CS 31: Introduction to Computer Systems

02: Binary Representation
 January 24

Announcements

- Sign up for Piazza!
- Let me know about exam conflicts!
- Register your clicker!

Today

- Number systems and conversion
- Decimal
- Binary
- Hexadecimal
- Data types and storage:
- Data sizes
- Representation

Reading Quiz

- Note the red border!
- 1 minute per question
- No talking, no laptops, phones during the quiz.

Abstraction

Today

- Number systems and conversion
- Data types and storage:
- Sizes
- Representation
- Signedness

Data Storage

- Lots of technologies out there:

Magnetic (hard drive, floppy disk)

Optical (CD / DVD / Blu-Ray)

Electronic: RAM, registers

Electronic Data Storage

- Focus on electronic data storage
- Easy to differentiate two states
- Voltage present
- Voltage absent

We'll see (and build) digital circuits soon!

Binary Digits (Bits)

Bit: a 0 or 1 value (binary)

- Hardware represents as two different voltages
- 1: the presence of voltage (high voltage)
- 0 : the absence of voltage (low voltage)
- Transistors: On or Off
- Optical: Light or No light
- Magnetic: Positive or Negative

Bits and Bytes

- Bit: a 0 or 1 value (binary)
- HW represents as two different voltages
- 1: the presence of voltage (high voltage)
- 0: the absence of voltage (low voltage)
- Byte: 8 bits, the smallest addressable unit

Memory: 010101011010101000001111

- Other names:
- 4 bits: Nibble
- "Word": Depends on system, often 4 bytes (32 bits)

Files

Sequence of bytes... nothing more, nothing less

Binary Digits: (BITs)

- One bit: two values (0 or 1)
- Two bits: four values (00, 01, 10, or 11)
- Three bits: eight values (000, 001, ..., 110, 111)

Discussion question

- Green border
- Recall the sequence
- Answer individually (room quiet)
- Discuss in your group (room loud)
- Answer as a group
- Class-wide discussion

How many unique values can we represent

 with 9 bits? Why?- One bit: two values (0 or 1)
- Two bits: four values (00, 01,10 , or 11)
- Three bits: eight values $(000,001$, ..., 110,111$)$
A. 18
B. 81
C. 256
D. 512
E. Some other number of values.

How many values?

1 bit:

2 bits:

3 bits:

Let's start with what we know

- Digits 0-9
- Positional numbering
- Digits are composed to make larger numbers
- Known as the Base 10 representation

Decimal number system (Base 10)

Sequence of digits in range [0, 9]

64025
Digit \#0: 1's place (least significant digit)
Digit \#1: 10's place
!
And so on

What is the significance of the $\mathrm{N}^{\text {th }}$ digit number in this number system? What does it contribute to the overall value?

64025

Digit \#4: d_{4} Digit \#0: d_{0}
A. $d_{N} * 1$
B. $\mathrm{d}_{\mathrm{N}}{ }^{*} 10$
C. $d_{N} * 10^{N}$
D. $d_{N} * N^{10}$
E. $d_{N} * 10^{d N}$

What is the significance of the $\mathrm{N}^{\text {th }}$ digit number in this number system? What does it contribute to the overall value?

64025

| |
Digit \#4: d_{4} Digit \#0: d_{0}
A. $d_{N} * 1$
B. $\mathrm{d}_{\mathrm{N}}{ }^{*} 10$
C. $\underline{\mathrm{d}}_{\mathrm{N}} * 10^{\mathrm{N}}$
D. $d_{N} * N^{10}$

Consider the meaning of d_{3} (the value 4) above. What is it contributing to the total value?
E. $d_{N} * 10^{d N}$

Decimal: Base 10

Favored by humans...

- A number, written as the sequence of digits $\mathrm{d}_{\mathrm{n}} \mathrm{d}_{\mathrm{n}-1} \ldots \mathrm{~d}_{2} \mathrm{~d}_{1} \mathrm{~d}_{0}$
- where d is in $\{0,1,2,3,4,5,6,7,8,9\}$,
- represents the value:
$\left[d_{n} * 10^{n}\right]+\left[d_{n-1} * 10^{n-1}\right]+\ldots+\left[d_{2} * 10^{2}\right]+\left[d_{1} * 10^{1}\right]+\left[d_{0} * 10^{0}\right]$
$64025=$
$6 * 10^{4}+4 * 10^{3}+0 * 10^{2}+2 * 10^{1}+5 * 10^{0}$
$60000+4000+0+20+5$

Generalizing

- The meaning of a digit depends on its position in a number.
- A number, written as the sequence of digits $d_{n} d_{n-1} \ldots d_{2} d_{1} d_{0}$ in base b represents the value:
$\left[d_{n} * b^{n}\right]+\left[d_{n-1} * b^{n-1}\right]+\ldots+\left[d_{2} * b^{2}\right]+\left[d_{1} * b^{1}\right]+\left[d_{0} * b^{0}\right]$

Binary: Base 2

- Used by computers to store digital values.
- Indicated by prefixing number with 0b
- A number, written as the sequence of digits $d_{n} d_{n-}$ ${ }_{1} \ldots d_{2} d_{1} d_{0}$ where d is in $\{0,1\}$, represents the value:

$$
\left[d_{n} * 2^{n}\right]+\left[d_{n-1} * 2^{n-1}\right]+\ldots+\left[d_{2} * 2^{2}\right]+\left[d_{1} * 2^{1}\right]+\left[d_{0} * 2^{0}\right]
$$

What is the value of Ob110101 in decimal?

- A number, written as the sequence of digits $d_{n} d_{n-1} \ldots d_{2} d_{1} d_{0}$ where d is in $\{0,1\}$, represents the value:

$$
\left[d_{n} * 2^{n}\right]+\left[d_{n-1} * 2^{n-1}\right]+\ldots+\left[d_{2} * 2^{2}\right]+\left[d_{1} * 2^{1}\right]+\left[d_{0} * 2^{0}\right]
$$

A. 26
B. 53
C. 61
D. 106
E. 128

What is the value of Ob110101 in decimal?

- A number, written as the sequence of digits $d_{n} d_{n-1} \ldots d_{2} d_{1} d_{0}$ where d is in $\{0,1\}$, represents the value:

$$
\left[d_{n} * 2^{n}\right]+\left[d_{n-1} * 2^{n-1}\right]+\ldots+\left[d_{2} * 2^{2}\right]+\left[d_{1} * 2^{1}\right]+\left[d_{0} * 2^{0}\right]
$$

A. 26
B. 53
C. 61
D. 106
E. 128

Binary Digits: (BITS)

Most significant bit $\longrightarrow \underline{10001111} \begin{aligned} & 7653210 \\ & 1001\end{aligned}$ Least significant bit
Representation: $1 \times 2^{7}+0 \times 2^{6} \ldots . .+1 \times 2^{3}+1 \times 2^{2}+1 \times 2^{1}+$ 1×2^{0}
$10001111=143$

Other (common) number systems.

- Base 10: decimal
- Base 2: binary
- Base 16: hexadecimal
- Base 8: octal
- Base 64

Hexadecimal: Base 16

- Indicated by prefixing number with 0x
- A number, written as the sequence of digits
$d_{n} d_{n-1} \ldots d_{2} d_{1} d_{0}$
where d is in $\{0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F\}$,
represents the value:

$$
\begin{aligned}
& {\left[\mathrm{d}_{\mathrm{n}} * 16^{\mathrm{n}}\right]+\left[\mathrm{d}_{\mathrm{n}-1} * 16^{\mathrm{n}-1}\right]+\ldots+} \\
& \quad\left[\mathrm{d}_{2} * 16^{2}\right]+\left[\mathrm{d}_{1} * 16^{1}\right]+\left[\mathrm{d}_{0} * 16^{0}\right]
\end{aligned}
$$

What is the value of $0 \times 1 \mathrm{~B} 7$ in decimal?

A. 397
B. 409
C. 419
D. 437
E. 439
$\left[d_{n} * 16^{n}\right]+\left[d_{n-1} * 16^{n-1}\right]+\ldots+$
$\left[d_{2} * 16^{2}\right]+\left[d_{1} * 16^{1}\right]+\left[d_{0} * 16^{0}\right]$
$16^{2}=256$

DEC	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$H E X$	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F

What is the value of $0 \times 1 \mathrm{~B} 7$ in decimal?

A. 397
B. 409
C. 419
$\left[d_{n} * 16^{n}\right]+\left[d_{n-1} * 16^{n-1}\right]+\ldots+$
$\left[\mathrm{d}_{2} * 16^{2}\right]+\left[\mathrm{d}_{1} * 16^{1}\right]+\left[\mathrm{d}_{0} * 16^{0}\right]$
D. 437
E. $\underline{439}$

$$
\begin{aligned}
& 16^{2}=256 \\
& 1^{*} 16^{2}+11^{*} 16^{1}+7 * 16^{0}=439
\end{aligned}
$$

DEC	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$H E X$	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F

Important Point...

- You can represent the same value in a variety of number systems / bases.
- It's all stored as binary in the computer.
- Presence/absence of voltage.

Other (common) number systems.

- Base 2: How data is stored in hardware.
- Base 10: Preferred by people.
- Base 8: Used to represent file permissions.
- Base 16: Convenient for representing memory addresses.
- Base 64: Commonly used on the Internet, (e.g. email attachments).

Different ways of visualizing the same information!

Hexadecimal: Base 16

- Fewer digits to represent same value
- Same amount of information!
- Like binary, base is power of 2
- Each digit is a "nibble", or half a byte.

Each hex digit is a "nibble"

- One hex digit: 16 possible values (0-9, A-F)
- $16=2^{4}$, so each hex digit has exactly four bits worth of information.
- We can map each hex digit to a four-bit binary value. (helps for converting between bases)

Each hex digit is a "nibble"

Example value: 0x1B7

Four-bit value: 1
Four-bit value: B (decimal 11)
Four-bit value: 7
In binary:
0001
1011
0111
1
B
7

Hexadecimal Representation

- Bit patterns as base-16 numbers
- Convert binary to hexadecimal: by splitting into groups of 4 bits each.
Example:

$$
1111001010110110110011_{2}=\text { 3CADB3 }_{16}
$$

Bin	11	1100	1010	1101	1011	0011
Hex	3	C	A	D	B	3

Converting Decimal -> Binary

- Two methods:
- division by two remainder
- powers of two and subtraction

Method 1: decimal value D, binary result b (b_{i} is ith digit):
$i=0$
while ($\mathrm{D}>0$)
if D is odd
Example: Converting 105
set b_{i} to 1
if D is even
set b_{i} to 0
i++
$D=D / 2$
idea:
D $=\mathrm{b}$
example: D $=105$
$\mathrm{a} 0=1$

Method 1: decimal value D, binary result b (b_{i} is ith digit):

$$
i=0
$$

$$
\text { while (} \mathrm{D}>0 \text {) }
$$

if D is odd
Example: Converting 105
set b_{i} to 1
if D is even
set b_{i} to 0
i++
$D=D / 2$
$\begin{array}{ll}\text { idea: } & D=b \\ & D / 2=b / 2\end{array}$
example: $D=105$
$D=52$

$$
\begin{aligned}
& \mathrm{a} 0=1 \\
& \mathrm{a} 1=0
\end{aligned}
$$

Method 1: decimal value D, binary result b (b_{i} is ith digit):
$i=0$
while $(D>0)$
if D is odd
set b_{i} to 1
if D is even
set b_{i} to 0
i++
$D=D / 2$
idea:

$\mathrm{D}=\mathrm{b}$	example: $\mathrm{D}=105$	$\mathrm{a} 0=1$
$\mathrm{D} / 2=\mathrm{b} / 2$	D $=52$	$\mathrm{a} 1=0$
$\mathrm{D} / 2=\mathrm{b} / 2$	D $=26$	$\mathrm{a} 2=0$
$\mathrm{D} / 2=\mathrm{b} / 2$	D $=13$	a3 $=1$
$\mathrm{D} / 2=\mathrm{b} / 2$	$D=6$	$\mathrm{a} 4=0$
$\mathrm{D} / 2=\mathrm{b} / 2$	$D=3$	$\mathrm{a} 5=1$
$0=0$	D $=1$	$\mathrm{a} 6=1$
	$\mathrm{D}=0$	$\mathrm{a} 7=0$
	105	$\xrightarrow{01101001}$

$D=52$
D $=26$
a2 $=0$
$D=13$
a4 $=0$
D $=3$
-1
= 1
a $=1$
$a 7=0$
$105=01101001$

Method 2

- $2^{0}=1, \quad 2^{1}=2, \quad 2^{2}=4, \quad 2^{3}=8, \quad 2^{4}=16$, $2^{5}=32, \quad 2^{6}=64, \quad 2^{7}=128$
- To convert 105:
- Find largest power of two that's less than 105 (64)
- Subtract $64(105-64=41)$, put a 1 in d_{6}
- Subtract 32 ($41-32=9)$, put a 1 in d_{5}
- Skip 16, it's larger than 9, put a 0 in d_{4}
- Subtract $8(9-8=\underline{1})$, put a 1 in d_{3}
- Skip 4 and 2 , put a 0 in d_{2} and d_{1}
- Subtract 1 ($1-1=\underline{0}$), put a 1 in d_{0} (Done)

$$
\frac{1}{d_{6}} \frac{1}{d_{5}} \frac{0}{d_{4}} \frac{1}{d_{3}} \frac{0}{d_{2}} \frac{0}{d_{1}} \frac{1}{d_{0}}
$$

What is the value of 357 in binary?

A. 101100011
B. 101100101
C. 101101001
D. 101110101
E. 110100101

$$
\begin{array}{llll}
2^{0}=1, & 2^{1}=2, & 2^{2}=4, & 2^{3}=8, \\
2^{4}=16, & 2^{5}=32, & 2^{6}=64, & 2^{7}=128, \\
2^{8}=256 & & &
\end{array}
$$

What is the value of 357 in binary?

A. 101100011
B. 101100101
C. 101101001

$$
\begin{array}{r}
357-256=101 \\
101-64=37 \\
37-32=5 \\
5-4=1
\end{array}
$$

D. 101110101
E. 110100101
$\begin{array}{lllllllll}\frac{1}{d_{8}} & \frac{0}{d_{7}} & \frac{1}{d_{6}} & \frac{1}{d_{5}} & \frac{0}{d_{4}} & \frac{0}{d_{3}} & \frac{1}{d_{2}} & \frac{0}{d_{1}} & \frac{1}{d_{0}}\end{array}$
$2^{0}=1$,
$2^{1}=2$,
$2^{2}=4$,
$2^{3}=8$,
$2^{4}=16$,
$2^{5}=32, \quad 2^{6}=64$,
$2^{7}=128$,
$2^{8}=256$

So far: Unsigned Integers

- With N bits, can represent values: 0 to $2^{\mathrm{n}}-1$
- We can always add 0's to the front of a number without changing it:
$10110=\underline{010110}=\underline{00010110}=\underline{0000010110}$
- 1 byte: char, unsigned char
- 2 bytes: short, unsigned short
- 4 bytes: int, unsigned int, float
- 8 bytes: long long, unsigned long long, double
- 4 or 8 bytes: long, unsigned long

Representing Signed Values

- One option (used for floats, NOT integers)
- Let the first bit represent the sign
- 0 means positive
- 1 means negative
- For example:

$$
\begin{array}{lll}
-\underline{0} 101 & -> & 5 \\
-\underline{1101} & \text {-> } & -5
\end{array}
$$

- Problem with this scheme?

Fractional binary numbers

How do we represent fractions in binary?

Floating Point Representation

1 bit for sign sign | exponent | fraction |
8 bits for exponent
23 bits for precision

$$
\text { value }=(-1)^{\text {sign }} * 1 . \text { fraction } * 2^{\text {(exponent-127) }}
$$

let's just plug in some values and try it out

$$
\begin{aligned}
0 \times 40 \mathrm{ac} 49 \mathrm{ba}: & 010000001 \quad 01011000100100110111010 \\
\text { sign } & =0 \exp =129 \quad \text { fraction }=2902458 \\
& =1 * 1.2902458 * 2^{2}=5.16098
\end{aligned}
$$

Idon't expect you to memorize this

Up Next: Binary Arithmetic

