
CS 31: Intro to Systems C Programming
L04: Data representation

Vasanta Chaganti & Kevin Webb
Swarthmore College
September 14, 2023

Announcements

• HW1 is due now.

• Lab 1 is due Today (Thursday, 11.59 PM)

• Clickers will count for credit from this week

Reading Quiz

• Note the red border!

• 1 minute per question

• No talking, no laptops, phones during the quiz

Check your frequency:

• Iclicker2: frequency AA
• Iclicker+: green light next to selection

For new devices this should be okay,
For used you may need to reset frequency

Reset:
1. hold down power button until

blue light flashes (2secs)
2. Press the frequency code: AA

vote status light will indicate success

Agenda

Data representation
• number systems + conversion
• data types, storage
• sizes, representation
• signedness

Arrays and Strings

C’s support for collections of values

– Array buckets store a single type of value

Array Characteristics

int january_temps[31];

• Indices start at 0!
• The index refers to an offset from the start of the array
• Add temperature reading for January 5th?

[0] [1] [2] [3] [4] [29][30]
…

Array bucket indices.

Characters and Strings

• A character (type char) is numerical value that holds one letter.
• A string is a memory block containing characters, one after another,

with a null terminator (numerical 0) at the end.
 char name[20] = “Pizza”; //C appends the null terminator for you in this declaration!

P i z z a
[0] [1] [2] [3] [4]

\0
[5]

…
[6] [7] [18][19]

• What is the minimum size of a char array that we must declare to hold the string “Swarthmore” ?

char school[11] = “Swarthmore”;

What will this print?
int func(int a, int y, int my_array[]) {
 y = 1;
 my_array[a] = 0;
 my_array[y] = 8;
 return y;
}

int main() {
 int x;
 int values[2];

 x = 0;
 values[0] = 5;
 values[1] = 10;

 x = func(x, x, values);

 printf(“%d, %d, %d”, x, values[0], values[1]);
}

A. 0, 5, 8
B. 0, 5, 10
C. 1, 0, 8
D. 1, 5, 8
E. 1, 5, 10

Hint: What does the name of an
array mean to the compiler?

What will this print?
int func(int a, int y, int my_array[]) {
 y = 1;
 my_array[a] = 0;
 my_array[y] = 8;
 return y;
}

int main() {
 int x;
 int values[2];

 x = 0;
 values[0] = 5;
 values[1] = 10;

 x = func(x, x, values);

 printf(“%d, %d, %d”, x, values[0], values[1]);
}

(Mem address)

Stack

main: x:

values:

0

105

What will this print?
int func(int a, int y, int my_array[]) {
 y = 1;
 my_array[a] = 0;
 my_array[y] = 8;
 return y;
}

int main() {
 int x;
 int values[2];

 x = 0;
 values[0] = 5;
 values[1] = 10;

 x = func(x, x, values);

 printf(“%d, %d, %d”, x, values[0], values[1]);
}

(Mem address)

Stack

main: x:

values:

0

105

0a:

my_array:
(Mem address)

0y:
func:

What will this print?
int func(int a, int y, int my_array[]) {
 y = 1;
 my_array[a] = 0;
 my_array[y] = 8;
 return y;
}

int main() {
 int x;
 int values[2];

 x = 0;
 values[0] = 5;
 values[1] = 10;

 x = func(x, x, values);

 printf(“%d, %d, %d”, x, values[0], values[1]);
}

(Mem address)

Stack

main: x:

values:

0

105

0a:

my_array:
(Mem address)

1y:
func:

What will this print?
int func(int a, int y, int my_array[]) {
 y = 1;
 my_array[a] = 0;
 my_array[y] = 8;
 return y;
}

int main() {
 int x;
 int values[2];

 x = 0;
 values[0] = 5;
 values[1] = 10;

 x = func(x, x, values);

 printf(“%d, %d, %d”, x, values[0], values[1]);
}

(Mem address)

Stack

main: x:

values:

0

80

func:
0a:

my_array:
(Mem address)

1y:

What will this print?
int func(int a, int y, int my_array[]) {
 y = 1;
 my_array[a] = 0;
 my_array[y] = 8;
 return y;
}

int main() {
 int x;
 int values[2];

 x = 0;
 values[0] = 5;
 values[1] = 10;

 x = func(x, x, values);

 printf(“%d, %d, %d”, x, values[0], values[1]);
}

(Mem address)

Stack

main: x:

values:

0

80

structs

• Treat a collection of values as a single type:
– C is not an object oriented language, no classes
– A struct is similar to the data part of a class

• Rules:
1. Define a new struct type outside of any function
2. Declare variables of the new struct type
3. Use dot notation to access the field values of a struct variable

Struct Example
Suppose we want to represent a student type.

struct student {
 char name[20];
 int grad_year;
 float gpa;
};
// Variable bob is of type struct student
struct student bob;
// Set name (string) with strcpy()
strcpy(bob.name, “Robert Paulson”);
bob.grad_year = 2019;
bob.gpa = 3.1;

printf(“Name: %s, year: %d, GPA: %f”, bob.name, bob.grad_year, bob.gpa);

Arrays of Structs

struct student {

 char name[20];

 int grad_year;

 float gpa;

};

//create an array of struct students!

struct student classroom[50];

strcpy(classroom[0].name, “Alice”);

classroom[0].grad_year = 2023

classroom[0].gpa = 4.0;

// With a loop, create an army of Alice clones!

int i;

for (i = 0; i < 50; i++) {

 strcpy(classroom[i].name, “Alice”);
 classroom[i].grad_year = 2023;

 classroom[i].gpa = 4.0;

}

Arrays of Structs

struct student classroom[3];

strcpy(classroom[0].name, “Alice”);
classroom[0].grad_year = 2021;
classroom[0].gpa = 4.0;

strcpy(classroom[1].name, “Bob”);
classroom[1].grad_year = 2022;
classroom[1].gpa = 3.1

strcpy(classroom[2].name, “Cat”);
classroom[2].grad_year = 2023;
classroom[2].gpa = 3.4

Array of Structs: Layout in Memory

‘A’ ‘l’ ‘i’ ‘c’ ‘e’ ‘\0’ … ‘B’ ‘o’ ‘b’ ‘\0’ … ‘C’ ‘a’ ‘t’ ‘\0
’

…

2021 2022 2023

4.0 3.1 3.4

classroom: array of structs

[0] [1] [2]

Q1 Discussion Block 2 of Worksheet

Structs
#include <stdio.h>

struct personT {
char name[32];
int age;
float heart_rate;

};

int main(void) {
struct personT p1;
struct personT people[40];
return 0;

}

expression type

p1

p1.name

p1.heart_rate

people

people[0]

people[0].name

people[0].name[3]

Abstraction

User / Programmer
Wants low complexity

Applications
Specific functionality

Software library
Reusable functionality

Complex devices
Compute & I/O

Operating system
Manage resources

Data Storage

• Lots of technologies out there:
– Magnetic (hard drive, floppy disk)
– Optical (CD / DVD / Blu-Ray)
– Electronic (RAM, registers, …)

• Focus on electronic for now
– We’ll see (and build) digital circuits soon

• Relatively easy to differentiate two states
– Voltage present
– Voltage absent

Bits and Bytes

• Bit: a 0 or 1 value (binary)
– HW represents as two different voltages

• 1: the presence of voltage (high voltage)
• 0: the absence of voltage (low voltage)

• Byte: 8 bits, the smallest addressable unit
Memory: 01010101 10101010 00001111 …
(address) [0] [1] [2] …

• Other names:
– 4 bits: Nibble
– “Word”: Depends on system, often 4 bytes

Files

Sequence of bytes… nothing more, nothing less

Binary Digits (BITs)

• One bit: two values (0 or 1)
• Two bits: four values (00, 01, 10, or 11)
• Three bits: eight values (000, 001, …, 110, 111)

A. 18
B. 81
C. 256
D. 512
E. Some other number of values.

How many unique values can we represent with 9 bits? Why?

• One bit: two values (0 or 1)
• Two bits: four values (00, 01, 10, or 11)
• Three bits: eight values (000, 001, …, 110, 111)

A. 18
B. 81
C. 256
D. 512
E. Some other number of values.

How many unique values can we represent with 9 bits? Why?

• One bit: two values (0 or 1)
• Two bits: four values (00, 01, 10, or 11)
• Three bits: eight values (000, 001, …, 110, 111)

A. 18
B. 81
C. 256
D. 512
E. Some other number of values.

How many values?

1 bit: 0 1

How many values?

1 bit: 0 1

2 bits: 0 0 0 1 1 0 1 1

How many values?

1 bit: 0 1

2 bits: 0 0 0 1 1 0 1 1

3 bits: 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

How many values?

1 bit: 0 1

2 bits: 0 0 0 1 1 0 1 1

3 bits: 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

4 bits: 0
0

0
1

0
0

0
0

0
0

0
1

0
0

1
1

0
0

0
1

1
1

0
0

0
0

0
1

1
1

1
1

16 values

1
1

0
1

0
0

0
0

1
1

0
1

0
0

1
1

1
1

0
1

1
1

0
0

1
1

0
1

1
1

1
1

N bits: 2N values

C types and their (typical!) sizes
• 1 byte: char, unsigned char
• 2 bytes: short, unsigned short
• 4 bytes: int, unsigned int, float
• 8 bytes: long long, unsigned long long, double
• 4 or 8 bytes: long, unsigned long

unsigned long v1;
short s1;
long long ll;

// prints out number of bytes
printf(“%lu %lu %lu\n”, sizeof(v1), sizeof(s1), sizeof(ll));

How do we use this storage space (bits) to represent a value?

WARNING: These sizes are NOT a
guarantee. Don't always assume that

every system will use these values!

Let’s start with what we know…

• Digits 0-9

• Positional numbering

• Digits are composed to make larger numbers

• Known as Base 10 representation

Decimal number system (Base 10)

• Sequence of digits in range [0, 9]

64025

Digit #0: 1’s place, “least significant digit”

Digit #4: “most significant digit”

Digit #1: 10’s place

Decimal: Base 10

A number, written as the sequence of N digits,

 dn-1 … d2 d1 d0

where d is in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, represents the value:

[dn-1 * 10n-1] + [dn-2 * 10n-2] + ... + [d1 * 101] + [d0 * 100]

64025 =
6 * 104 + 4 * 103 + 0 * 102 + 2 * 101 + 5 * 100

60000 + 4000 + 0 + 20 + 5

Binary: Base 2

• Used by computers to store digital values.

• Indicated by prefixing number with 0b

• A number, written as the sequence of N digits,
dn-1…d2d1d0, where d is in {0,1}, represents the value:

[dn-1 * 2n-1] + [dn-2 * 2n-2] + ... + [d2 * 22] + [d1 * 21] + [d0 * 20]

Converting Binary to Decimal

Representation: 1 x 27 + 0 x 26 ... + 1 x 23 + 1 x 22 + 1 x 21 + 1 x 20

 128 + + 8 + 4 + 2 + 1

10001111 = 143

10001111Most significant bit Least significant bit
7 6 5 4 3 2 1 0

Hexadecimal: Base 16

Indicated by prefixing number with 0x

A number, written as the sequence of N digits,

 dn-1…d2d1d0,

where d is in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}, represents:

[dn-1 * 16n-1] + [dn-2 * 16n-2] + ... + [d2 * 162] + [d1 * 161] + [d0 * 160]

Generalizing: Base b

The meaning of a digit depends on its position in a number.

A number, written as the sequence of N digits,

 dn-1 … d2 d1 d0

in base b represents the value:

[dn-1 * bn-1] + [dn-2 * bn-2] + ... + [d2 * b2] + [d1 * b1] + [d0 * b0]

Base 10: [dn-1 * 10n-1] + [dn-2 * 10n-2] + ... + [d1 * 101] + [d0 * 100]

Other (common) number systems.

• Base 2: How data is stored in hardware.
• Base 8: Used to represent file permissions.
• Base 10: Preferred by people.
• Base 16: Convenient for representing memory addresses.
• Base 64: Commonly used on the Internet, (e.g. email attachments).

It’s all stored as binary in the computer.

Different representations (or visualizations) of the same information!

Q1 Discussion Block 2 of Worksheet

What is the value of 0b110101 in decimal?

A number, written as the sequence of N digits dn-1…d2d1d0 where d is in {0,1},
represents the value:

[dn-1 * 2n-1] + [dn-2 * 2n-2] + ... + [d2 * 22] + [d1 * 21] + [d0 * 20]

A. 26
B. 53
C. 61
D. 106
E. 128

What is the value of 0x1B7 in decimal?

[dn-1 * 16n-1] + [dn-2 * 16n-2] + ... + [d2 * 162] + [d1 * 161] + [d0 * 160]
 (Note: 162 = 256)

A. 397
B. 409
C. 419
D. 437
E. 439

DEC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
HEX 0 1 2 3 4 5 6 7 8 9 A B C D E F

Important Point…

• You can represent the same value in a variety of number
systems or bases.

• It’s all stored as binary in the computer.
– Presence/absence of voltage.

Hexadecimal: Base 16

• Fewer digits to represent same value
– Same amount of information!

• Like binary, the base is power of 2

• Each digit is a “nibble”, or half a byte.

Each hex digit is a “nibble”

• One hex digit: 16 possible values (0-9, A-F)

• 16 = 24, so each hex digit has exactly four bits worth of information.

• We can map each hex digit to a four-bit binary value.
(helps for converting between bases)

Each hex digit is a “nibble”

Example value: 0x1B7

Four-bit value: 1
Four-bit value: B (decimal 11)
Four-bit value: 7

In binary: 0001 1011 0111
 1 B 7

Converting Decimal -> Binary

• Two methods:
– division by two remainder
– powers of two and subtraction

Method 1: decimal value D, binary result b (bi is ith digit):
 i = 0
 while (D > 0)
 if D is odd
 set bi to 1
 if D is even
 set bi to 0
 i++
 D = D/2

idea: example: D = 105 b0 = 1
 D = b D = 52 a1 = 0
 D/2 = b/2 D = 26 a2 = 0
 D/2 = b/2 D = 13 a3 = 1
 D/2 = b/2 D = 6 a4 = 0
 D/2 = b/2 D = 3 a5 = 1
 0 = 0 D = 1 a6 = 1
 D = 0 a7 = 0

 105 = 01101001

Example: Converting 105

Method 1: decimal value D, binary result b (bi is ith digit):
 i = 0
 while (D > 0)
 if D is odd
 set bi to 1
 if D is even
 set bi to 0
 i++
 D = D/2

idea: D example: D = 105 b0 = 1
 D = D/2 D = 52 b1 = 0
 D/2 = b/2 D = 26 a2 = 0
 D/2 = b/2 D = 13 a3 = 1
 D/2 = b/2 D = 6 a4 = 0
 D/2 = b/2 D = 3 a5 = 1
 0 = 0 D = 1 a6 = 1
 D = 0 a7 = 0

 105 = 01101001

Example: Converting 105

Method 1: decimal value D, binary result b (bi is ith digit):
 i = 0
 while (D > 0)
 if D is odd
 set bi to 1
 if D is even
 set bi to 0
 i++
 D = D/2

idea: D example: D = 105 b0 = 1
 D = D/2 D = 52 b1 = 0
 D = D/2 D = 26 b2 = 0
 D = D/2 D = 13 b3 = 1
 D = D/2 D = 6 b4 = 0
 D = D/2 D = 3 b5 = 1
 D = D/2 D = 1 b6 = 1
 D = 0 (done) D = 0 b7 = 0

 105 = 01101001

Example: Converting 105

Method 2

• 20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16, 25 = 32, 26 = 64, 27 = 128
•

To convert 105:
– Find largest power of two that’s less than 105 (64)
– Subtract 64 (105 – 64 = 41), put a 1 in d6

– Subtract 32 (41 – 32 = 9), put a 1 in d5

– Skip 16, it’s larger than 9, put a 0 in d4

– Subtract 8 (9 – 8 = 1), put a 1 in d3

– Skip 4 and 2, put a 0 in d2 and d1

– Subtract 1 (1 – 1 = 0), put a 1 in d0 (Done)

__ __ __ __ __ __ __
d6 d5 d4 d3 d2 d1 d0

1 01 1 0 0 1

What is the value of 357 in binary?

A. 1 0110 0011
B. 1 0110 0101
C. 1 0110 1001
D. 1 0111 0101
E. 1 1010 0101

20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16,

25 = 32, 26 = 64, 27 = 128, 28 = 256

8 7654 3210
digit position

What is the value of 357 in binary?

A. 1 0110 0011
B. 1 0110 0101
C. 1 0110 1001
D. 1 0111 0101
E. 1 1010 0101

20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16,

25 = 32, 26 = 64, 27 = 128, 28 = 256

8 7654 3210
digit position

1 0 1 1 0 0 1 0 1
 d8 d7 d6 d5 d4 d3 d2 d1 d0

357 – 256 = 101
101 – 64 = 37

37 – 32 = 5
5 – 4 = 1

So far: Unsigned Integers

With N bits, can represent values: 0 to 2n-1

We can always add 0’s to the front of a number without changing it:

10110= 010110 = 00010110 = 0000010110

So far: Unsigned Integers

With N bits, can represent values: 0 to 2n-1

• 1 byte: char, unsigned char
• 2 bytes: short, unsigned short
• 4 bytes: int, unsigned int, float
• 8 bytes: long long, unsigned long long, double
• 4 or 8 bytes: long, unsigned long

Unsigned Integers

• Suppose we had one byte
– Can represent 28 (256) values
– If unsigned (strictly non-negative): 0 – 255

252 = 11111100
253 = 11111101
254 = 11111110
255 = 11111111
What if we add one more?

0 255 Larger
Values

Traditional number line:

Addition

Unsigned Integers

Suppose we had one byte
– Can represent 28 (256) values
– If unsigned (strictly non-negative): 0 – 255

252 = 11111100
253 = 11111101
254 = 11111110
255 = 11111111
What if we add one more?

Car odometer “rolls over”.

Any time we are dealing with a
finite storage space we cannot
represent an infinite number of
values!

Unsigned Integers

Suppose we had one byte
• Can represent 28 (256) values
• If unsigned (strictly non-negative):
 0 – 255

252 = 11111100

253 = 11111101
254 = 11111110
255 = 11111111

What if we add one more?

0

128
(10000000)

64192

255 (11111111)

Addition

Modular arithmetic: Here, all values are modulo 256.

Unsigned Addition (4-bit)

• Addition works like grade school addition:

 1
 0110 6 1100 12
 + 0100 + 4 + 1010 +10
 1010 10 1 0110 6
 ^carry out

Four bits give us range: 0 - 15

Unsigned Addition (4-bit)

• Addition works like grade school addition:

 1
 0110 6 1100 12
 + 0100 + 4 + 1010 +10
 1010 10 1 0110 6
 ^no carry out ^carry out

Four bits give us range: 0 - 15 Overflow!

Carry out is indicative of something having gone wrong when adding unsigned values

-1

-127 (11111111)

-127

-1 (11111111)

A B

C: Put them somewhere else.

0 0

Suppose we want to support signed values (positive and negative) in
8 bits, where should we put -1 and -127 on the circle? Why?

Suppose we want to support signed values (positive and negative) in
8 bits, where should we put -1 and -127 on the circle? Why?

0

-1

-127 (11111111)
0

-127

-1 (11111111)

A: signed
magnitude

B: Two’s
complement

C: Put them somewhere else.

Signed Magnitude Representation (for 4 bit values)

• One bit (usually left-most) signals:
– 0 for positive
– 1 for negative

For one byte:
1 = 00000001, -1 = 10000001

Pros: Negation (negative value of a number) is very simple!

For one byte:
 0 = 00000000
 What about 10000000?

Major con: Two ways to represent zero!

Two’s Complement Representation (for four bit values)

• Borrow nice property
from number line:

0

-1 1

Only one instance of zero!
Implies: -1 and 1 on either side of it.

For an 8 bit range we can express 256
unique values:
• 128 non-negative values (0 to 127)
• 128 negative values (-1 to -128)

Additional Info: Fractional binary numbers

0 1-1….-11982 15 999…99

−1
2

1
8

1
2

How do we represent fractions in binary?

Slide 76

Additional Info: Representing Signed Float Values

• One option (used for floats, NOT integers)
– Let the first bit represent the sign
– 0 means positive
– 1 means negative

• For example:
– 0101 -> 5
– 1101 -> -5

• Problem with this scheme?
A) no problem B) some numbers are represented twice,
C) some numbers have no representation

Additional Info: Floating Point Representation

1 bit for sign sign | exponent | fraction |
 8 bits for exponent
 23 bits for precision

 value = (-1)sign * 1.fraction * 2(exponent-127)

let's just plug in some values and try it out

0x40ac49ba: 0 10000001 01011000100100110111010
 sign = 0 exp = 129 fraction = 2902458

 = 1*1.2902458*22 = 5.16098

I don’t expect you to memorize this

Summary

• Images, Word Documents, Code, and Video can represented in bits.

• Byte or 8 bits is the smallest addressable unit

• N bits can represent 2N unique values

• A number is written as a sequence of digits: in the decimal base system

– [dn * 10 ^ n] + [dn-1 * 10 ^ n-1] + ... + [d2 * 10 ^ 2] + [d1 * 10 ^ 1] + [d0 * 10 ^ 0]

– For any base system:

– [dn * b ^ n] + [dn-1 * b ^ n-1] + ... + [d2 * b ^ 2] + [d1 * b ^ 1] + [d0 * b ^ 0]

• Hexadecimal values (represent 16 values): {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}

– Each hexadecimal value can be represented by 4 bits. (2^4=16)

• A finite storage space we cannot represent an infinite number of values. For e.g., the max unsigned 8 bit
value is 255.

– Trying to represent a value >255 will result in an overflow.

• Two’s Complement Representation: 128 non-negative values (0 to 127), and 128 negative values (-1 to -128).

