 12. (i.e., 0000 1100)
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Two’s Complement Negation

• To negate a value x, we want to find y such that x + y 
= 0.

• For N bits, y = 2N - x
0

-127

-1

B

1

127

-128
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unsigned

128

254
255 0

Negation Example (8 bits)

• For N bits, y = 2N - x
• Negate the value (2) 00000010
• 28 - 2 = 256 - 2 = 254

• Our wheel only goes to 127!
– Put -2 where 254 would be

if wheel was unsigned.
– 254 in binary is 11111110

0

-127

-1

B

1

127
-128

Given 11111110, it’s 254 if interpreted as 
unsigned and -2 interpreted as signed. Slide 26

-2

signed



Negation Shortcut

• A much easier, faster way to negate:
– Flip the bits (0’s become 1’s, 1’s become 0’s)
– Add 1

• Negate 00101110 (46)

• Formally:
– 28 - 46 = 256 - 46 = 210
– 210 in binary is 11010010
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46: 00101110 
Flip the bits: 11010001
Add 1 + 1
-46: 11010010



Addition & Subtraction

• Addition is the same as for unsigned
– One exception: different rules for overflow
– Can use the same hardware for both

• Subtraction is the same operation as addition
– Just need to negate the second operand…

• 6 - 7 = 6 + (-7) = 6 + (~7 + 1)
– ~7 is shorthand for “flip the bits of 7”
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Subtraction Hardware

Negate and add 1 to second operand:
Can use the same circuit for add and subtract:
6 - 7 ==  6 + ~7 + 1

input 1 ------------------------------->
input 2 --> possible bit flipper --> ADD CIRCUIT ---> result

possible +1 input-------->
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By switching to two’s complement, have 
we solved this value “rolling over” 
(overflow) problem?

A. Yes, it’s gone.

B. Nope, it’s still there.

C. It’s even worse now.

0

-127

-1

B

1

127

-128This is an issue we need to be aware of 
when adding and subtracting!
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Overflow, Revisited

0

-127

-1

Signed

1

127

-128

0

128

64192

255

Unsigned

Danger Zone

Danger Zone
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If we add a positive number and a negative 
number, will we have overflow?  (Assume they 
are the same # of bits)

A. Always

B. Sometimes

C. Never

0

-127

-1

Signed

1

127

-128

Danger Zone Slide 32



Signed Overflow

– Overflow: IFF the sign bits of operands are the same, but 
the sign bit of result is different.
• Not enough bits to store result!

Signed addition (and subtraction):
2+-1=1 2+-2=0 2+-4=-2   2+7=-7   -2+-7=7
0010     0010     0010      0010     1110

+1111 +1110 +1100 +0111 +1001
1 0001 1 0000 1110      1001   1 0111

0

-127

-1

Signed

1

127

-128
No chance of overflow here - signs 
of operands are different! Slide 33



Signed Overflow

– Overflow: IFF the sign bits of operands are the same, but 
the sign bit of result is different.
• Not enough bits to store result!

Signed addition (and subtraction):
2+-1=1 2+-2=0 2+-4=-2   2+7=-7   -2+-7=7
0010     0010     0010      0010     1110

+1111 +1110 +1100 +0111 +1001
1 0001 1 0000 1110      1001   1 0111

Overflow here!  Operand signs are the 
same, and they don’t match output sign!
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Overflow Rules

• Signed:
– The sign bits of operands are the same, but the sign 

bit of result is different.

• Can we formalize unsigned overflow?
– Need to include subtraction too, skipped it before.
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Recall Subtraction Hardware

Negate and add 1 to second operand:
Can use the same circuit for add and subtract:
6 - 7 ==  6 + ~7 + 1

input 1 ------------------------------->
input 2 --> possible bit flipper --> ADD CIRCUIT ---> result

possible +1 input-------->

Let’s call this +1 input: “Carry in”
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How many of these unsigned operations have 
overflowed?
4 bit unsigned values (range 0 to 15):

carry-in    carry-out
Addition (carry-in = 0)

9 + 11  =   1001 + 1011 + 0 =  1  0100
9 +  6  =   1001 + 0110 + 0 =  0  1111
3 +  6  =   0011 + 0110 + 0 =  0  1001

Subtraction (carry-in = 1)

6 - 3  =   0110 + 1100 + 1  = 1  0011
3 - 6  =   0011 + 1010 + 1  = 0  1101

A. 1
B. 2
C. 3
D. 4
E. 5

(-3)

(-6)
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How many of these unsigned operations have 
overflowed?
Interpret these as 4-bit unsigned values (range 0 to 15):

carry-in    carry-out
Addition (carry-in = 0)

9 + 11  =   1001 + 1011 + 0 =  1  0100 =  4
9 +  6  =   1001 + 0110 + 0 =  0  1111 = 15
3 +  6  =   0011 + 0110 + 0 =  0  1001 =  9

Subtraction (carry-in = 1)

6 - 3  =   0110 + 1100 + 1  = 1  0011 =  3
3 - 6  =   0011 + 1010 + 1  = 0  1101 = 13

A. 1
B. 2
C. 3
D. 4
E. 5

Pattern?

(-3)

(-6)
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Overflow Rule Summary

• Signed overflow:
– The sign bits of operands are the same, but the sign bit of 

result is different.

• Unsigned: overflow
– The carry-in bit is different from the carry-out.

Cin Cout Cin XOR Cout
0   0            0
0   1            1
1   0            1
1   1            0

So far, all arithmetic on values that were the same size.  What if they’re different?
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Sign Extension
• When combining signed values of different sizes, 

expand the smaller to equivalent larger size:

char y=2, x=-13; 
short z = 10;

z = z + y;                z = z + x;

0000000000001010          0000000000000101
+       00000010          +       11110011
0000000000000010          1111111111110011

Fill in high-order bits with sign-bit value to get same 
numeric value in larger number of bytes.
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Let’s verify that this works

4-bit signed value, sign extend to 8-bits, is it the same 
value?

0111   --->  0000 0111     obviously still 7
1010   ----> 1111 1010     is this still -6?

-128 + 64 + 32  + 16 +  8 + 0 + 2 + 0 =  -6    yes!
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Operations on Bits

• For these, doesn’t matter how the bits are 
interpreted (signed vs. unsigned)

• Bit-wise operators (AND, OR, NOT, XOR)

• Bit shifting
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Bit-wise Operators
• bit operands, bit result (interpret as you please)

& (AND)          | (OR)           ~(NOT)            ^(XOR)

A    B      A & B    A | B    ~A    A ^ B
0    0        0        0       1      0
0    1        0        1       1      1
1    0        0        1       0      1
1    1        1        1       0      0

01010101     01101010     10101010   ~10101111
| 00100001 & 10111011 ^ 01101001 01010000
01110101     00101010     11000011
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More Operations on Bits
• Bit-shift operators:   << left shift,  >> right shift

01010101 << 2  is 01010100     
2 high-order bits shifted out
2 low-order bits filled with 0

01101010 << 4  is 10100000 
01010101 >> 2  is 00010101
01101010 >> 4  is 00000110

10101100 >> 2  is 00101011 (logical shift) 
or 11101011 (arithmetic shift)

Arithmetic right shift:   fills high-order bits w/sign bit
C automatically decides which to use based on type:

signed: arithmetic, unsigned: logical
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Up Next!

• C programming


