CS 31: Introduction to Computer Systems

03: Binary Arithmetic January 29

WiCS!

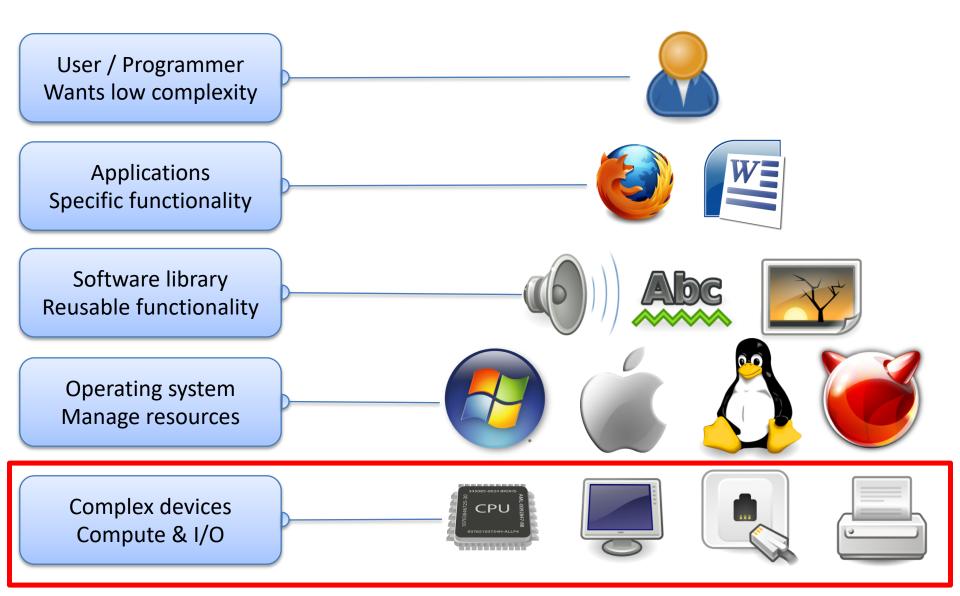
Swarthmore Women in Computer Science

Today

- Binary Arithmetic
 - Unsigned addition
 - Subtraction
- Representation
 - Signed magnitude
 - Two's complement
 - Signed overflow
- Bit operations

Reading Quiz

Abstraction



Last Class: Binary Digits: (BITS)

Most significant bit $\longrightarrow \underline{10001111}$ \longleftarrow Least significant bit

Representation: $1 \times 2^7 + 0 \times 2^6 \dots + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$

10001111 = 143

one byte is the smallest addressable unit - contains 8 bits

- Suppose we had one byte
 - Can represent 2⁸ (256) values
 - If unsigned (strictly non-negative): 0 255

C types and their (typical!) sizes

• 1 byte (8 bits = 2^8 unique values):

- char, unsigned char

• 2 bytes (16 bits = 2^{16} unique values):

- short, unsigned short

• 4 bytes (32 bits = 2^{32} unique values):

- int, unsigned int, float

• 8 bytes (64 bits = 2^{64} unique values):

- long long, unsigned long long, double

• 4 or 8 bytes: long, unsigned long

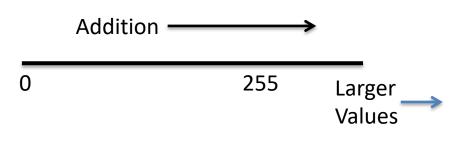
unsigned long v1;

short s1;

long long ll;

- Suppose we had one byte
 - Can represent 2⁸ (256) values
 - If unsigned (strictly non-negative): 0 255
- 252 = 11111100253 = 11111101254 = 1111110255 = 11111111

Traditional number line:



- Suppose we had one byte
 - Can represent 2⁸ (256) values
 - If unsigned (strictly non-negative): 0 255
- 252 = 11111100
- 253 = 11111101
- 254 = 11111110
- 255 = 11111111

What if we add one more?

Car odometer "rolls over".

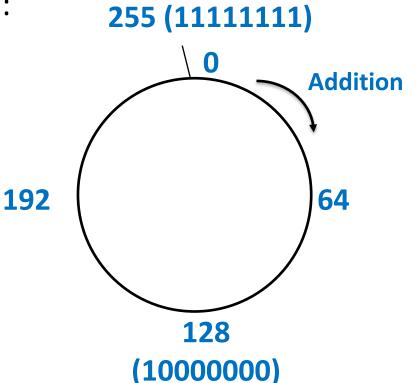
99999999

Any time we are dealing with a finite storage space we cannot represent an infinite number of values!

Suppose we had one byte

- Can represent 2⁸ (256) values
- If unsigned (strictly non-negative):
 0 255
 - 252 = 11111100
 - 253 = 11111101
 - 254 = 11111110
 - 255 = 11111111

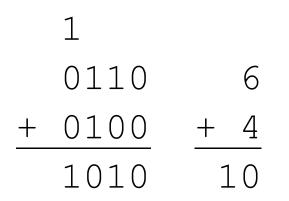
What if we add one more?



Modular arithmetic: Here, all values are modulo 256.

Last Class: Unsigned Addition (4-bit)

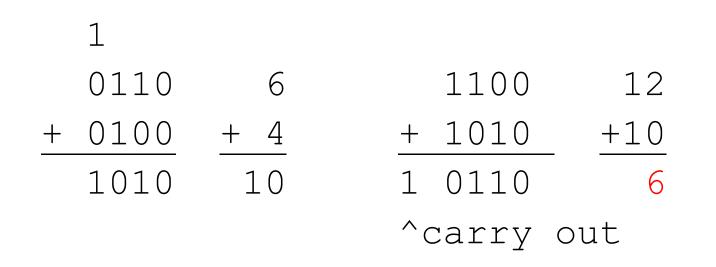
Addition works like grade school addition:



Four bits give us range: 0 - 15

Last Class: Unsigned Addition (4-bit)

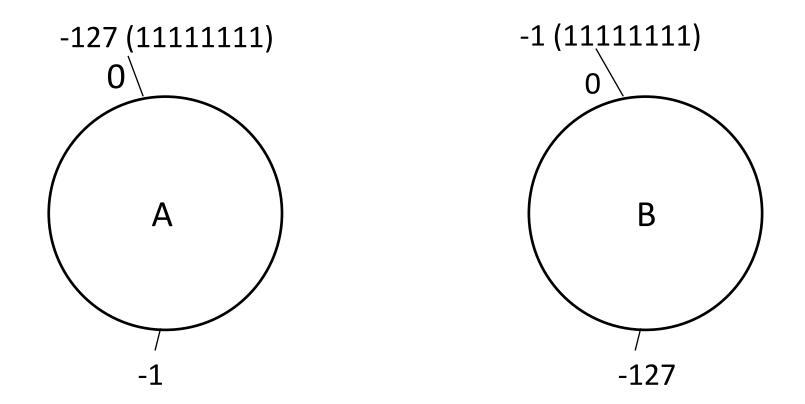
• Addition works like grade school addition:



Four bits give us range: 0 - 15

Overflow!

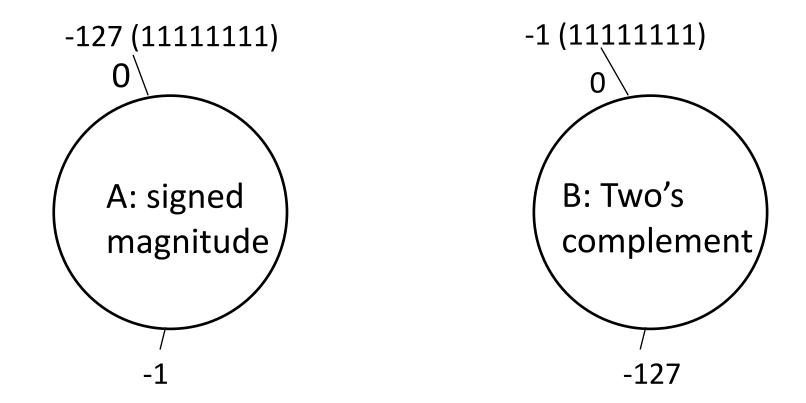
Suppose we want to support signed values (positive <u>and</u> negative) in 8 bits, where should we put -1 and -127 on the circle? Why?



C: Put them somewhere else.

Slide 14

Suppose we want to support signed values (positive <u>and</u> negative) in 8 bits, where should we put -1 and -127 on the circle? Why?



C: Put them somewhere else.

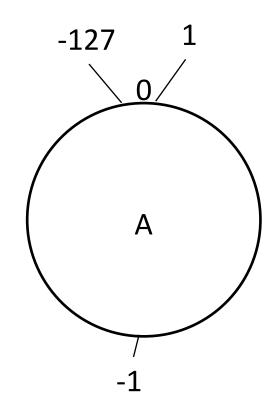
Signed Magnitude

- One bit (usually left-most) signals:
 - 0 for positive
 - 1 for negative

For one byte:

1 = 0000001, -1 = 1000001

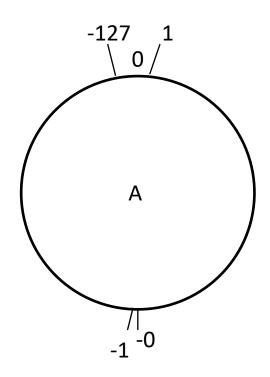
Pros: Negation (negative value of a number) is very simple!



Signed Magnitude

- One bit (usually left-most) signals:
 - 0 for positive
 - 1 for negative
- For one byte:
 - 0 = 00000000
 - What about 1000000?

Major con: Two ways to represent zero.



Two's Complement (signed)

• Borrow nice property from number line:

Only one instance of zero! Implies: -1 and 1 on either side of it.

Two's Complement

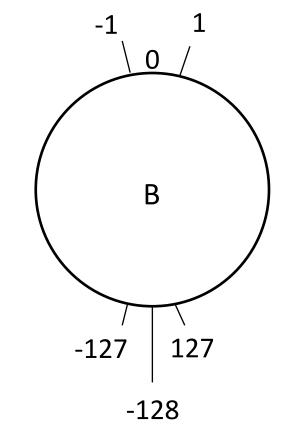
• Borrow nice property from number line:

-1 1

Only one instance of zero! Implies: -1 and 1 on either side of it.

For an 8 bit range we can express 256 unique values:

- 128 non-negative values (0 to 127)
- 128 negative values (-1 to -128)



Two's Complement

- Only one value for zero
- With N bits, can represent the range:
 - -2^{N-1} to 2^{N-1} 1
- <u>Most significant bit still designates positive (0)</u> /negative (1)
- Negating a value is slightly more complicated:
 1 = <u>0</u>0000001, -1 = <u>1</u>1111111

From now on, unless we explicitly say otherwise, we'll assume all integers are stored using two's complement! This is the standard!

Slide 20

Two's Compliment

- Each two's compliment number is now:
- $[-2^{n-1}*d_{n-1}] + [2^{n-2}*d_{n-2}] + ... + [2^{1}*d_1] + [2^{0}*d_0]$

Note the <u>negative sign</u> on just the most significant bit. This is why first bit tells us whether the value is negative vs. positive. If we interpret 11001 as a two's complement number, what is the value in decimal?

Each two's compliment number is now: $[-2^{n-1}*d_{n-1}] + [2^{n-2}*d_{n-2}] + ... + [2^{1}*d_1] + [2^{0}*d_0]$ A. -2

B. -7

C. -9

D. -25

If we interpret 11001 as a two's complement number, what is the value in decimal?

Each two's compliment number is now: $[-2^{n-1*}d_{n-1}] + [2^{n-2*}d_{n-2}] + ... + [2^{1*}d_1] + [2^{0*}d_0]$ A. -2

- B. <u>-7</u> -16 + 8 + 1 = -7
- C. -9

D. -25

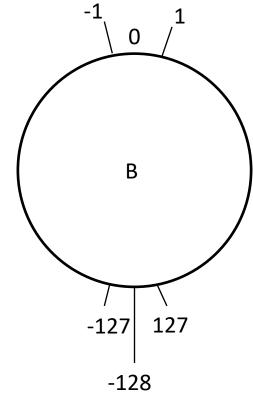
"If we interpret..."

What is the decimal value of 1100?

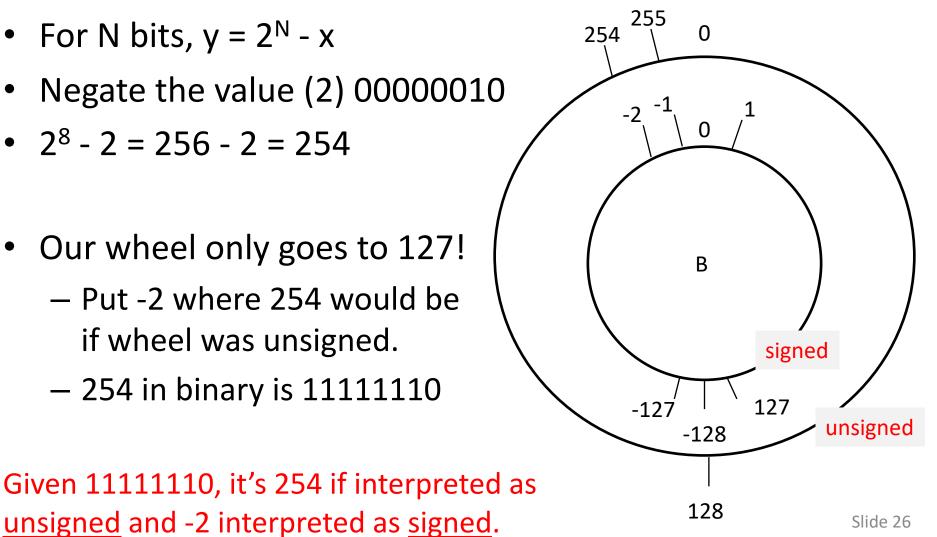
- ...as unsigned, 4-bit value: 12 (%u)
- ...as signed (two's comp), 4-bit value: -4 (%d)
- ...as an 8-bit value: 12. (i.e., **0000** 1100)

Two's Complement Negation

- To negate a value x, we want to find y such that x + y
 = 0.
- For N bits, $y = 2^N x$



Negation Example (8 bits)



Slide 26

Negation Shortcut

- A much easier, faster way to negate:
 - Flip the bits (0's become 1's, 1's become 0's)
 - Add 1
- Negate 00101110 (46)
- Formally:
 - $-2^{8} 46 = 256 46 = 210$
 - 210 in binary is 11010010

46: 00101110
Flip the bits: 11010001
Add 1 + 1
-46: 11010010

Addition & Subtraction

- Addition is the same as for unsigned
 - One exception: different rules for overflow
 - Can use the same hardware for both
- Subtraction is the same operation as addition
 Just need to negate the second operand...
- $6 7 = 6 + (-7) = 6 + (\sim 7 + 1)$

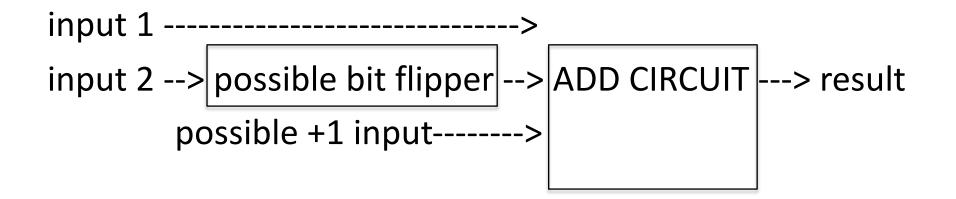
– ~7 is shorthand for "flip the bits of 7"

Subtraction Hardware

Negate and add 1 to second operand:

Can use the same circuit for add and subtract:

6 - 7 == 6 + ~7 + 1

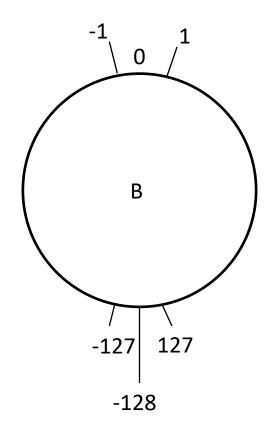


By switching to two's complement, have we solved this value "rolling over" (overflow) problem?

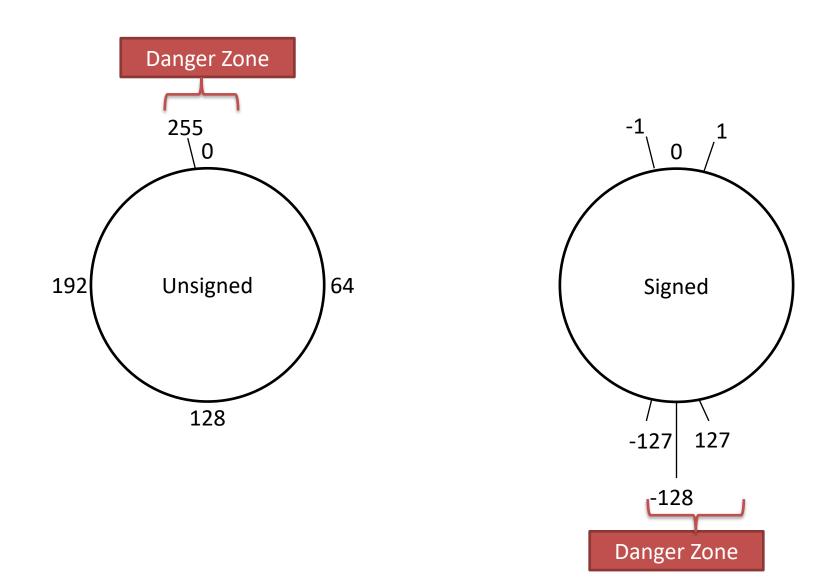
A. Yes, it's gone.

- B. Nope, it's still there.
- C. It's even worse now.

This is an issue we need to be aware of when adding and subtracting!



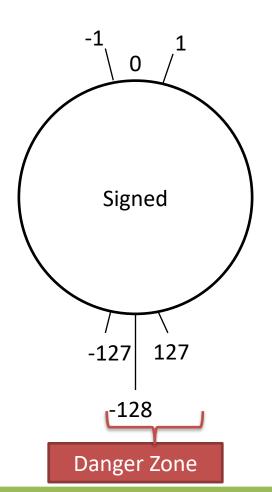
Overflow, Revisited



Slide 31

If we add a positive number and a negative number, will we have overflow? (Assume they are the same # of bits)

- A. Always
- **B.** Sometimes
- C. Never



Slide 32

Signed Overflow

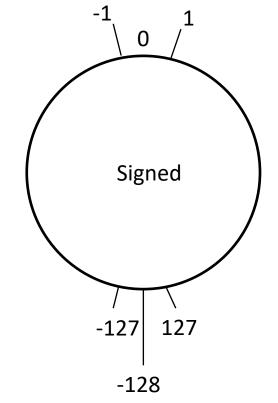
- Overflow: IFF the sign bits of operands are the same, but the sign bit of result is different.
 - Not enough bits to store result!

Signed addition (and subtraction):

2+-1=1	2 + -2 = 0	2 + - 4 = -2
0 010	0 010	0 010
+1111	+1110	+1100
1 0001	1 0000	1110

No chance of overflow here - signs of operands are different!

1



Signed Overflow

- Overflow: IFF the sign bits of operands are the same, but the sign bit of result is different.
 - Not enough bits to store result!

Signed addition (and subtraction):

2+-1=1	2 + -2 = 0	2 + - 4 = -2	2+7= - 7	-2+-7=7
0010	0010	0010	0 010	1 110
+1111	+1110	+1100	+0111	+1001
1 0001	1 0000	1110	1 001	1 0 111

Overflow here! Operand signs are the same, and they don't match output sign!

Overflow Rules

• Signed:

 The sign bits of operands are the same, but the sign bit of result is different.

• Can we formalize unsigned overflow?

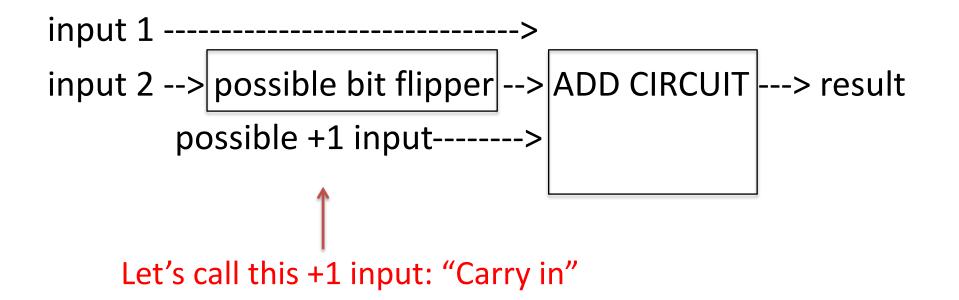
Need to include subtraction too, skipped it before.

Recall Subtraction Hardware

Negate and add 1 to second operand:

Can use the same circuit for add and subtract:

6 - 7 == 6 + ~7 + 1



How many of these <u>unsigned</u> operations have overflowed?

4 bit unsigned values (range 0 to 15):

		carry-	in carry-out
Addition (carry-in = 0)		\checkmark	\checkmark
9 + 11 =	1001 +	1011 + 0	= 1 0100
9 + 6 =	1001 +	0110 + 0	= 0 1111
3 + 6 =	0011 +	0110 + 0	= 0 1001
Subtraction (carry-in = 1)		(-3)	
6 - 3 =	0110 +	1100 + 1	= 1 0011
3 - 6 =	0011 +	1010 + 1 (-6)	= 0 1101
A. 1			
B. 2			
C. 3			

D. 4E. 5

How many of these <u>unsigned</u> operations have overflowed?

Interpret these as 4-bit unsigned values (range 0 to 15):

Addition (carry-in = 0)		carry-in ↓	carry-out ↓						
9 + 11 =	1001 + 1011	+ 0 =	1 0100 = 4						
9 + 6 =	1001 + 0110	+ 0 =	0 1111 = 15						
3 + 6 =	0011 + 0110	+ 0 =	0 1001 = 9						
Subtraction (carry-in = 1) 6 - 3 = 3 - 6 =	(-3) 0110 + 1100 0011 + 1010 (-6)	+ 1 = + 1 =	1 0011 = 3 0 1101 = 13						
A. 1									

- B. 2 Pattern?
- C. 3
- D. 4
- E. 5

Overflow Rule Summary

- Signed overflow:
 - The sign bits of operands are the same, but the sign bit of result is different.
- Unsigned: overflow
 - The carry-in bit is different from the carry-out.

C_{in}	C_{out}	C_{in} XOR C_{out}
0	0	0
0	1	1
1	0	1
1	1	0

So far, all arithmetic on values that were the same size. What if they're different?

• When combining signed values of different sizes, expand the smaller to equivalent larger size:

char y=2, x=-13;	
short $z = 10;$	
z = z + y;	z = z + x;
000000000001010	000000000000101
+ 0000010	+ 1 1110011
000000000000000000000000000000000000000	1111111 11110011

Fill in high-order bits with sign-bit value to get same numeric value in larger number of bytes.

Let's verify that this works

4-bit signed value, sign extend to 8-bits, is it the same value?

0111 ---> 0000 0111 obviously still 7

1010 ----> 1111 1010 is this still -6?

-128 + 64 + 32 + 16 + 8 + 0 + 2 + 0 = -6 yes!

Operations on Bits

- For these, doesn't matter how the bits are interpreted (signed vs. unsigned)
- Bit-wise operators (AND, OR, NOT, XOR)
- Bit shifting

Bit-wise Operators

bit operands, bit result (interpret as you please)
 & (AND) | (OR) ~(NOT) ^(XOR)

A	В	Α &	xΒ	А	E	3 ~A	Α ^	B
0	0	()		0	1	0	
0	1	()		1	1	1	
1	0	()		1	0	1	
1	1	-	L		1	0	0	
01010)101	01	L101010)		10101010	~1(0101111
00100	001 8	& 1()111011		^	01101001	0	1010000
01110	0101	0()101010)		11000011		

More Operations on Bits

• Bit-shift operators: << left shift, >> right shift

01010101 << 2 is 01010100 2 high-order bits shifted out 2 low-order bits filled with 0 01101010 << 4 is 10100000 01010101 >> 2 is 00010101 01101010 >> 4 is 00000110 10101100 >> 2 is 00101011 (logical shift) or 11101011 (arithmetic shift)

Arithmetic right shift: fills high-order bits w/sign bitC automatically decides which to use based on type:signed: arithmetic, unsigned: logical

Up Next!

• C programming