
CS 31: Intro to Systems C Programming
L03: C programming & Data representation

Vasanta Chaganti & Kevin Webb
Swarthmore College
September 12, 2023

Announcements

• HW1 is due Thursday before class
• up to groups of four
• invitations sent from gradescope

• Lab 1 is due Thursday, 11.59 PM

• Clickers will count for credit from this week

Reading Quiz

• Note the red border!

• 1 minute per question

• No talking, no laptops, phones during the quiz

• reading quiz (5 mins)
• content block /recap (15 mins)
• group discussions (15 mins)
• content block 2 (10 mins)
• group discussions (15 mins)
---end of class---

Class today…let’s try something different

Agenda

• C programming
• arrays, strings
• functions and stack diagrams
• structs
• C is NOT the focus of this course: ask questions if you have them!

• Data representation
• number systems + conversion
• data types, storage
• sizes, representation
• signedness

Python versus C: Paradigms

Slide 12

https://devrant.com/rants/1755638/c-vs-python

Recap

Recap: Types in C

• All variables have an explicit type!

– <variable type> <variable name>;

• Examples:
int humidity; float temperature;
humidity = 20; temperature = 32.5

/* a multiline comment:
 anything between slashdot and dotslash */

#include <stdio.h> // C’s standard I/O library (for printf)

int main() {
 // first: declare main’s local variables
 int x, y;
 float z;

 // followed by: main function statements
 x = 6;
 y = (x + 3)/2; //x and y are both ints
 z = x; //z is a float, value of x is converted to a float
 z = (z + 3)/2;

 printf(…) // Print x, y, z
}

Recap: An Example with Local Variables

X Y Z

A 4 4 4

B 6 4 4

C 6 4.5 4

D 6 4 4.5

E 6 4.5 4.5

Clicker choices

Recap: Boolean values in C

• Zero (0) is false, any non-zero value is true
• Logical (operands int “boolean”->result int “boolean”):

• ! (not): inverts truth value
• && (and): true if both operands are true
• || (or): true if either operand is true

Do the following statements
evaluate to True or False?

#1: (!10) || (5 > 2)

#2: (-1) && ((!5) > -1)

#1 #2

A True True

B True False

C False True

D False False

Clicker choices

Recap: Conditional Statements

Very similar to Python, just remember { } are blocks

Chaining if-else if With optional else:

if(<boolean expr1>) {
 if-expr1-true-body

} else if (<bool expr2>){

 else-if-expr2-true-body

 (expr1 false)

}
...

} else if (<bool exprN>){

 else-if-exprN-true-body

}

if(<boolean expr1>) {
 if-expr1-true-body

} else if (<bool expr2>){

 else-if-expr2-true-body

}

...
} else if (<bool exprN>){

 else-if-exprN-true-body

} else {

 else body

 (all exprX’s false)
}

Recap: For loops: different than Python’s

for (<init>; <cond>; <step>) {
 for-loop-body-statements
}
<next stmt after loop>;

1. Evaluate <init> one time, when first eval for statement
2. Evaluate <cond>, if it is false, drop out of the loop (<next stmt after>)
3. Evaluate the statements in the for loop body
4. Evaluate <step>
5. Goto step (2)

for(i=1; i <= 10; i++) { // example for loop
 printf(“%d\n”, i*i);
} What does this for loop print?

Recap: While Loops
Basically identical to Python while loops:
 while(<boolean expr>) {
 while-expr-true-body
 }

x = 20;
while (x < 100) {
 y = y + x;
 x += 4; // x = x + 4;
}
<next stmt after loop>;

x = 20;
while(1) {
 y = y + x;
 x += 4;
 if(x >= 100) {
 break; // break out of loop
 }
}
<next stmt after loop>;

Data Collections in C

• Many complex data types out there (CS 35)

• C has a few simple ones built-in:
– Arrays
– Strings (arrays of characters)
– Structures (struct)

• Often combined in practice, e.g.:
– An array of structs
– A struct containing strings

Arrays and Strings
• C’s support for collections of values

– Array buckets store a single type of value

– There is no “string” data type L

– Specify max capacity (num buckets) when you declare an
array variable (single memory chunk)

 <type> <var_name>[<num buckets>];

 int arr[5]; // an array of 5 integers
 float rates[40]; // an array of 40 floats

Array Characteristics

int january_temps[31]; // Daily high temps

• Indices start at 0! Why?
• Array variable name means, to the compiler, the beginning of the

memory chunk. (The memory address)
– january_temps” (without brackets!) Location of [0] in memory.
– Keep this in mind, we’ll return to it soon (functions).

“january_temps”
Location of [0] in
memory. [0] [1] [2] [3] [4] [29][30]

…

Array bucket indices.

Array Characteristics

int january_temps[31]; // Daily high temps

• Indices start at 0! Why?
• The index refers to an offset from the start of the array
– e.g., january_temps[3] means “three integers forward from the

starting address of january_temps”

“january_temps”
Location of [0] in
memory. [0] [1] [2] [3] [4] [29][30]

…

Array bucket indices.

Characters and Strings

A character (type char) is numerical value that holds one letter.
 char my_letter = ‘w’; // Note: single quotes

What is the numerical value?
– printf(“%d %c”, my_letter, my_letter);
– Would print: 119 w

Why is ‘w’ equal to 119?
– ASCII Standard says so.
– American Standard Code for Information Interchange

Slide 24

Characters
and Strings

$ man ascii

119 = w

Characters and Strings

• A character (type char) is numerical value that holds one letter.
• A string is a memory block containing characters, one after another…,

with a
null terminator (numerical 0) at the end.

• Examples:
 char food[6] = “Pizza”;

P i z z a
[0] [1] [2] [3] [4]

name (Other memory)

Hmm, suppose we used printf and %s to print
name.

How does it know where the string ends and
other memory begins?

Special stuff
over here in
the lower
values.

0 is the
“Null character”

Characters and
Strings

$ man ascii

Characters and Strings

• A character (type char) is numerical value that holds one letter.
• A string is a memory block containing characters, one after another,

with a null terminator (numerical 0) at the end.
• Examples:
 char name[20] = “Pizza”;

P i z z a
[0] [1] [2] [3] [4]

\0
[5]

…
[6] [7] [18][19]

Strings in C
• C String library functions: #include <string.h>

– Common functions (strlen, strcpy, etc.) make strings easier

– Less friendly than Python strings

• More on strings later, in labs.

• For now, remember about strings:
– Allocate enough space for null terminator!

– If you’re modifying a character array (string), don’t forget to set the null
terminator!

– If you see crazy, unpredictable behavior with strings, check these two things!

Functions and Stack Diagrams

Functions: Specifying Types
Need to specify the return type of the function, and the type of each parameter:

<return type> <func name> (<param list>) {
 // declare local variables first

 // then function statements
 return <expression>;
}

// my_function takes 2 int values and returns an int

int my_function(int x, int y) {
 int result;

 result = x;
 if(y > x) {
 result = y+5;

 }
 return result*2;
}

Compiler will yell at you if you
try to pass the wrong type!

Function Arguments

Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {
 a = a + 5;
 return a - b;
}

int main() {
 // declare two integers
 int x, y;
 x = 4;
 y = 7;
 y = func(x, y);
 printf(“%d, %d”, x, y);
}

Stack

main:
x:

y:

Function Arguments

Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {
 a = a + 5;
 return a - b;
}

int main() {
 // declare two integers
 int x, y;
 x = 4;
 y = 7;
 y = func(x, y);
 printf(“%d, %d”, x, y);
}

Stack

main:
x:

y:

4

7

Function Arguments

Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {
 a = a + 5;
 return a - b;
}

int main() {
 // declare two integers
 int x, y;
 x = 4;
 y = 7;
 y = func(x, y);
 printf(“%d, %d”, x, y);
}

Stack

main:
x:

y:

4

7

func:
a:

b:

Function Arguments

Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {
 a = a + 5;
 return a - b;
}

int main() {
 // declare two integers
 int x, y;
 x = 4;
 y = 7;
 y = func(x, y);
 printf(“%d, %d”, x, y);
}

Stack

main:
x:

y:

4

7

func:
a:

b:

4

7

Function Arguments

Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {
 a = a + 5;
 return a - b;
}

int main() {
 // declare two integers
 int x, y;
 x = 4;
 y = 7;
 y = func(x, y);
 printf(“%d, %d”, x, y);
}

Stack

main:
x:

y:

4

7

func:
a:

b:

9

7

Note: This doesn’t change!

No impact on values in main!

Function Arguments

Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {
 a = a + 5;
 return a - b;
}

int main() {
 // declare two integers
 int x, y;
 x = 4;
 y = 7;
 y = func(x, y);
 printf(“%d, %d”, x, y);
}

Stack

main:
x:

y:

4

2

Function Arguments

Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {
 a = a + 5;
 return a - b;
}

int main() {
 // declare two integers
 int x, y;
 x = 4;
 y = 7;
 y = func(x, y);
 printf(“%d, %d”, x, y);
}

Stack

main:
x:

y:

4

2

Output: 4, 2

What will this print?
int func(int a, int y, int my_array[]) {
 y = 1;
 my_array[a] = 0;
 my_array[y] = 8;
 return y;
}

int main() {
 int x;
 int values[2];

 x = 0;
 values[0] = 5;
 values[1] = 10;

 x = func(x, x, values);

 printf(“%d, %d, %d”, x, values[0], values[1]);
}

A. 0, 5, 8
B. 0, 5, 10
C. 1, 0, 8
D. 1, 5, 8
E. 1, 5, 10

Hint: What does the name of an
array mean to the compiler?

What will this print?
int func(int a, int y, int my_array[]) {
 y = 1;
 my_array[a] = 0;
 my_array[y] = 8;
 return y;
}

int main() {
 int x;
 int values[2];

 x = 0;
 values[0] = 5;
 values[1] = 10;

 x = func(x, x, values);

 printf(“%d, %d, %d”, x, values[0], values[1]);
}

A. 0, 5, 8
B. 0, 5, 10
C. 1, 0, 8
D. 1, 5, 8
E. 1, 5, 10

Hint: Still accessing the same
memory location of array in func

Discussion Block 1

structs

• Treat a collection of values as a single type:
– C is not an object oriented language, no classes
– A struct is similar to the data part of a class

• Rules:
1. Define a new struct type outside of any function
2. Declare variables of the new struct type
3. Use dot notation to access the field values of a struct variable

Struct Example
Suppose we want to represent a student type.

struct student {
 char name[20];
 int grad_year;
 float gpa;
};
// Variable bob is of type struct student
struct student bob;
// Set name (string) with strcpy()
strcpy(bob.name, “Robert Paulson”);
bob.grad_year = 2019;
bob.gpa = 3.1;

printf(“Name: %s, year: %d, GPA: %f”, bob.name, bob.grad_year, bob.gpa);

Arrays of Structs

struct student {

 char name[20];

 int grad_year;

 float gpa;

};

//create an array of struct students!

struct student classroom[50];

strcpy(classroom[0].name, “Alice”);
classroom[0].grad_year = 2023

classroom[0].gpa = 4.0;

// With a loop, create an army of Alice clones!

int i;

for (i = 0; i < 50; i++) {

 strcpy(classroom[i].name, “Alice”);
 classroom[i].grad_year = 2023;

 classroom[i].gpa = 4.0;

}

Arrays of Structs

struct student classroom[3];

strcpy(classroom[0].name, “Alice”);
classroom[0].grad_year = 2021;
classroom[0].gpa = 4.0;

strcpy(classroom[1].name, “Bob”);
classroom[1].grad_year = 2022;
classroom[1].gpa = 3.1

strcpy(classroom[2].name, “Cat”);
classroom[2].grad_year = 2023;
classroom[2].gpa = 3.4

Array of Structs: Layout in Memory

‘A’ ‘l’ ‘i’ ‘c’ ‘e’ ‘\0’ … ‘B’ ‘o’ ‘b’ ‘\0’ … ‘C’ ‘a’ ‘t’ ‘\0
’

…

2021 2022 2023

4.0 3.1 3.4

classroom: array of structs

[0] [1] [2]

Abstraction

User / Programmer
Wants low complexity

Applications
Specific functionality

Software library
Reusable functionality

Complex devices
Compute & I/O

Operating system
Manage resources

Data Storage

• Lots of technologies out there:
– Magnetic (hard drive, floppy disk)
– Optical (CD / DVD / Blu-Ray)
– Electronic (RAM, registers, …)

• Focus on electronic for now
– We’ll see (and build) digital circuits soon

• Relatively easy to differentiate two states
– Voltage present
– Voltage absent

Bits and Bytes

• Bit: a 0 or 1 value (binary)
– HW represents as two different voltages

• 1: the presence of voltage (high voltage)
• 0: the absence of voltage (low voltage)

• Byte: 8 bits, the smallest addressable unit
Memory: 01010101 10101010 00001111 …
(address) [0] [1] [2] …

• Other names:
– 4 bits: Nibble
– “Word”: Depends on system, often 4 bytes

Files

Sequence of bytes… nothing more, nothing less

Binary Digits (BITs)

• One bit: two values (0 or 1)
• Two bits: four values (00, 01, 10, or 11)
• Three bits: eight values (000, 001, …, 110, 111)

A. 18
B. 81
C. 256
D. 512
E. Some other number of values.

How many unique values can we represent with 9 bits? Why?

• One bit: two values (0 or 1)
• Two bits: four values (00, 01, 10, or 11)
• Three bits: eight values (000, 001, …, 110, 111)

A. 18
B. 81
C. 256
D. 512
E. Some other number of values.

How many unique values can we represent with 9 bits? Why?

• One bit: two values (0 or 1)
• Two bits: four values (00, 01, 10, or 11)
• Three bits: eight values (000, 001, …, 110, 111)

A. 18
B. 81
C. 256
D. 512
E. Some other number of values.

How many values?

1 bit: 0 1

How many values?

1 bit: 0 1

2 bits: 0 0 0 1 1 0 1 1

How many values?

1 bit: 0 1

2 bits: 0 0 0 1 1 0 1 1

3 bits: 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

How many values?

1 bit: 0 1

2 bits: 0 0 0 1 1 0 1 1

3 bits: 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

4 bits: 0
0

0
1

0
0

0
0

0
0

0
1

0
0

1
1

0
0

0
1

1
1

0
0

0
0

0
1

1
1

1
1

16 values

1
1

0
1

0
0

0
0

1
1

0
1

0
0

1
1

1
1

0
1

1
1

0
0

1
1

0
1

1
1

1
1

N bits: 2N values

C types and their (typical!) sizes
• 1 byte: char, unsigned char
• 2 bytes: short, unsigned short
• 4 bytes: int, unsigned int, float
• 8 bytes: long long, unsigned long long, double
• 4 or 8 bytes: long, unsigned long

unsigned long v1;
short s1;
long long ll;

// prints out number of bytes
printf(“%lu %lu %lu\n”, sizeof(v1), sizeof(s1), sizeof(ll));

How do we use this storage space (bits) to represent a value?

WARNING: These sizes are NOT a
guarantee. Don't always assume that

every system will use these values!

Let’s start with what we know…

• Digits 0-9

• Positional numbering

• Digits are composed to make larger numbers

• Known as Base 10 representation

Decimal number system (Base 10)

• Sequence of digits in range [0, 9]

64025

Digit #0: 1’s place, “least significant digit”

Digit #4: “most significant digit”

Digit #1: 10’s place

Decimal: Base 10

A number, written as the sequence of N digits,

 dn-1 … d2 d1 d0

where d is in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, represents the value:

[dn-1 * 10n-1] + [dn-2 * 10n-2] + ... + [d1 * 101] + [d0 * 100]

64025 =
6 * 104 + 4 * 103 + 0 * 102 + 2 * 101 + 5 * 100

60000 + 4000 + 0 + 20 + 5

Binary: Base 2

• Used by computers to store digital values.

• Indicated by prefixing number with 0b

• A number, written as the sequence of N digits,
dn-1…d2d1d0, where d is in {0,1}, represents the value:

[dn-1 * 2n-1] + [dn-2 * 2n-2] + ... + [d2 * 22] + [d1 * 21] + [d0 * 20]

Converting Binary to Decimal

Representation: 1 x 27 + 0 x 26 ... + 1 x 23 + 1 x 22 + 1 x 21 + 1 x 20

 128 + + 8 + 4 + 2 + 1

10001111 = 143

10001111Most significant bit Least significant bit
7 6 5 4 3 2 1 0

Hexadecimal: Base 16

• Indicated by prefixing number with 0x

A number, written as the sequence of N digits,

 dn-1…d2d1d0,

where d is in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}, represents:

[dn-1 * 16n-1] + [dn-2 * 16n-2] + ... + [d2 * 162] + [d1 * 161] + [d0 * 160]

Generalizing: Base b

• The meaning of a digit depends on its position in a number.

A number, written as the sequence of N digits,

 dn-1 … d2 d1 d0

in base b represents the value:

[dn-1 * bn-1] + [dn-2 * bn-2] + ... + [d2 * b2] + [d1 * b1] + [d0 * b0]

Base 10: [dn-1 * 10n-1] + [dn-2 * 10n-2] + ... + [d1 * 101] + [d0 * 100]

Other (common) number systems.

• Base 2: How data is stored in hardware.
• Base 8: Used to represent file permissions.
• Base 10: Preferred by people.
• Base 16: Convenient for representing memory addresses.
• Base 64: Commonly used on the Internet, (e.g. email attachments).

It’s all stored as binary in the computer.

Different representations (or visualizations) of the same information!

Discussion block 2

Important Point…

• You can represent the same value in a variety of number
systems or bases.

• It’s all stored as binary in the computer.
– Presence/absence of voltage.

Hexadecimal: Base 16

• Fewer digits to represent same value
– Same amount of information!

• Like binary, the base is power of 2

• Each digit is a “nibble”, or half a byte.

Each hex digit is a “nibble”

• One hex digit: 16 possible values (0-9, A-F)

• 16 = 24, so each hex digit has exactly four bits worth of information.

• We can map each hex digit to a four-bit binary value.
(helps for converting between bases)

Each hex digit is a “nibble”

Example value: 0x1B7

Four-bit value: 1
Four-bit value: B (decimal 11)
Four-bit value: 7

In binary: 0001 1011 0111
 1 B 7

Converting Decimal -> Binary

• Two methods:
– division by two remainder
– powers of two and subtraction

Method 1: decimal value D, binary result b (bi is ith digit):
 i = 0
 while (D > 0)
 if D is odd
 set bi to 1
 if D is even
 set bi to 0
 i++
 D = D/2

idea: example: D = 105 b0 = 1
 D = b D = 52 a1 = 0
 D/2 = b/2 D = 26 a2 = 0
 D/2 = b/2 D = 13 a3 = 1
 D/2 = b/2 D = 6 a4 = 0
 D/2 = b/2 D = 3 a5 = 1
 0 = 0 D = 1 a6 = 1
 D = 0 a7 = 0

 105 = 01101001

Example: Converting 105

Method 1: decimal value D, binary result b (bi is ith digit):
 i = 0
 while (D > 0)
 if D is odd
 set bi to 1
 if D is even
 set bi to 0
 i++
 D = D/2

idea: D example: D = 105 b0 = 1
 D = D/2 D = 52 b1 = 0
 D/2 = b/2 D = 26 a2 = 0
 D/2 = b/2 D = 13 a3 = 1
 D/2 = b/2 D = 6 a4 = 0
 D/2 = b/2 D = 3 a5 = 1
 0 = 0 D = 1 a6 = 1
 D = 0 a7 = 0

 105 = 01101001

Example: Converting 105

Method 1: decimal value D, binary result b (bi is ith digit):
 i = 0
 while (D > 0)
 if D is odd
 set bi to 1
 if D is even
 set bi to 0
 i++
 D = D/2

idea: D example: D = 105 b0 = 1
 D = D/2 D = 52 b1 = 0
 D = D/2 D = 26 b2 = 0
 D = D/2 D = 13 b3 = 1
 D = D/2 D = 6 b4 = 0
 D = D/2 D = 3 b5 = 1
 D = D/2 D = 1 b6 = 1
 D = 0 (done) D = 0 b7 = 0

 105 = 01101001

Example: Converting 105

Method 2

• 20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16, 25 = 32, 26 = 64, 27 = 128
•

To convert 105:
– Find largest power of two that’s less than 105 (64)
– Subtract 64 (105 – 64 = 41), put a 1 in d6

– Subtract 32 (41 – 32 = 9), put a 1 in d5

– Skip 16, it’s larger than 9, put a 0 in d4

– Subtract 8 (9 – 8 = 1), put a 1 in d3

– Skip 4 and 2, put a 0 in d2 and d1

– Subtract 1 (1 – 1 = 0), put a 1 in d0 (Done)

__ __ __ __ __ __ __
d6 d5 d4 d3 d2 d1 d0

1 01 1 0 0 1

What is the value of 357 in binary?

A. 101100011
B. 101100101
C. 101101001
D. 101110101
E. 110100101

20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16,

25 = 32, 26 = 64, 27 = 128, 28 = 256

