
CS 31: Introduction to Computer Systems

03: Binary Arithmetic
January 29

WiCS!

Swarthmore Women in Computer Science

Slide 2

Today

• Binary Arithmetic
– Unsigned addition
– Subtraction

• Representation
– Signed magnitude
– Two’s complement
– Signed overflow

• Bit operations

Slide 3

Reading Quiz

Abstraction

User / Programmer
Wants low complexity

Applications
Specific functionality

Software library
Reusable functionality

Complex devices
Compute & I/O

Operating system
Manage resources

Slide 5

Last Class: Binary Digits: (BITS)

Representation: 1 x 27 + 0 x 26 ….. + 1 x 23 + 1 x 22 + 1 x 21 +
1 x 20

10001111 = 143

10001111Most significant bit Least significant bit
7 6 5 4 3 2 1 0

Slide 6

one byte is the smallest addressable unit - contains 8 bits

Last Class: Unsigned Integers

• Suppose we had one byte
– Can represent 28 (256) values
– If unsigned (strictly non-negative): 0 – 255

What if we add one more?

Slide 7

C types and their (typical!) sizes
• 1 byte (8 bits = 28 unique values):

– char, unsigned char

• 2 bytes (16 bits = 216 unique values):

– short, unsigned short

• 4 bytes (32 bits = 232 unique values):

– int, unsigned int, float

• 8 bytes (64 bits = 264 unique values):

– long long, unsigned long long, double

• 4 or 8 bytes: long, unsigned long

unsigned long v1;

short s1;

long long ll;

Slide 8

Last Class: Unsigned Integers

• Suppose we had one byte
– Can represent 28 (256) values

– If unsigned (strictly non-negative): 0 – 255

252 = 11111100

253 = 11111101

254 = 11111110

255 = 11111111

What if we add one more?

0 255 Larger
Values

Traditional number line:

Addition

Slide 9

Last Class: Unsigned Integers

• Suppose we had one byte
– Can represent 28 (256) values

– If unsigned (strictly non-negative): 0 – 255

252 = 11111100

253 = 11111101

254 = 11111110

255 = 11111111

What if we add one more?

Car odometer “rolls over”.

Any time we are dealing with a
finite storage space we cannot
represent an infinite number of
values!

Slide 10

Last Class: Unsigned Integers
Suppose we had one byte

• Can represent 28 (256) values

• If unsigned (strictly non-negative):

0 – 255

252 = 11111100

253 = 11111101

254 = 11111110

255 = 11111111

What if we add one more?

0

128
(10000000)

64192

255 (11111111)

Addition

Modular arithmetic: Here, all values are modulo 256. Slide 11

Last Class: Unsigned Addition (4-bit)

Addition works like grade school addition:

1
0110 6 1100 12

+ 0100 + 4 + 1010 +10
1010 10 1 0110 6

^carry out

Four bits give us range: 0 - 15

Slide 12

Last Class: Unsigned Addition (4-bit)

• Addition works like grade school addition:

1
0110 6 1100 12

+ 0100 + 4 + 1010 +10
1010 10 1 0110 6

^carry out

Four bits give us range: 0 - 15 Overflow!

Slide 13

Suppose we want to support signed values
(positive and negative) in 8 bits, where should
we put -1 and -127 on the circle? Why?

0

-1

-127 (11111111)
0

-127

-1 (11111111)

A B

C: Put them somewhere else. Slide 14

Suppose we want to support signed values
(positive and negative) in 8 bits, where should
we put -1 and -127 on the circle? Why?

0

-1

-127 (11111111)
0

-127

-1 (11111111)

A: signed
magnitude

B: Two’s
complement

C: Put them somewhere else. Slide 15

Signed Magnitude

• One bit (usually left-most) signals:
– 0 for positive
– 1 for negative

For one byte:
1 = 00000001, -1 = 10000001

Pros: Negation (negative value of a
number) is very simple!

0

-1

-127

A

1

Slide 16

Signed Magnitude

• One bit (usually left-most) signals:
– 0 for positive
– 1 for negative

For one byte:
0 = 00000000
What about 10000000?

Major con: Two ways to represent zero.

0

-1

-127 1

A

-0

Slide 17

Two’s Complement (signed)

• Borrow nice property from number line:

0
-1 1

Only one instance of zero!
Implies: -1 and 1 on either side of it.

Slide 18

Two’s Complement

• Borrow nice property from number line:

0

-1 1

Only one instance of zero!
Implies: -1 and 1 on either side of it.

-128
Slide 19

For an 8 bit range we can express 256
unique values:
• 128 non-negative values (0 to 127)
• 128 negative values (-1 to -128)

0
-1 1

-127 127

B

Two’s Complement

• Only one value for zero

• With N bits, can represent the range:
§ -2N-1 to 2N-1 – 1

• Most significant bit still designates positive (0)
/negative (1)

• Negating a value is slightly more complicated:

1 = 00000001, -1 = 11111111

From now on, unless we explicitly say otherwise, we’ll assume all integers
are stored using two’s complement! This is the standard! Slide 20

Two’s Compliment

• Each two’s compliment number is now:
[-2n-1*dn-1] + [2n-2*dn-2] +…+ [21*d1] + [20*d0]

Note the negative sign on just the most significant bit. This is
why first bit tells us whether the value is negative vs. positive.

Slide 21

If we interpret 11001 as a two’s complement
number, what is the value in decimal?

Each two’s compliment number is now:
[-2n-1*dn-1] + [2n-2*dn-2] +…+ [21*d1] + [20*d0]

A. -2

B. -7

C. -9

D. -25
Slide 22

If we interpret 11001 as a two’s complement
number, what is the value in decimal?

Each two’s compliment number is now:
[-2n-1*dn-1] + [2n-2*dn-2] +…+ [21*d1] + [20*d0]

A. -2

B. -7

C. -9

D. -25
Slide 23

-16 + 8 + 1 = -7

“If we interpret…”

What is the decimal value of 1100?

• …as unsigned, 4-bit value: 12 (%u)
• …as signed (two’s comp), 4-bit value: -4 (%d)

• …as an 8-bit value: 12. (i.e., 0000 1100)

Slide 24

Two’s Complement Negation

• To negate a value x, we want to find y such that x + y
= 0.

• For N bits, y = 2N - x
0

-127

-1

B

1

127

-128

Slide 25

unsigned

128

254
255 0

Negation Example (8 bits)

• For N bits, y = 2N - x
• Negate the value (2) 00000010
• 28 - 2 = 256 - 2 = 254

• Our wheel only goes to 127!
– Put -2 where 254 would be

if wheel was unsigned.
– 254 in binary is 11111110

0

-127

-1

B

1

127
-128

Given 11111110, it’s 254 if interpreted as
unsigned and -2 interpreted as signed. Slide 26

-2

signed

Negation Shortcut

• A much easier, faster way to negate:
– Flip the bits (0’s become 1’s, 1’s become 0’s)
– Add 1

• Negate 00101110 (46)

• Formally:
– 28 - 46 = 256 - 46 = 210
– 210 in binary is 11010010

Slide 27

46: 00101110
Flip the bits: 11010001
Add 1 + 1
-46: 11010010

Addition & Subtraction

• Addition is the same as for unsigned
– One exception: different rules for overflow
– Can use the same hardware for both

• Subtraction is the same operation as addition
– Just need to negate the second operand…

• 6 - 7 = 6 + (-7) = 6 + (~7 + 1)
– ~7 is shorthand for “flip the bits of 7”

Slide 28

Subtraction Hardware

Negate and add 1 to second operand:
Can use the same circuit for add and subtract:
6 - 7 == 6 + ~7 + 1

input 1 ------------------------------->
input 2 --> possible bit flipper --> ADD CIRCUIT ---> result

possible +1 input-------->

Slide 29

By switching to two’s complement, have
we solved this value “rolling over”
(overflow) problem?

A. Yes, it’s gone.

B. Nope, it’s still there.

C. It’s even worse now.

0

-127

-1

B

1

127

-128This is an issue we need to be aware of
when adding and subtracting!

Slide 30

Overflow, Revisited

0

-127

-1

Signed

1

127

-128

0

128

64192

255

Unsigned

Danger Zone

Danger Zone

Slide 31

If we add a positive number and a negative
number, will we have overflow? (Assume they
are the same # of bits)

A. Always

B. Sometimes

C. Never

0

-127

-1

Signed

1

127

-128

Danger Zone Slide 32

Signed Overflow

– Overflow: IFF the sign bits of operands are the same, but
the sign bit of result is different.
• Not enough bits to store result!

Signed addition (and subtraction):
2+-1=1 2+-2=0 2+-4=-2 2+7=-7 -2+-7=7
0010 0010 0010 0010 1110

+1111 +1110 +1100 +0111 +1001
1 0001 1 0000 1110 1001 1 0111

0

-127

-1

Signed

1

127

-128
No chance of overflow here - signs
of operands are different! Slide 33

Signed Overflow

– Overflow: IFF the sign bits of operands are the same, but
the sign bit of result is different.
• Not enough bits to store result!

Signed addition (and subtraction):
2+-1=1 2+-2=0 2+-4=-2 2+7=-7 -2+-7=7
0010 0010 0010 0010 1110

+1111 +1110 +1100 +0111 +1001
1 0001 1 0000 1110 1001 1 0111

Overflow here! Operand signs are the
same, and they don’t match output sign!

Slide 34

Overflow Rules

• Signed:
– The sign bits of operands are the same, but the sign

bit of result is different.

• Can we formalize unsigned overflow?
– Need to include subtraction too, skipped it before.

Slide 35

Recall Subtraction Hardware

Negate and add 1 to second operand:
Can use the same circuit for add and subtract:
6 - 7 == 6 + ~7 + 1

input 1 ------------------------------->
input 2 --> possible bit flipper --> ADD CIRCUIT ---> result

possible +1 input-------->

Let’s call this +1 input: “Carry in”

Slide 36

How many of these unsigned operations have
overflowed?
4 bit unsigned values (range 0 to 15):

carry-in carry-out
Addition (carry-in = 0)

9 + 11 = 1001 + 1011 + 0 = 1 0100
9 + 6 = 1001 + 0110 + 0 = 0 1111
3 + 6 = 0011 + 0110 + 0 = 0 1001

Subtraction (carry-in = 1)

6 - 3 = 0110 + 1100 + 1 = 1 0011
3 - 6 = 0011 + 1010 + 1 = 0 1101

A. 1
B. 2
C. 3
D. 4
E. 5

(-3)

(-6)

Slide 37

How many of these unsigned operations have
overflowed?
Interpret these as 4-bit unsigned values (range 0 to 15):

carry-in carry-out
Addition (carry-in = 0)

9 + 11 = 1001 + 1011 + 0 = 1 0100 = 4
9 + 6 = 1001 + 0110 + 0 = 0 1111 = 15
3 + 6 = 0011 + 0110 + 0 = 0 1001 = 9

Subtraction (carry-in = 1)

6 - 3 = 0110 + 1100 + 1 = 1 0011 = 3
3 - 6 = 0011 + 1010 + 1 = 0 1101 = 13

A. 1
B. 2
C. 3
D. 4
E. 5

Pattern?

(-3)

(-6)

Slide 38

Overflow Rule Summary

• Signed overflow:
– The sign bits of operands are the same, but the sign bit of

result is different.

• Unsigned: overflow
– The carry-in bit is different from the carry-out.

Cin Cout Cin XOR Cout
0 0 0
0 1 1
1 0 1
1 1 0

So far, all arithmetic on values that were the same size. What if they’re different?

Slide 39

Sign Extension
• When combining signed values of different sizes,

expand the smaller to equivalent larger size:

char y=2, x=-13;
short z = 10;

z = z + y; z = z + x;

0000000000001010 0000000000000101
+ 00000010 + 11110011
0000000000000010 1111111111110011

Fill in high-order bits with sign-bit value to get same
numeric value in larger number of bytes.

Slide 40

Let’s verify that this works

4-bit signed value, sign extend to 8-bits, is it the same
value?

0111 ---> 0000 0111 obviously still 7
1010 ----> 1111 1010 is this still -6?

-128 + 64 + 32 + 16 + 8 + 0 + 2 + 0 = -6 yes!

Slide 41

Operations on Bits

• For these, doesn’t matter how the bits are
interpreted (signed vs. unsigned)

• Bit-wise operators (AND, OR, NOT, XOR)

• Bit shifting

Slide 42

Bit-wise Operators
• bit operands, bit result (interpret as you please)

& (AND) | (OR) ~(NOT) ^(XOR)

A B A & B A | B ~A A ^ B
0 0 0 0 1 0
0 1 0 1 1 1
1 0 0 1 0 1
1 1 1 1 0 0

01010101 01101010 10101010 ~10101111
| 00100001 & 10111011 ^ 01101001 01010000
01110101 00101010 11000011

Slide 43

More Operations on Bits
• Bit-shift operators: << left shift, >> right shift

01010101 << 2 is 01010100
2 high-order bits shifted out
2 low-order bits filled with 0

01101010 << 4 is 10100000
01010101 >> 2 is 00010101
01101010 >> 4 is 00000110

10101100 >> 2 is 00101011 (logical shift)
or 11101011 (arithmetic shift)

Arithmetic right shift: fills high-order bits w/sign bit
C automatically decides which to use based on type:

signed: arithmetic, unsigned: logical
Slide 44

Up Next!

• C programming

