Our Curriculum Has Become Math-Phobic!

Allen B. Tucker
Computer Science Dept.
Bowdoin College
Brunswick, ME 04011
allen@bowdoin.edu

Abstract

The paper [2] argued that mathematical ideas play an
important role in the computer science curriculum, and
that Discrete Mathematics needs to be taught early in
the computer science curriculum. In this follow-up pa-
per, we present evidence that computer science curricula
are drifting away from a fundamental commitment to
theoretical and mathematical ideas. We propose some
actions that can be taken to help reverse this drift.

1 Evidence l: Industry and Faculty Views

This section presents evidence from the industry and
faculty sides that the curriculum has become math-
phobic.

1.1 Questioning Mathematics Requirements

Robert Glass has written several books in the software
field. He is Editor-in-Chief of the Journal of Systems
and Software, Editor/Publisher of The Software Practi-
tioner, and author of the Practical Programmer column
in the Communications of the ACM.

In his article “How Important is Mathematics to the
Software Practitioner?”, Glass says, “Academics, 1
would assert, are largely in the ‘math is vital’ camp.
Practitioners, I would further assert, are in the ‘math 1s
of little consequence’ camp.”

This article also reports from a survey conducted by
Timothy Lethbridge [4], who has studied the differ-
ence between what software engineers remember being

Copyright 2001 by the Association for Computing Machinery, Inc.
To appear in SIGCSE 2001.

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or a fee. Request permis-
sions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or
permissions@acm.org.

Charles F. Kelemen
Computer Science Program
Swarthmore College

Swarthmore, PA 19081
cfk©@cs.swarthmore.edu

Kim B. Bruce
Computer Science Dept.
Williams College
Williamstown, MA 01267
kim@cs.williams.edu

taught in academe, and their perceptions of what i1s im-
portant to them in practice.

Many subjects are covered in this survey; Lethbridge
was interested in the broader questions of priorities in
engineering education. However, one of the most strik-
ing findings of his research involved the similarity be-
tween what practitioners felt they “learned most in their
formal education” and what they felt to be the “least
important” topics.

Here are the topics that Lethbridge found to be “learned
most in their formal education.” Note that most, al-
though not all, of these topics are mathematical.

1. specific programming languages
2. differential and integral calculus
3. linear algebra and matrices

4. probability and statistics

5. data structures

6. physics

7. differential equations

8. set theory

And here are the “least important topics” identified by
the same practitioners (the number on the left repre-
sents the standing of the topic among a set of 75 topics;
the higher the number, the lower the standing):

72. differential equations

68. combinatorics

67. differential and integral calculus
56. linear algebra and matrices

52. computational methods and numeric problems

48. set theory
39. predicate logic

31. probability and statistics

These practitioners identified the “most important”
topics to their professional work as follows:

1. specific programming languages

2. data structures

3. software design and patterns

4. software architecture

5. requirements gathering and analysis

6. human computer interaction / user interfaces
7. object oriented concepts and technology

8. ethics and professionalism

Lethbridge concludes, “Relatively little mathematics
turns out to be important for software engineers in prac-
tice, and it tends to be forgotten.” “If we are to
continue to teach the amount and type of mathematics
[that we presently teach], we must justify it by other
means than saying it is important to a software devel-
oper’s work: our data show that is normally not ... At
the very least, educators should look at the mathemat-
ics elements of computing [curricula] and examine how
they can be made more relevant...”

In response to his title question, “How important is
mathematics to the software practitioner?”, Glass re-
ports “Not very much” according to Lethbridge. Glass
then asks, “What should we do about that?” We will
speak to that in a later section of this paper.

As CS is buffeted by IT, IS, MIS, multimedia, WEB
design, etc. some argue that there should be a common
core. Since some of these disciplines do not feel math is
very important, there is pressure to remove mathemat-
ical topics and rigor from early CS courses.

1.2 A Small Survey of Educators

To determine if educators were feeling this pressure,
Kelemen and Tucker surveyed the attendees at their
talk, “Has Our Curriculum Become Math-Phobic? (An
American Perspective) ” at ITICSE 2000 [2]. The ques-
tions with responses tallied are given in Figure 1.

While this is not a completely representative survey of
CS educators, it does reveal some interesting informa-
tion. First, about half of the respondents agreed that
they felt pressure to make the CS curriculum less math-
ematical and that the curriculum is, in fact, becoming
less mathematical. Moreover, most of the respondents
agreed that the discrete mathematics course should be a
prerequisite for the data structures course and that the
CS curriculum should not become less mathematical in
the future.

2 Evidence |l: Data Structures Textbook Content

To determine the extent to which mathematical topics
are integrated into the computer science curriculum, we
reviewed the current texts that are used in the second
course in the curriculum - the data structures course.
Our view is that the following topics in discrete mathe-
matics are needed for this course, and their use should
be integrated into the data structures subject matter.

e Complexity of algorithms: growth of functions, O no-
tation, worst case analysis, etc.

e Correctness of algorithms: preconditions, postcondi-
tions, and loop invariants

e Recursion, recurrence relations and inductive proofs

In 1999, 27 different texts were used by students in the
data structures course [5]. A rough estimate of their rel-
ative market shares and amount of mathematical treat-
ment for the five most widely used texts (identified as
A - E to preserve anonymity) is given in Figure 2.

This figure shows that the five most popular texts were
used by about 55.8 per cent of all students enrolled in
the data structures course.

We also estimated the number of pages in these texts
that used or integrated the mathematical topics listed
above. These estimates were derived by examining the
table of contents and index of each text and counting
the number of pages allocated for each topic. These es-
timates show that these five data structures texts give
some attention to the mathematical treatment of com-
plexity and recursion, and little or no attention to cor-
rectness and induction proofs. None of these five texts
presents these mathematical topics in a way that i1s con-
vincingly integrated among the main topics in the study
of data structures. We also believe that other texts for
this course give similar or even more limited levels of
treatment to these mathematical topics.

Further evidence for the scarcity of mathematical treat-
ment in the data structures course appears in the pref-
aces of these texts. In one instance, the author em-
phasizes that the discrete mathematics course is not a

Your employment category: Academia: 62 | Industry: 0 Other:
Location of your employer: UsS: 20 Europe: 30 Asia: Other: 9
Do you feel pressure to make the CS curriculum
less mathematical at your institution? Yes: 30 No: 29| N/A:
Is the CS curriculum becoming less mathematical? Yes: 33 No: 24| N/A:
Should the curriculum become less mathematical? Yes: 14 No: 42| N/A:
Should Discrete Math topics be a prerequisite
for the Data Structures course? Yes: 43 No: 13| N/A:
Should Discrete Math topics be better
integrated in the Data Structures course? Yes: 42 No: 13| N/A:
Figure 1: Survey answers from ITiCSE

| Data Structures Text || A | B | C | D | E | 22 Others | Total |
1999 Sales 8,975 | 4,491 | 3,080 | 2,580 | 1,989 16,721 | 37,836
Percent of Total 23.7 | 11.9 8.1 6.8 5.3 44.2
Total Pages 770 790 750 550 750
— Complexity of algorithms 35 74 20 40 30
— Correctness of algorithms 0 8 0 0 0
— Recursion 44 90 30 28 15

Figure 2: Leading Data Structures Texts’ Mathematical Treatment

prerequisite for using the text. That text does contain
several mathematical proofs (using induction), but the
author notes that those sections can easily be skipped.
In another instance, the preface contains no mention of
discrete mathematics at all. That text gives a gentle
introduction to algorithm efficiency in a later chapter
and no proofs appear anywhere in the text. In a third
instance, the author had moved all of the mathematical
material from an earlier edition (where it had been well-
integrated) to an appendix, noting that that material
had become less central to the study of data structures
than in earlier times.

Finally, we suspect that instructors who teach the data
structures course tend to omit the modest amount of
mathematics that is found in these texts from their syl-
labi, for a variety of reasons (including the guidance of
the authors themselves). Notably, none of these books
requires that students complete a discrete mathematics
course as a prerequisite. Thus, computer science stu-
dents complete their data structures coursework with
little or no understanding or appreciation for the rele-
vance of (discrete) mathematics in computer science.

3 Evidence lll: Curricula 2001 and Mathematics

[Note: All references to KU’s of CC2001 refer to the
unpublished June 5 draft.]

The Joint IEEE Computer Society/ACM Task Force on
the “Year 2001 Model Curricula for Computing” (CC-
2001) was formed to update the 1991 curricula recom-
mendations. The task force originally planned on offer-

ing recommendations encompassing all of the comput-
ing disciplines (MIS, IS, CS, SWE, CE, etc.), but has re-
cently decided to focus its immediate efforts on a report
covering a core curriculum in Computer Science. Simi-
lar chapters will appear later on other subdisciplines.

While the task force’s work is continuing, their “Straw-
man” report from March 2000 provides a clear indica-
tion of the committee’s thinking. Two main goals shine
through. The first is a desire to keep the core curricu-
lum small, with material that can be fit into 6 or 7
courses (not counting required mathematics courses).
The second 1s an effort to expand the scope to incor-
porate new material introduced in computing over the
last decade or more. As a result of these goals, many of
the traditional areas of computer science have been cut
back substantially in the strawman report. The overall
number of hours in the core has declined by 15%, with
that in traditional core areas cut more because of the
addition of areas such as Net-Centric Computing and
Human-Computer Interfaces.

Because of repackaging, it is difficult to compare Cur-
ricula ‘91 with the current Curriculum 2001 proposal.
However, if we restrict ourselves to the mathematically
and theoretically oriented material, there are very no-
ticeable differences.

Much of the theoretical material in the Algorithms (AL)
section has been omitted in the new curriculum. The
Programming Languages (PL) material has been cut
from 46 hours to 5 hours, omitting all theoretical ma-
terial as well as much non-theoretical material (though

some of the non-theoretical material appears elsewhere).

Both the old and new curricula introduce the use of
big “O” notation and use it in analyzing algorithms.
However there is no longer any mention of complexity
classes like P and NP in the core (deleting the old ALB,
which was allotted 4 hours).

Core units on Computability and Undecidability (ALT7:
6 hours), Finite State Automata and Regular Expres-
sions (PL7: 6 hours), Context-Free Grammars and
Pushdown Automata (PL8: 4 hours) have been com-
pressed into a new AL5: Basic Computability with a
total of 6 hours; a loss of 10 hours of theoretical core
material. Programming Language Semantics (PL10: 2
hours) has also disappeared from the core.

The area of Numerical and Symbolic Computation (7
core hours) has disappeared from the core, replaced by
Computational Science with no core hours. This seems
to have resulted in no coverage of round-off and similar
representation-dependent errors nor of iterative approx-
imation methods.

It is perfectly reasonable to argue that the omitted ma-
terial is no longer as relevant for all computer science
undergraduates. However, we find it of great concern
that this has resulted in the omission of large propor-
tion of theoretical material, with the addition of very lit-
tle new in that area. In fact the only new material that
seemed to be theoretically oriented was IS3: Knowledge
representation and reasoning in Intelligent Systems (for-
merly Al), adding 4 hours. This KU includes material
on the use of propositional and predicate calculus and
automated theorem proving.

Perhaps even more distressing are more subtle changes
which de-emphasize mathematical reasoning. AL 3 on
Recursive Algorithms in Curricula ‘91 lists a lecture
topic connecting recursion to mathematical induction.
The corresponding knowledge unit (PF 5) in Curricu-
lum 2001 omits all mention of induction.

While the task force has not yet attempted to add pre-
requisites to the knowledge units of Curriculum 2001, it
appears that very few will have mathematical prerequi-
sites. Qur best estimate 1s AL1, AL3, AL5, GRI1, 1S3,
SE4 (on software validation), and perhaps SE2 are the
only KU’s which will need mathematical prerequisites.
An indication that we are not far off in our estimates is
that one of the unpublished proof-of-concept curriculum
designs using the new knowledge units had no mathe-
matical prerequisites until the 4th semester course.

So far we have not mentioned the mathematics require-
ments of Curriculum 2001. We have not done this be-
cause there is a huge disconnect between the mathemat-
ics requirements and the actual use of mathematics in
the core.

The new curriculum specifies discrete math (DM) core
knowledge units comprising 40 hours of lecture. The
set of topics described seems to be quite good. The
strawman report also requires a probability and statis-
tics course and one other mathematics course, though
the pedagogy focus group on supporting courses has rec-
ommended a two semester discrete math sequence which
folds in some probability and statistics rather than hav-
ing a separate probability and statistics course.

Whichever way this comes out, there will be very solid
mathematics courses required for computer science ma-
jors. However, based on the core curriculum proposed
at this point, students will have little opportunity to use
this mathematics. This will simply serve to confirm the
earlier reports from practitioners that mathematics has
limited relevance to their lives.

However one feels about the amount of theory that
should be included in the core curriculum, the mismatch
between mathematics requirements and their use in the
curriculum 1s clearly a problem that needs to be ad-
dressed. Our preference is to increase the amount of
theoretical and mathematically-based material.

This 1ssue of balance between theory and practice was
reviewed extensively by a group of 18 computer sci-
entists from selective colleges, called the Liberal Arts
Computer Science Consortium, or LACS for short (see
www.lacs.edu for more information). This group has
developed and studied curriculum for several years, and
is responsible for the “Revised Model Curriculum for a
Liberal Arts Degree in Computer Science” [6].

In a letter to the Curricula 2001 Committee [3], the
LACS group expressed these same concerns about the
diminishing amount of theory and the lack of integra-
tion between theory and practice in the core curriculum.
This letter made some concrete recommendations that
would restore this balance. After careful consideration,
the Committee decided not to accept these recommen-
dations, for the following stated reasons [1]:

e The centrality of theoretical areas (algorithms and
programming language theory) is declining relative
to that of many other areas in computer science (net-
centric computing, graphics, human computer inter-
action, information management, software engineer-
ing, and social and professional issues).

e The curriculum model must serve the widest variety
of institutions.

e The curriculum model must serve the interests of the
present and the future, rather than retreating to a
“computer science of the past.”

We are dismayed that the Committee views its role so
narrowly. That is, the Report seems to favor only a

collection of computational artifacts that happen to be
prominent in the year 2001, represented in the Report
in proportion to their perceived importance to the prac-
tice of computing. Thus, it appears that we have be-
come less willing as an educational community to ask
questions like “What are the principles upon which the
discipline is grounded?” Or, “Is the decline of theory in
software engineering a good thing?” Or finally, “Is com-
puter science only about the practice of computing?”

4 Can We Do Better?

The recent decline of theory and mathematics in the
computer science curriculum characterizes our disci-
pline as (one of) the least mathematical among the
science and engineering disciplines. Pressure to reduce
the mathematical and theoretical content of our courses
surely comes from many directions — our students, our
technology industries, our deans, and even ourselves.

What can be done about this? We believe that several
steps can be taken to reverse this trend and strengthen
our curriculum.

1. Develop a curriculum report that reflects a more bal-
anced treatment of theory and practice.

2. Show more convincingly how (old and new) theoret-
ical material can be well-integrated among the other
topics in the core curriculum.

3. Develop a dialogue among educators, subject area ex-
perts, and textbook writers that begins to explore
how specific core courses can be moved onto sound
theoretical ground that is supported by strong prac-
tical examples.

The first suggestion above is illustrated in the Revised
Model Curriculum mentioned above [6]. Implementa-
tions of the specific core courses defined in that model,
each of which integrates a significant body of theory
with practice, can be developed, class-tested, and eval-
uated by willing faculty members.

The second suggestion above is illustrated by many ex-
amples, both traditional and contemporary. For in-
stance, an operating systems course could include the
development of a mathematical proof that a system is
secure (i.e., prove that rogue applets cannot delete the
file system). Or a software engineering course could
present the idea that a program can include a proof
that it is safe (e.g., that array subscripts won’t exceed
their bounds.) We would invite experts in each different
subject area of computing to submit papers to SIGCSE
that illustrate how theory and mathematics can be bet-
ter integrated within a course in that area.

We believe that a reasonable integration of theory with
practice does not signal a retreat to the “computer sci-
ence of the past,” as claimed by the Curriculum 2001
committee. To the contrary, we believe that it is the
only way to guarantee a sustainable and defensible ap-
proach to studying the discipline of computer science.

5 Conclusions

We have argued that the undergraduate computer sci-
ence curriculum has become math-phobic, the sense
that mathematical and theoretical topics have gradu-
ally disappeared from its introductory and core courses.
Evidence of this trend comes from several sources: com-
puter science educators, data structures textbooks, and
the evolving Computing Curricula 2001 report.

As a result, the vast majority of computer science grad-
uates do not have well-developed ideas about the inter-
connections between theory and practice. Qur discipline
i1s thus presented as less like a science and more like a
collection of techniques and artifacts that reflect current
technologies. This strategy may prepare graduates for
today’s technology, but it will likely not prepare them
well for the longer haul.

We have suggested some avenues that can be explored
to reverse the trend of our curriculum toward math-
phobia. We invite colleagues from all areas of computer
science who are similarly inclined to contribute their
own ideas about steps that can be taken to reverse this
trend and help restore mathematical cohesion to the
undergraduate computer science curriculum.

References

[1] Chang, C., Engel, G., Roberts, E., and Shackelford,
R. Letter to the Liberal Arts Computer Science
Consortium. e-matl correspondence on behalf of the

CC2001 Steering Committee (August 18, 2000).

[2] Kelemen, C., Tucker, A., Henderson, P., Bruce, K.,
and Astrachan, O. Has our curriculum become
math-phobic? (an American perspective). Proceed-

ings of ITICSE2000 1 (2000), 132-135.

[3] LACS. Letter to the cc2001 steering committee. e-
mail correspondence from the Liberal Arts Computer
Science Consortium (July 24, 2000).

[4] Lethbridge, T. Priorities for the education and train-
ing of software engineers. Journal of Systems and

Software 53, 1 (July, 2000).

[6] TWM. Data structures market adoptions by school.
TWM Research, Analysis, and Consulting (2000),
24 pages.

[6] Walker, H., and Schneider, M. A revised model cur-
riculum for a liberal arts degree in computer sci-
ence. Communications of the ACM 39, 12 (Decem-
ber, 1996), 85-95.

