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TaintDroid Malware Categorizer

Imoleayo Abel Davis Ancona William Schneider
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Abstract

Mobile technology has become a huge part of soci-
ety, and plays an ever increasing role in our daily
lives. Our mobile devices house immense amounts
of our personal data, including browser history, lo-
cation, bank account information, and passwords.
With such a large amount of sensitive information,
it is surprising to know that the level of default se-
curity on these devices is significantly less than that
of desktop computers. Many applications we use
daily use our private data and, if implemented ma-
liciously, could severely endanger our security. To
prevent this from occurring and to add a layer of
transparency to third party applications, we have
implemented a TaintDroid-based Malware Catego-
rizer. TaintDroid is an efficient, system-wide dy-
namic taint tracking and analysis system capable
of simultaneously tracking multiple sources of sen-
sitive data. To this software, we have appended
a threat/incentive categorization component. With
this system in place, users will receive a comprehen-
sible output dictating the threat that has most likely
infected their device. This output will supply a tan-
gible, real life example to the market consumer, and
avoid the acute technical details which do nothing
to assist and educate the average user. This will
empower users, making them more safety conscious
and better informed of which applications can and
can not be trusted.

1 Introduction

1.1 Motivation

As computing technology advances, more and more
emphasis is being put on mobility. The ability to
communicate, access data, and perform a variety of
computing tasks while on the go has led mobility to
become synonymous with efficiency. Unlike desktop
computers which experienced slow and steady
growth, the quick emergence of mobile technology

has caused these devices to lag behind in terms of
security. As mobile devices, they are used more
frequently on unsafe public networks, they are
more likely to be lost or stolen, and they house a
majority of our personal information both public
and private, making them inherently insecure.
Because of this, mobile devices have become an
enticing target for attackers and the malware they
create.

The typical Android user does not take appro-
priate steps to ensure the safe use of applications
on their device. Faced with a browser SSL warning
message (which can indicate a phishing attack),
over 70% of users clicked through and proceeded
to a potentially dangerous website. However,
when users were presented with a message that
specifically warned against phishing or malware,
clickthrough rates decreased to under 25% [1].
This indicates that users are more willing to
respond to warnings that are specific and easily
recognizable. Thus, for our project, we want the
user to understand accurately how the applications
they are using could potentially harm them without
overwhelming them with technical and specific
details which they are likely to ignore.

To help combat this influx of malware, found
mostly in third-party applications, TaintDroid [4]
[Figure 1] was developed to detect the data being
sent off a mobile device by an application. This al-
lows users to verify to some degree that the data
being transmitted off of their mobile device is nec-
essary for the functionality of that specific applica-
tion, and not being used maliciously. However, this
requires the user to have more than just common
knowledge about cyber security, embedded systems,
and computer science in general. To solve this prob-
lem and more efficiently use TaintDroid’s output
for the average user, we have created a TaintDroid-
based malware categorizer. Our system takes the
same input as TaintDroid (an application to review)
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and outputs a possible threat type and or malicious,
incentive-based attack that the application could be
concealing.

Figure 1: TaintDroid Architecture with Android

This added categorization better informs typical
Android users how their data may be vulnerable,
and which applications put them at higher risk.
This may be a small step in terms of security,
but increasing user awareness of malware is a
fundamental step in its mitigation. The catego-
rization could also be used for vetting processes
in application stores. By cross referencing the
possible threat types and attacks, applications
could be given different security ratings and then
be selectively admitted or denied when published
for public download.

The overall motivation of this project is to close
the gap between analysis and action in terms of se-
curity left open by TaintDroid. By paving the way
for security-focused machine learning and catego-
rization, the hope is to create a new category of
user friendly tools to aid in the awareness and fight
against mobile malware.

1.2 Background

The basis for our project is the application of a dy-
namic data tracing and analysis tool coupled with
the functionality of a suite of classifying algorithms
to categorize malware and effectively convey to the
average user how their private information could
be used against them.

The theoretical portion backing the classification
algorithm of our system is comprised by research
conducted on the current types of mobile malware
plaguing today’s application market. Because
TaintDroid is only compatible with the Android
system, our research was limited to Android
malware. Our categorization identifies three
overarching types of threats to group potentially

hazardous applications [5]. These threat types can
be broken down into smaller more specific instances,
conveying generic examples of actual attacks based
on the incentives of the malware creator. Thus, our
theoretical classification basis can be represented
by a hierarchy of threat based on type and incentive.

The framework of our classifier training set was
developed based on this theoretical hierarchy. Each
threat type matched to a broad set of TaintDroid
output values, representing different types of
private data, and each incentivised attack under
the realm of a certain threat type was matched
to a smaller subset of these values. This provided
the foundation necessary to initialize the machine
learning component. Specifically, the decision
tree algorithm was chosen from the suite as our
primary classification algorithm. Its efficiency with
binary values created an ideal representation for
our “targeted or not targeted” basis of valuing the
sensitive data statuses.

Weka, the chosen machine learning tool described
in 4.2 was integrated into the TaintDroid source
code to provide a single, compiled tool in one exe-
cutable program. The portion of the code used to
display TaintDroid’s output to the device screen was
modified to pass the identity of the “tainted” values
directly to our classifier. The classifier was modi-
fied to recycle its output back to TaintDroid, where
the classified threat is conveyed to the user through
a modified version of TaintDroid’s display function.
The user is now aware of the type of threat or spe-
cific kind of incentivised attack to which he or she
is vulnerable.

1.3 Contribution

The field of security in mobile technology is not
yet equatable to its static, desktop predecessors.
Our project closes this gap by attempting to in-
crease the level of familiarity with mobile security
to that of desktop security. While TaintDroid on
its own is a fantastic tool for malware analysis, it
does not have the usability of a publicly available,
consumer friendly program. By appending cate-
gorization functionality to an analytic foundation,
our system creates the basis for a consumer friendly
mobile security software similar to desktop security
packages such as Norton Anti-Virus and McAfee.
Through our addition of machine learning catego-
rization, we develop a system which should be able
to expand and evolve based on the threats it faces
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like desktop anti-virus programs. Thus our malware
categorization system promises to be a successful
tool with which to educate and equip the average
Android user to defend against post (and hopefully
pre) market malware.

2 Malware, Grayware, Spy-
ware

There are three main categories of potentially
harmful Android software: grayware, personal
spyware, and malware. Malware is categorized by
being actively harmful to your device by hijack-
ing your phone in order to send premium SMS
messages or locking and ransoming your phone.
Since it uses your device for nefarious purposes
without your permission, malware is illegal in most
jurisdictions. However, the legality of a piece of
malicious software can depend upon the amount of
damage done and the strictness of local laws.

Personal spyware is a category of application
which runs silently on a device, collecting user ac-
tivity data without being detected and then saving
it to be read at a later time. It is designed to be
undetectable, and so often does not transmit data
over the network, making it just about impossible
for TaintDroid to find. Spyware is legal so long as
the devices user has consented to the application
being run on their device, or in the case of a parent
installing it on a childs phone. Using spyware to
catch a cheating spouse or spy on someone is illegal
and against the terms of use.

As the name indicates, grayware lies in a much
more ambiguous legal area. Grayware may access
your personal data and send it across the network,
but it does not seek to harm the user or their device,
and may spell out (however vaguely) its actions
in the application’s privacy policy. Although it
may not be illegal, many Android users still prefer
not to have their personal data sent to ad servers.
Additionally, your data could be used for more
nefarious purposes such as spying on your location
or communication activity, either by a stalker or
more recently a governmental agency. Your contact
lists might also be sent out, which contain phone
numbers and email addresses that can be sold to
spammers.

This broad categorization of threats can then be
further classified based off of the incentive the ma-

licious software and previously known attacks. The
most important information to the user is what the
application is trying to accomplish so that the user
can take steps to mitigate the effects, such as chang-
ing their bank passwords and uninstalling the appli-
cation.

3 Idea

TaintDroid tracks sensitive information being sent
out over the network by third-party applications
from a host device and based on the data being sent,
generates a notification. TaintDroid uses a Taint-
DroidNotify app to inform the user of the identity
of the application sending data out of their phone. A
sample notification is shown in figure 2 below. In ad-
dition to the identity of the application in question,
the TaintDroidNotify app also provides a list of the
taints (personal data) being sent out e.g IMEI, GPS
Location, and so on. The notification also contains
the destination IP address of the taint as well as the
exact raw http request being sent from the phone.
While all this information seems informative, we be-
lieve the http request is only useful to superusers -
tech savvy smartphone owners. Our idea is to re-
place this displayed http request with a high level
description of the potential harm to the device. This
way, we avoid the risk of obscuring users who might
be led to doubt the validity of TaintDroid if they
don’t understand what the information in the http
request means. Also, having a high-level description
like ‘App x is most likely going to steal your bank
information’ creates a sense of importance that is
immediately understandeable by any user irrespec-
tive of technical ability.

Figure 2: Snapshot of sample TaintDroid notification

message
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Our goal is to classify the potential harm posed to
a device by a third party application. The classi-
fication will be done using the Java-based machine
learning suite−Weka.

4 Classification

4.1 Classification Model

To come up with a classification model, information
from published papers [5], [6], [2], and [3] about the
behavior of mobile malware was used to create a
training set. Specifically, information was gathered
about what data is required to pose certain harm
to mobile devices. The pieces of data used for this
model were the 16 variables tracked by TaintDroid
listed below:

Device Serial Number Location
Address Book (ContactsProvider) SMS
Microphone Input Phone Number
NET-Based Location GPS Location
Last known Location IMEI
Browser History IMSI
ICCID (SIM Card Identifier) Camera
User account information Accelerometer

From findings about the behavior of malware, a
classification model was designed. As an example,
the training set for classification will look somewhat
like that shown below where for every kind of mo-
bile threat, there is a corresponding combinations
of tainted data that could be used to effect such a
threat. There will be more categories and multiple
instances of data combinations for the same threat
in the actual training set. The hierarchy can be seen
here:

Spyware

• Selling user Information: IMEI, IMSI, Device
Serial Number

• Spouse/Parent Tracking: Location∗, Micro-
phone, Accelerometer, SMS, Browser His-
tory, Camera.

Malware

• Premium Rate Call: SMS, Phone Number

• SMS Spam: SMS, Phone Number, Contact
List

• Ransom: IMEI, Browser History

• Stealing User Credentials: User Account In-
formation

• Selling User Information: Browser History,
Contact Information, Location∗, User Ac-
count Information, IMSI, ICCID, IMEI

Grayware/Adware

• Targeted Ad: Location, IMEI, IMSI, ICCID,
User Account Information, Browser History,
Device Serial Number, Phone Number.

* Location is any of GPS, NET-based or Last
Known locations.

4.2 Weka

Weka is an open source machine learning and data
mining suite written in Java and developed at the
University of Waikato, New Zealand. It contains
a collection of visualization tools and algorithms
for data analysis and predictive modeling, together
with graphical user interfaces. It also allows inte-
gration with Java projects in cases where this func-
tionality is desired. Weka classifiers take as input a
file that contains the list of attributes and the pos-
sible values for each attribute. Weka input files also
contain a set of examples with which the catego-
rization model is trained. An example is a list of
attribute values with the target attribute value be-
ing last. The image below shows an example input
file for Weka classification:

Figure 3: Sample input file for Weka Categorization

4.3 Decision Trees

Weka implements a large number of classification
algorithms, but the choice for this project was the
decision tree algorithm. Decision trees are directed
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tree-like graphs of decisions and their possible con-
sequences. Nodes in a decision tree represent at-
tributes and edges emerging from a node correspond
to the possible values of the attribute represented by
that node. Leaf nodes are target attributes or the
classes/labels. In building a decision tree, the root
node is chosen to be the attribute that splits the
training set in such a way that the entropy of the
training set is minimum. Vaguely speaking, the root
node is chosen to be the attribute that divides the
dataset as evenly as possible such that the training
set for each subtree from the root node is as small
as possible. When a new example is to be classified
by a decision tree, the tree is traversed starting from
the root node where the value−in the example to be
classified−of the attribute represented by the root
node is compared to the branches that emerge from
the root node. Based on this value, the traversal of
the tree is continued at the corresponding subtree.
This process is continued until a leaf node (which
is the appropriate classification for the example) is
reached. An example decision tree to clasify/decide
if a day is suitable for playing tennis is shown.

Figure 4: Decision tree for deciding whether the

weather is suitable for playing tennis. Excerpt from

Lisa Meeden’s slides on Decision Trees in Artificial

Intelligence course at Swarthmore College; Fall 2013.

For our classification problem, the value of the
attributes−the sixteen pieces of data tracked by
TaintDroid−would be binary. The value for an at-
tribute in an application’s example would be 1 if
the application sent out data for that attribute and
0 otherwise. Since the attributes have binary values,
the choice of a decision tree was natural as decision
trees are suited for binary-valued attributes. De-

cision trees also have the advantage of being easy
to understand and being less computationally in-
tensive as compared with other popular categoriza-
tion/machine learning models, such as artificial neu-
ral networks.

5 Evaluation

5.1 Test Malware

A few malicious Android applications were hand-
picked from an online malware repository. These
applications were designed specifically to export
data from a host device to an external server over
the network. A screenshot of one such application
gi60s−‘gone in 60 seconds’ running is shown in Fig-
ure 5 below. gi60s sends user’s contacts, messages,
recent calls and browser history to an external server
in under 60 seconds. To ensure there is data to be
sent, dummy contacts were created in the contact
list of the emulator, browser history was generated
on the emulator, and dummy texts were sent to the
emulator via telnet on port <5554>.

Figure 5: Snapshot of test application gonein60seconds

running on the Android emulator.

5.2 Results

The performance of a classification model is only
as good as the quality of the information in the
training set used in creating the classifier. The
limit of the performance of our classification
system depends on the accuracy of the model
we create. While it is impossible to perfectly
predict what an application is going to do with
data sent out of a mobile device, the intention
of this project was to predict as accurately as
possible−based on past empirical findings−what
harm a mobile device could fall victim to. How-
ever, the primary goal of this project was to
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have the generated threat categorization create a
sense of imminent danger that would cause users to
take notifications of malware threats more seriously.

We were able to successfully acquire and build
the TaintDroid source code without errors. The im-
age below shows TaintDroid running on the Android
emulator.

Figure 6: TaintDroid running as a background process

on emulator.

At a high level, the functionality of TaintDroid is
divided into two steps. First, there is a TaintDroid-
NotifyService [NotifyService] that does the actual
taint tracking and secondly there is a TaintDroid-
NotifyController that handles the GUI for the no-
tification. NotifyService contains two subclasses: a
Producer and a Consumer class. The Producer class
is responsible for populating a logfile from which the
Consumer class reads and sends data to the Tanit-
DroidController for the GUI display. We noticed
during development that the Consumer class had
bugs that hindered the reading of data from the log-
file which consequently prevented TaintDroid from
generating notifications. Upon further investigation
from TaintDroid developer forums, it was gathered
that there were some incompatibilties with the An-
droid 4.1 file I/O. On checking the Android logcat,
we confirmed the problem with the Consumer class
which is highlighted in Figure 8 below. Figure 7
shows that the Controller was successfully instanti-
ated when the TaintDroid app is started:

Figure 7: Android logcat of background processes on

the emulator.

Figure 8: Android logcat of background processes on

the emulator.

The integration of Weka to TaintDroid was
successful as we were able to rebuild the Taint-
Droid source without errors after including Weka
libraries and adding Weka to the build path of the
TaintDroid project. The behavior of TaintDroid
was consistent as before the integration with Weka.
We also tested our Weka classifier with a simple
Java program to make sure we can use Weka
libraries from Java code without a GUI. Weka is a
GUI-based suite and full functionality from within
Java source code isn’t guaranteed.

The fact that NotifyService is triggered on launch-
ing a malicious application and not with regular ap-
plications (that do not use the network) confirms
that the integration of TaintDroid with Weka did
not hinder the functionality of TaintDroid. In addi-
tion, a replica implementation of the Weka classifier
in a simple Java program worked without errors con-
firming that the concept of our project was success-
ful. As mentioned earlier, the accuracy of the Weka
classification is only as good as the malware behav-
ior model that was generated from our findings in
published research work, but our main objective of
user friendly warning is functionals.

6 Conclusion

Our system, although not fully functional, was able
to detect and categorize threats on our emulated
Android device. With this capability, an Android
malware attack can be quickly detected and as-
sessed based on its threat level. This sort of power
could prove tremendously helpful to average users
as they seek to keep their devices safe. More seri-
ously, damaging apps could be isolated and removed
from infected phones. Since our program uses ma-
chine learning techniques, it can learn and adapt
to different attacks it faces, helping to keep it cur-
rent with new generations of malware which are con-
stantly adapting to stay ahead of Android security
software. With enough training and keeping current
with the malware attacks that spring up, software
such as ours should be able to be a potent tool in the
battle between mobile malware and their victims.

7 Future Work

Given more time and resources, the next step in
our project would be to implement our malware
categorizer on an Android phone. Because of nu-
merous issues with integrating the WEKA software
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into a mobile environment, we were forced to run
our code on an Android emulator. Changes to the
functionality of our program could include taking
into account the level of permissions willingly
granted to applications that we test. This would
help avoid false positives, since we do not want the
Google Maps application to trigger a warning for
sending out the phones location.

If we were to scale up this app for use by the gen-
eral public, a number of modifications to the Taint-
Droid source code would also be required. Cur-
rently, TaintDroid only runs on Android versions
up to 4.1, while the current Android release is 4.4.
Also, we would need to broaden the scope of de-
vices that TaintDroid runs on, which is currently
limited to just two phones: the Nexus S and the
Galaxy Nexus. Additionally, installing TaintDroid
requires the user to root the device, which bypasses
many of the default Android security features and
can make phones even more vulnerable to attacks.
We would want our software to be downloadable
and installable straight from the Android market to
maximize its user-friendliness. Once our software is
up and running and is known and trusted by An-
droid users and developers, it can be used on exist-
ing applicationss to impart a security rating based
on how dangerous it is categorized by our software.
It is our hope that such a system would encourage
Android users to think more carefully about how
their data is used and hold developers to a higher
standard for security and privacy.
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Abstract

Most modern software has some asynchronous interaction with its environment. We present
an alternative solution to the two existing major paradigms, event handlers and parallel
threads, for managing asynchronous events. Event-driven programming in the loop/handler
pattern can simulate concurrency, but it scales poorly as task complexity increases. Mul-
tithreading allows the programmer to specify true simultaneous control flows, but parallel
programming is notoriously bug-prone.

The Charcoal programming language addresses these issues through a pseudo-preemptive
threading framework called activities. We evaluate the comparative performance of different
implementations of the yield concurrency primitive for activities in Charcoal and find that its
speed will permit the Charcoal compiler to insert implicit yield statements without unduly
increasing program overhead.

1 Introduction

Mainstream software today is expected to successfully handle asynchronous events. For
instance, a software system often needs to wait for user input or receive network packets.
To date, solutions for handling asynchronicity have fallen into two general categories: event
handlers/call-back functions and concurrent, parallelizable threads.

One way to wait for asynchronous events without continuous blocking is to use an event
loop-and-handler pattern, which checks for newly arrived events and calls the appropriate
handler function. However, when multiple anticipated events can coincide with each other—
such as keyboard input, mouse clicks, and network signals—the event handler design pattern
becomes increasingly complex and difficult to understand. Moreover, the control flow of
actually responding to an event must be handled in a callback function, which may be
forced to duplicate code implemented elsewhere in the program control flow.

Alternatively, multiple threads or processes can be created to wait for events while effi-
ciently sharing processor time so that other parts of the program can still run. This type of
concurrent multithreading has both the advantages and the disadvantages of parallel pro-
gramming. Although threads form an intuitive control flow model, in practice they spawn
subtle, hard-to-detect bugs such as race conditions.
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Most threading models currently in use are forms of concurrent threads which run in
parallel, but an alternative model also exists: cooperative threading. Cooperative threads
maintain control until they explicitly yield to another thread, and shared data structures
can only be accessed once control is yielded. However, in a traditional cooperative thread-
ing framework, the programmer must manually specify context switches between threads.
Charcoal is a new C-dialect programming language under active development which seeks to
address this problem by implementing a hybrid, pseudo-preemptive threading framework.

In this paper, we present an evaluation of the performance of the yield concurrency
primitive in Charcoal. Unlike most cooperative threads, Charcoal’s compiler inserts implicit
yield statements after code blocks; while the programmer has some control over yielding,
the purpose of this compiler behavior is to automate context switching logic in cooperative
threads. Therefore, a typical Charcoal program expects to frequently invoke yield, making
the efficiency of the yield call very important.

We implement multiple versions of yield and compare their speed and efficiency in order to
confirm that the Charcoal compiler will be able to insert implicit yield statements without
greatly impacting program overhead. Moreover, we determine the optimal frequency of
calling yield while minimizing overhead. The results of our evaluation will be influential to
the design and evolution of the Charcoal language.

The next section of this paper summarizes background context and related work. Sec-
tion 3 introduces Charcoal and elaborates on its driving motivations. We evaluate our
implementation of yield and present the results of our tests in Section 4. Finally, we discuss
final conclusions and future work in Section 5.

2 Background

In event-driven programming, an event loop periodically checks for input messages or events.
For instance, an event such as a key press may trigger a callback function which responds
to this input by writing a particular corresponding character to the screen. This technique
is useful for reacting simply and appropriately to multiple sources of input which may occur
asynchronously. However, it also presents a major problem: all computation must be com-
pleted in callback functions, while the event loop is reserved for waiting on the next event.
This control flow can lead to messy, unconventional, and inefficient code as the programmer
attempts to work around the enforced structure [9].

Event-driven programs often give the illusion of concurrency, but in fact they are not
multithreaded [5]. Attempting to parallelize an event-driven program, such as by running
event handlers on multiple processors, would significantly warp the intended control flow of
the program. Multithreading addresses some of the problems of event-driven programming
by allowing the programmer to express multiple, simultaneous flows, rather than simulating
concurrency with a series of callback functions. However, parallel programs are often more
difficult to write because the programmer must handle race conditions and concurrent ac-
cesses leading to data races; even so-called “benign” data races can result in program failures
[3, 7].

Both of these solutions solve the problem of asynchronous event handling while also en-
suring that processors do not spend a significant portion of their time waiting idle. However,
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Figure 1: A diagram of the control flow of 3 cooperative threads yielding to each other [8].

event loop/handler patterns can lead to complicated control flow, since long-running tasks
must be broken up into multiple event handling invocations. While the design pattern of
multiple threads or processes works well on a single CPU, the ability of threads to run
in parallel—combined with the advent of multiprocessor machines—has led to significantly
more bug-prone thread-based event handling due to the inherently complex nature of parallel
processing [6]. Prior research to solve this problem has focused on making parallel programs
more reliable, such as through deterministic multithreading [2] or stable multithreading sys-
tems [4, 10].

In contrast to the conventional, concurrent threading framework, cooperative threads
were designed with shared data access in mind. While conventional threads guarantee that
each thread will eventually yield control to another thread, cooperative threads guarantee
that a thread will never unexpectedly yield control to another thread [1]. Data structures
shared between cooperative threads can only be accessed by other threads when the current
thread gives up control of these resources. Only one cooperative thread runs at a time, and
the programmer must handle context switching between threads by placing explicit yield
statements throughout his or her code.

Cooperative threads are equivalent to event-driven programs in their safety from data
races. In fact, a program with cooperative threads can be converted into an equivalent event-
driven program by replacing every block call with a return to the event loop, although this
process requires first-class continuations (an exactly specified order of instructions). Thus,
cooperative threads are an expressive alternative to event-driven programming. However,
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a cooperative multithreading approach depends on the programmer spending the time to
determine when threads should yield control. Although cooperative threads have existed for a
relatively long time, they have never seen the same popularity as event handlers or preemptive
threads. We are not aware of any related research which attempts to combine the advantages
of cooperative threading with the automatic resource-sharing of parallel threading, as the
Charcoal thread framework is designed to do.

3 Charcoal

Our work implements part of the Charcoal programming language, a C dialect under active
development which employs activities rather than threads [11]. Activities represent a middle
ground in the choice between preemptive and cooperative thread programming. They are
implemented in a manner similar to cooperative threads but are equally influenced by the
functionality of preemptive threads, since the compiler inserts a number of implicit yield
invocations throughout the program. In other words, Charcoal provides cooperative threads
without requiring the programmer to explicitly place yield statements in his or her code.

We focus on implementing, profiling, and optimizing different implementations of the
Charcoal yield function in order to make it as efficient as possible. Three different vari-
ables affect whether or not a Charcoal activity will context-switch (i.e., give up control of
processing power) to another activity when yield is called.

1. A programmer-controlled unyielding flag can prevent context switches from occurring.
It allows the programmer to override the compiler by allowing one activity to run unin-
terrupted for long periods of time. Unyielding is an important synchronicity primitive
because it permits large atomic sections of code.

2. After the passage of a certain length of time, a context switch should occur. Thus, yield
needs to be invoked at just the right frequency; too often will lead to large overhead,
whereas too rarely will result in the resource starvation of other threads.

3. Certain kinds of interruptions, such as a signal delivery, should trigger a context-switching
yield even if the activity has only been running for a short period of time.

Our first version of yield uses a pair of activity-shared atomic integers, as well as an
alarm timer, to achieve this functionality. The first atomic integer, normally set to 0, is
incremented when the unyielding flag is set and decremented after the unyielding block is
finished. The second atomic integer is initialized to 0 and set to 1 by the alarm after a
compiler-specified period of time. For a yield to context-switch, the unyielding flag must not
have been set and the timeout integer must have been incremented.

Our second version of yield improves on the first by using only a single activity with a
shared atomic integer and alarm timer. This atomic integer is initialized to 1, incremented
by the unyielding flag (and subsequently decremented after an unyielding block of code), and
decremented by the alarm after the same pre-specified period of time. This implementation
combines the functionality of both atomic integers in the first implementation, ostensibly
lowering the computation costs of a yield statement.
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Figure 2: Results over 100 iterations for context-switching yield.

Figure 3: Results over 100 iterations for non-context-switching yield.
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4 Evaluation

In this section, we give an evaluation of our yield implementation in Charcoal. Our ex-
perimental study has two main focuses. First, we contrast two yield implementations for
correctness and efficiency. The importance of correctness, both forcing only a single activity
to run and allowing yields between activities, is obvious. Because both context-switching and
non-context-switching yields will incur additional overhead, a more efficient yield function
will decrease the runtime cost of using Charcoal.

Secondly, we measure the frequency of yield placement in code with varying overhead
costs over the program runtime. These measurements provide useful information for balanc-
ing potential thread starvation from infrequently calling yield against the increased overall
runtime of a program implemented in Charcoal. By illustrating a range of frequency-overhead
relationships, we allow software developers to choose the relationship between yield frequency
and overhead that best fits their use case.

4.1 Yield Runtime Characteristics

Both implementations of yield were successful in mediating processor access among multiple
activities. By running the same program with and without 200,000 context-switching yield
calls, we found that the context-switching version of our first yield function took an average of
5-6 microseconds to run. In comparison, the non-context-switching yield took approximately
50-60 nanoseconds, which confirms our suspicion that a successful context switch takes up
the majority of the additional runtime incurred by yield. The results of these tests are shown
in Figures 2 and 3.

Our second yield implementation was significantly more efficient. The context-switching
version of yield took an average of 5 microseconds to run, as seen in Figure 4. Similarly,
Figure 5 shows the results for the non-context-switching version of yield, which took 30-40
nanoseconds—an approximately 50% decrease in runtime compared to the first version.

Figure 4: Results over 100 iterations for context-switching efficient yield.
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Figure 5: Results over 100 iterations for non-context-switching efficient yield.

Given these preliminary results, we chose to perform our remaining tests on the second,
more efficient yield implementation.

4.2 Yield Placement

In order to characterize the overhead of repeatedly calling yield in a Charcoal program, we
constructed a nested loop test as shown in Figure 6. This test simulates an unyielding inner
loop of m iterations within a larger loop, for a total of nm loop iterations. The function
strcpy was chosen because it is commonly used in C programming and incurs a relatively
large overhead.

for (i = 0; i < n; i++){

for (j = 0; j < m; j++){

strcpy(a, b, buffer_size);

}

yield();

}

Figure 6: The nested loop test for yield overhead.

We ran the test with 1 million total calls to strcpy and varied the number of iterations
of the inner loop. We defined the overhead of yield as

total time− noyield time

total time

where total time is the elapsed time of the nested loop test and noyield time is the elapsed
time of nm calls to strcpy (with no yields).
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As Figure 7 indicates, the overhead of yield is inordinately high if it is called after every
strcpy. The overhead declines exponentially with the number of inner loop iterations. Qual-
itatively, this result confirms our intuition that there exists a dropoff point where reducing
the overhead of yield by calling it less often does not benefit the program’s performance and
moreover introduces the issue of thread starvation. Quantitatively, we found the dropoff
point to be at n = 1000.

Figure 7: Yield overhead as the number of loop iterations increases for the memcpy test.

5 Conclusions and Future Work

From these experiments, we conclude that the placement of implicit yield statements by
the compiler entails a larger number of yield statements than if the programmer writes
explicit yield statements, due to the necessity of ensuring that thread starvation does not
occur without taking domain knowledge into account. The relatively low cost of context-
switching yields—and even more importantly, the nanosecond-range cost of non-context-
switching yields—demonstrates that the cost of individual yields can be amortized to a
minimal overhead when called frequently. Together, these results suggest the viability of
a cooperative threading framework based on compiler-introduced implicit yield statements.
Such a framework will allow programmers to achieve the benefits of a cooperative threading
paradigm without the burden of determining the best places for yield statements, which is
a daunting task for complex programs with many threads.

The preliminary success of the yield concurrency primitive points toward a number of
avenues for future research. First, we would like to continue testing the optimal frequency
of yield calls by using a multithreaded production-level code base to simulate yield patterns.
Such a rigorous test would confirm our current results based on the strcpy and memcpy func-
tions. Furthermore, other concurrency primitives such as mutex also need to be thoughtfully
designed and carefully tested.
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There remains much to be done on Charcoal before it can launch as a programming
language for intelligent cooperative threading. We have outlined here our contribution, con-
firming the viability of the yield implementation, and we hope that our work will inspire oth-
ers to pursue a similar plan of research with respect to pseudo-preemptive/semi-cooperative
threading frameworks.
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Abstract

We present an auto-tuning system for sorting algo-
rithms that makes use of the various levels of par-
allelism present in modern systems. Auto-tuning
involves empirically searching through a parame-
ter space to choose a best or very good combina-
tion of parameters. Our empirical search algorithm
considers the input data’s size and standard devi-
ation, as well as different hardware characteristics
and multiple sorting algorithms. Hardware param-
eters involved are CPU cores and caches, along with
the presence of GPU accelerators and other nodes
connected via the network. The sorting algorithms
that we implement are quick sort, merge sort, and
bitonic sort.

The novelty of our sorting library lies in adaptiv-
ity to different degrees of hardware parallelism. If
the parameters related to parallelism are not opti-
mally chosen, there can be unnecessary slowdown
resulting from underutilization or overutilization of
resources. Our results suggest that our auto-tuning
framework adapts to the complexities inherent in
modern systems. For example, our results show
running the best parameter combination from a six-
teen core machine on a four core machine results
in a run-time about 20% slower than the best pa-
rameters chosen by our library for that machine.
Further, if we extrapolate our results to data sets
that are significantly larger, it is reasonable to ex-
pect that the performance degradation expands to
minutes or even hours.

1 Introduction

In Section 1.1, we will discuss background informa-
tion related to previous uses of auto-tuning, how we
auto-tune sorting algorithms, and the importance
of sorting large data and thus the importance of

using auto-tuning to sort as fast as possible. In
section 2.2, we will discuss previous work related
to auto-tuning sorting libraries.

1.1 Background

Sorting is one of the most performance-critical and
well-researched families of algorithms in computer
science. Automatic performance tuning, or auto-
tuning, is a more emergent topic, but one that is
now rising in popularity. Research into both gen-
eral auto-tuning and domain-specific auto-tuning
has grown in the last decade as a way to keep up
with the complexity of modern hardware systems.
Projects like ATLAS, FFTW, and SPIRAL tune
numerical algorithms for different architectures and
memory hierarchies for high performance applica-
tions. The Active Harmony project is an exam-
ple of a generalized auto-tuning framework. Our
project applies the methods of auto-tuning to sort-
ing algorithms in order to gain high performance
across various system architectures.

Auto-tuning involves two basic steps: genera-
tion of empirical data using various combinations of
parameters, and searching through this parameter
space in order to find a near optimal combination.
The parameters we examine are the randomness, or
standard deviation, of the input data as well as its
size. We also take into consideration the cache size,
number of cores available, and whether we are sort-
ing using the CPU, GPU, or the network. Our li-
brary provides the user with a single API to a set of
sorting algorithms that are performance tested and
tuned based on the input data and the underlying
machine architecture. Our system requires install-
time tuning but further builds up its database with
each call to it.

Our project is motivated by the idea that auto-
tuning sorting algorithms can achieve considerable
speedup over naive implementations by estimating
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the optimal parameters for the sorting of a given
data set. Especially when sorting large sets of data,
knowing the optimal parameters greatly decreases
the run-time and saves the user the time it would
take to figure out what the optimal parameters
are by themselves and port their solution to differ-
ent systems. The overhead of auto-tuning can be
kept low enough that picking the right algorithms
is worth the extra cost of finding it.

Sorting large sets of data is integral to sev-
eral real world applications. Google’s MapReduce
(or Apache’s Hadoop), a distributed programming
model for processing large data sets, uses a map
function that processes a single key-value pair and
generates many intermediate pairs. The map step
does this for all key-value pairs and then the reduce
function combines all values associated with the
same intermediate key. MapReduce may be used to
produce various representations of the graph struc-
ture of web documents, generate summaries of the
number of pages crawled per web host, or determine
the set of the most frequent queries a search engine
gets per day. Each of these applications requires
MapReduce to merge large inputs of key-value pairs
which is done by sorting them by key in its in-
termediate reduce step [2]. Another application
that does a similar sorting process is used by the
Environmental Protection Agency (EPA). The En-
vironmental Monitoring and Assessment Program,
also known as EMAP, monitors the availability and
status of a given natural resource over a large ar-
eas. EMAP works by doing systematic sampling of
smaller 1.8km areas and representing these samples
as key-value pairs. When all of the key-value pairs
that represent these samples are sorted, it gives the
EPA some data about the status of a resource over
large areas [1]. Some other examples include data
mining or web indexing, which involves indexing
the content of websites for use by search engines.
[3] All of these examples show the importance of
sorting large sets of data efficiently.

1.2 Related Work

Research into auto-tuning domain-specific prob-
lems has been less extensive the further one gets
from numerical methods and linear algebra li-
braries. Xiamong Li, Maria Jesus Garzaran, and
David Padua have authored two papers on auto-
tuned sorting libraries.

Their first paper, “A Dynamically Tuned Sort-
ing Library” [4], focuses on examining the inputs to
sorting algorithms and using an empirical search al-
gorithm to figure out what combinations of param-
eters generate optimal performance. They focus
on quick sort, multi-way merge sort and a cache-
conscious radix sort.

More specifically, Li et al. showed that both ar-
chitectural factors and the input data’s characteris-
tics were important factors in the run-time of sort-
ing algorithms. Architectural factors they studied
included cache size, cache line size, and the number
of registers available on-chip. Their library prelim-
inarily scanned the data being sorted to determine
its size and entropy, a measure related to standard
deviation. Their results showed that some sort-
ing algorithms perform better on data with less of
a distribution, others do better with a wider dis-
tribution, and still others are less sensitive to the
input data’s randomness.

Their second paper, “Optimizing Sorting with
Genetic Algorithms”[5], concentrates more on the
Artificial Intelligence concepts used to speed up the
empirical search phase of auto-tuning. They use a
genetic algorithm to search through the many com-
binations of parameters that could be used in order
to adaptively partition the data and select the best
sorting routines for each partition. In this way,
they can use a different sorting algorithm for each
partition, based on that partition’s characteristics.

For each sorting algorithm, the authors use a li-
brary generator that searches through algorithm-
specific parameters to find the optimal parameters
for that algorithm. Some of the examples of pa-
rameters that the library generator searches are the
value of the pivot used in the first phase of quick
sort and the size and number of children in the heap
used by multi-way merge sort.

Li, Garzaran, and Padua did not implement any
parallel sorting algorithms, however, so our project
in some ways extends their work by considering the
optimal combinations of different levels of paral-
lelism. By including GPU and over-the-the network
solutions in our library, we get a much higher level
of potential parallelism in our system. Addition-
ally, the offloading point for moving data over the
network or to a GPU from a single core is difficult
to pinpoint in modern systems, making them good
candidates for auto-tuning. Auto-tuning supplies
the adaptability required to deal with all of these
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hardware complexities.

2 Our Idea

2.1 Tuning Parameters

Our system auto-tunes three parameters for sorting
the data: the type of sorting algorithm, the number
of threads used to sort the data, and whether the
data will be sorted over the network. Our library
implements three sorting algorithms: quick sort,
merge sort, and bitonic sort. Quick sort and merge
sort are performed on the CPU, while bitonic sort
is only performed on the machine’s GPU. Bitonic
sort is an in-place, comparison-based implementa-
tion of a sorting network. Bitonic sort has a run-
time of O(nlog2(n)). Therefore, it is not optimal
for running on a CPU when compared to quick sort
and merge sort, which both run in O(nlog(n)) time.
However, bitonic sort is an embarrassingly parallel
algorithm, so it runs faster on many-core architec-
tures that are highly parallel, such as GPUs. [6]
We decided to choose quick sort and merge sort
because previous research had shown the two sort-
ing algorithms differ in performance as the size and
the standard deviation of the input data changes[4]
and are easily parallelizable. Other algorithms such
as radix sort can be included in our library in the
future with ease, as our library is designed to be
modular.

Our system allows for the use of 2n threads
to sort the data on multicore processors. These
threads will be CPU threads if the algorithm be-
ing run is quick sort or merge sort. If the algo-
rithm used is bitonic sort, then GPU threads are
used. The CPU threads are implemented using
the pthreads library and our bitonic sort is imple-
mented using CUDA.

As to the use of the network to sort the data, this
parameter is binary, either the data is sorted over
the network or it is not sorted over the network. If
the network is used, we scatter the input data over
the network, sort each chunk of data on the indi-
vidual nodes (using CPU threads or the GPU), and
then merge the chunks back together in a tourna-
ment fashion. Our network merge is implemented
using the MPI library.

2.2 Training

In order to pick the appropriate parameter com-
binations, the system must have some knowledge
of what parameters work best for that machine.
To generate such knowledge the system creates a
database of text files that record how long it took a
specific machine to sort some set of data using one
of the parameter combinations discussed in Section
2.1. The information in each of the text files can
be classified into three groups: machine specifica-
tions, data characteristics, and sorting parameters.
The machine specifications include the number of
cores, the cache size, and the GPU size. The data
characteristics include the size of the data and the
standard deviation of the data. The sorting pa-
rameters include the type of algorithm used, the
number of the threads used, and whether it was
sorted over the network.

To generate a large database of these tuning files,
our library runs every possible parameter combina-
tion on many sets of data that vary in both size
and standard deviation during an installation pe-
riod (this took about an hour to an hour and fifteen
minutes for all systems we used). We repeated this
process on all the different machines available to
us in order to obtain some variety in the number
of cores, the size of the cache, and the size of the
GPU. These text files are saved in the format of
Figure 1. The content of the data files is exactly
the same as its file name. The only difference is
the parameters are listed line by line, as opposed
to being separated by underscores.

Figure 1: Example data file

2.3 Parameter Search

With the database generated, the system is able
to search through it to determine the best sorting
parameters to use given the machine’s character-
istics and the data’s characteristics. Our system’s
parameter search is depicted in Figure 2. Because
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the parameter space is not too large, we use a one-
at-a-time filtering search procedure.

Figure 2: Depiction of parameter search

More specifically, the system first determines the
size and the standard deviation of the data by sam-
pling over the list. It then scans the text files in the
database, searching for the text files whose data
size is closest to that of the data to be sorted. The
text files that do not have this closest data size
are immediately removed from the list of text files
to continue searching through. After filtering by
the size of the data, the system searches through
the remaining text files for the text files with clos-
est standard deviation to that of the data to be
sorted. It then removes the files that do not have
this closest standard deviation as well. This search
is continued by filtering through text files that best
match the host machine’s specifications. The sys-
tem filters first by number of cores, then by the size
of the cache, and then by the size of the GPU. Once
the text files have been filtered based on machine
specifications, the system searches through the re-
maining files in order to find the shortest run-time.
The system then uses the parameters of the text
file with this shortest run-time to sort the user’s
input data.

3 Evaluation

In this section, we present the results from run-
ning our system on machines with different spec-
ifications. In Section 3.1, we discuss the enviro-
mental setup of our system on various machines.
In Section 3.2, we present data pertaining to the
performance of our system on machines that differ
in specifications. In Section 3.3, we make a base-
line comparison between our system and C’s stdlib
qsort().

3.1 Environmental Setup

The two types of machines we ran our tests on are
listed in Table 1. Note that when we ran our system
over the network, all machines being used belonged
to the same group in terms of machine type. Both
of these types of machines ran a version of the Linux
operating system.

Unless the data files, as discussed in Section 2.1,
had already been imported from previous trainings,
the data files had to be generated by training it over
our set of input files. The input files varied in both
size and standard deviation. The size of the input
files ranged from 16 KB to 512 MB. The standard
deviation ranged from 5 to 100,000. Overall for a
given training session, we used 35 input files, each
with a different size and standard deviation. Our
system took an hour and fifteen minutes to fully
train our system on machines of the classification
Machine Type 1 from Table 1. For machines of the
classification Machine Type 2, it took only an hour
to fully train our system for that type of machine.

3.2 Performance of System

After training our system on both types of ma-
chines, we used our system to sort data of vary-
ing size and standard deviation on both types of
machines. We first tested our system on the ma-
chine classified as Machine Type 1 from Table 1.
We present the results of these tests in Figure 3.

Figure 3: Performance on Machine Type 1

Figure 3 has various lines, consisting of three dif-
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Machine Type 1 Machine Type 2
Processor AMD Opteron 6128 @ 2.0 GHz Intel Core i5-3470S @ 2.9 GHz

Number of Cores 16 4
L2 Cache Size 512 KB 6144 KB

GPU NVIDIA Quadro 600 NVIDIA GeForce GTX 660M
GPU Size 1047744 KB 523968 KB

Table 1: Specifications of machines used in tests

ferent colors. Each line represents a unique param-
eter for a given sorting algorithm. For example,
the top blue line in Figure 3 represents running our
system using a single threaded quick sort not over
the network. Toward the bottom of Figure 3 there
are many black dots. These black dots represent
the run-time of our system using the parameters
decided from the parameter search. For all of the
red, blue, and green lines in Figure 3, the parameter
search was not used, as the parameters were explic-
itly chosen from the start. However, the parameter
search is included in the run-time when the system
sorted the data using the parameters obtained from
performing the parameter search.

In general, we found that the overhead due to
the parameter search was quite small when com-
pared to the actual time required to sort the data.
On average, the parameter search took 50 millisec-
onds. This overhead may increase if the data file
search space increases due to additional training on
machines and data sets that are not accounted for
in the data file set. Overall, we feel, even if the
data file space increases, the overhead will never
be overwhelmingly large because the system scans
through a list of the file names that have yet to be
filtered out, as opposed to continually performing
I/O reads on the data files themselves.

By performing the parameter search, our sys-
tem picked the best parameter combinations for
this machine. However, the parameters chosen did
vary depending on the input selected. After various
tests, the main input characteristic that affected
the choice of parameters was the size of the input.

As to parameters chosen by the parameter search
in Figure 3, they are listed in Table 2. By observing
the parameters chosen by the parameter search, in
Table 2, for relatively small data sizes, the parame-
ters chosen vary considerably among different data
sizes. As Figure 3 shows, the parameter run-time
curves are all very close together, meaning that the

best choice in parameters up to 1 MB is not essen-
tial. In reality, the best parameter combination is
around 10 milliseconds faster than the next best op-
tion. So, even if the best parameter is chosen, there
is a chance another set of parameters can beat it
due to noise in the system. In this range, there
really is only a noticable difference when using the
bitonic sort and the single threaded quick sort, but
our system avoids those by performing the param-
eter search.

In the 64 MB to 512 MB range from Table 2,
the best parameters converge to the eight-threaded
merge sort not over the network. This is evi-
dent as well in Figure 3 because as the data size
increases, one parameter combination, the eight-
threaded merge sort not over the network, starts
to separate itself from the rest of the parameter
combinations in terms of lowest run-time.

In this test run, the input data’s standard de-
viation was 2888. We did the same analysis as in
Figure 3 and Table 2 for input data with a stan-
dard deviation of 10, 100, 1000, and 100,000. The
results from those test were nearly the same as the
results from the test when the standard deviation
was 2888. For smaller input data sizes, the best
parameter chosen varied. Then, for the large in-
put data sizes, the best parameters converged to
the eight-thread merge sort not over the network.
These results were not unexpected. In Section 1.2,
we reference “A Dynamically Tuned Sorting Li-
brary” [4] where the authors focus on how standard
deviations affect sorting run-time. They choose al-
gorithms, like radix sort, and tuning parameters
that are heavily affected more by standard devia-
tion. In our system, we do not include most of the
parameters that are heavily influenced by standard
deviation. The reason we included standard devi-
ation into our auto-tuning system was to see if it
had any affect on our results as it did with the ref-
erenced paper. Based on the results, the standard
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Size of Input Machine Type Algorithm Threads Network? run-time (ms)
16 KB 1 merge sort 8 no 248
128 KB 1 merge sort 2 no 253
1 MB 1 quick sort 8 no 339
16 MB 1 quick sort 4 yes 1461
64 MB 1 merge sort 8 no 5081
128 MB 1 merge sort 8 no 9996
512 MB 1 merge sort 8 no 20226
16 KB 2 merge sort 2 no 143
128 KB 2 merge sort 8 no 161
1 MB 2 quick sort 4 no 163
16 MB 2 merge sort 8 no 896
64 MB 2 merge sort 4 no 2814
128 MB 2 merge sort 4 yes 5833
512 MB 2 merge sort 4 yes 11349

Table 2: Parameters chosen based on type of machine and varying the input size

deviation has no affect on our tuning parameters.

Another noticeable discrepancy is that the
bitonic sort is never chosen by our empirical search
method for the tests we ran, as shown in Table 2
and is considerably slower than the best parame-
ter for all data sizes, as displayed in 3. The main
reason that this occurs is that our input sizes are
not large enough to reap the benefits from using the
GPU. The GPU has relatively large overhead when
reading and writing to and from the GPU. So, if not
enough data is used, the overhead of the GPU will
trump the speedup gained from using the GPU. A
similiar discrepancy can be seen in the network pa-
rameter, where hardly any of the best parameters
chosen used the network. It is similiar in the sense
that performing computation over the network has
a considerable amount of overhead because com-
munication and synchronization is required. As we
point out in our future work section, our system’s
scalability needs to be tested with larger input data
sets, where the benefits from using the network will
override the overhead and potentially be used as a
part of the best parameter combination for large
data sizes.

In the second test run, we ran our system on a
machine that fell under the category of Machine
Type 2 from Table 1 using data sets varying in size
but all having a standard deviation of 2888. The
results of the tests are displayed in Figure 4.

Figure 4 is the exact same as Figure 3 in terms of
format. Each colored line represents a unique pa-

Figure 4: Performance on Machine Type 2

rameter combination using a particular algorithm.
The black dots represent the run-time of the system
when it used the parameter search to choose the pa-
rameters. The choices of parameters are listed in
Table 2. Based on the the parameters from Table
2 and the curves from Figure 4, the results have
a substantial amount of similarities to the results
from the first type of machines. For example, in
Figure 4 most of the parameter combinations have
about the same performance for sizes less than one
megabyte. This is evident in Table 2 where the best
parameters chosen by the parameter search varies
a substantial amount. The other main similarity
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is that as the size of the input data increases, one
parameter combination starts to win out.

For this system, the best parameter combination
for large data sets was the four-thread merge sort
over the network. This is a particulary significant
result for a few reasons. First, the system did not
choose the same parameter combination as the first
system for large data sizes. The only parameter
that the two had in common was the choice of the
merge sort algorithm. Secondly, the system con-
verged to the choice of using the network when
sorting large sets of data. This means, for this
particular type of machine, we use large enough
sets of data to overcome the overhead from the net-
work and see the speedup from using the network.
Thus, it validates the inclusion of the network as
a parameter option. Finally, notice that the opti-
mal number of threads that the system converged
on was four. This system has four cores. So, it
makes sense that the machine performs best when
there are four threads because any more threads
cause additional overhead. Similarly, for the sys-
tem in the first test, it converged toward the use
of eight threads for large amounts of data. This
makes sense as well becasue that system has six-
teen cores. So, ideally, it will try to use as many
threads as possible till all sixteen cores are used.
In our system, we capped the number of threads
to eight. So, appropriately, our library chose the
eight-thread sort for the first system because it is
the most amount of threads that does not exceed
the number of physical cores on the machine.

As to the payoff from using the system to pick
a set of parameters as opposed to picking an arbi-
trary set of parameters to use for sorting, here are
a few examples. Assuming the data set is large, say
512 MB, if we picked the best parameter combina-
tion from the sixteen core machine and used it to
sort the same data on the four core machine, the
system performance is about 20% worse than the
best parameter combination. For the reverse sce-
nario, where the optimal parameters for the four
core machine were used for the sixteen core, the
performance is about 17% worse. For this data
size, the performance overhead is small in terms
of run-time as both of these percents translate to a
two second slowdown. However, as the data sizes
get larger and larger, this overhead could translate
to minutes or even hours. In the worst case sce-
nario, if the worst possible parameter combination

was arbitrarily picked, the performance worsens by
about twenty fold for both systems when compared
to the best possible parameters.

3.3 Comparison to qsort()

In order to get a sense of how well our system per-
forms compared to other sorting algorithms, we ran
our system against C’s stdlib qsort() function. The
qsort() function is an in-place, sequential quick sort
implemented in C’s standard library. Therefore,
there are no overheads due to using threads, the
network, or the GPU. Figure 5 shows the perfor-
mance of our system, which is running on the pa-
rameters chosen by the parameter search, against
qsort().

Figure 5: Performance compared to C’s stdlib
qsort()

Based on Figure 5, a few observations stand out.
For both machine types, qsort() is faster than our
system for relatively small input data, which is
about 10 MB. The main reason as to why qsort()
is faster for these smaller input sizes is that our
system has a large overhead due to the fact that
it uses the network, threads, and GPU. For exam-
ple, the system is slowed down by factors such as
the synchronization of threads, the synchronization
of nodes in the network, communication between
nodes, setup costs, and teardown costs. One exam-
ple of these costs is that our system always calcu-
lates the standard deviation of the input data set.

However, as the size of the input increases, our
system wins out and outperforms qsort() because
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the parallelism of our system beats its related over-
head. Based on Figure 5, qsort() performs about
42% worse on the sixteen core machine than our
system on the sixteen core machine for a data input
of size 512 MB. For the four core machine and an
input size of 512 MB, qsort() performs about 37%
worse than our system. As the data sizes increases,
it is expected that our system will perform increas-
ingly better than qsort() because the performance
benefits of using the network or the GPU will in-
creasingly outweight their associated overheads.

4 Future Work

Our results indicate that our auto-tuned library
runs faster than C’s stdlib qsort() for input data
sizes larger than 10 MB. Our results also indicate
that the speedup our system achieves in compari-
son to qsort() increases slightly as the input data
size increases. Our future work includes gathering
test results for input data sizes larger than 0.5 GB.
We hypothesize that our sorting library, mainly due
to its use of the network and GPUs, would signifi-
cantly outperform sequential sorting algorithms on
data sets larger than a single node’s main memory.

Our results could be further strengthened by run-
ning experiments on more varied systems, too. Our
results suggest that our auto-tuning framework cor-
rectly picks the most efficient algorithms for the two
different types of machines we used in our experi-
ments, but having more types of hardware would
separate our system even more from a standard
sorting function or library. The basic adaptability
of our system, though, is demonstrated in Table 2.

Another source of potential improvement to our
library would be the inclusion of more sorting al-
gorithms. We chose to implement quick sort and
merge sort in pthreads because of their differ-
ent memory access patterns, but there exist more
cache-conscious sorting algorithms that could be
plugged in to our system, as well as more high
performance sorting algorithms for GPUs. Over-
all, though, the disparity between quick sort and
merge sort shows in our results, demonstrating the
complexity of modern system’s memory hierarchies.

5 Conclusion

In this paper, we introduced our auto-tuning sort-
ing library for parallel sorting slgorithms. More
specifically, our system tunes parameters such as
which algorithm to sort with and the level of par-
allelism by deciding the number of threads to use,
whether to sort over the network, or to use the
GPU. The system makes the decision based on
characteristics of the data such as input size and
standard deviation and characteristics of the ma-
chine, which includes the number of cores, the cache
size, and the GPU size.

The main contribution of this paper is that it
shows how auto-tuning can significantly improve
the performance of parallelized sorting algorithms
running on complex systems. These types of al-
gorithms are advantageous because they can sort
large quantities of data much faster than sequen-
tial sorting algorithms. However, there are various
parameters that must be decided upon when us-
ing such parallel algorithms. The wrong choice of
parameters can lead to undesirable slowdown due
to underutilization of hardware, overutilization of
hardware, or overhead from using a particular piece
of hardware. By using auto-tuning to pick these
parameters, we are able to avoid these potential
slowdowns by selecting the best parameters given
the machine specifications and data characteristics.

Our system accomplishes the goal of being able
to sort large data quickly and adapt based on the
machine’s specifications and the input data set’s
characteristics. Using a 512 MB input file, our sys-
tem sorts large data quickly as it sorts 37% to 42%
faster than C’s sequential quick sort function. It is
also able to adapt to machine specifications. For
a 512 MB input file, it picked different parameter
combinations for two different machines, one four
core and the other a sixteen core machine. When
the optimal parameter combination for the sixteen
core system was used for the four core system, there
was a 20% slowdown. Then when the optimal pa-
rameter combination for the four core system was
used for the sixteen core system, there was a 17%
slowdown. This shows that there is a significant
payoff for choosing parameters that perform the
best on a specific machine.
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Abstract

Detecting malicious network traffic is a
costly problem in modern computing.
Machine learning has been an active area
of research for detecting malicious net-
work activity. Many of the best perform-
ing detection systems require discretiza-
tion of continuous data. Little work has
been done to evaluate how discretization
affects the performance of network in-
trusion detection systems. In this paper,
a knowledge based discretization method
based on the expectation-maximization al-
gorithm is compared against a standard
discretization method, the gain ratio. Both
of these discretization methods are used
in conjunction with random forests, a
widely used classification algorithm. Re-
sults indicate that discretization methods
can have a substantial impact on a network
intrusion detector’s ability to classify net-
work activity, especially novel network at-
tacks. Future work is needed to determine
the exact strenghts and weaknesses of var-
ious discretization methods.

1 Introduction

As computer networks evolve, attacks and exploits
of networks are becoming more complex. Network
security is a large problem in modern computing.
Intrusions of networks cost an estimated $100 bil-
lion per year(Lewis and Baker, 2013). While much

of network defense is an arms race, where exploita-
tions are found and removed as researchers and ma-
licious users discover them, a critical task in net-
work security is to detect malicious traffic in real
time, even if those attacks are unknown. Many
networks now incorporate a network intrusion de-
tector (NID), which performs this task of detect-
ing malicious traffic. Originally, many of these
NID systems were able to recognize known attacks
through expert systems(Shaker Ashoor and Gore,
2011); however, there has been a recent movement
to use machine learning to detect network intrusions.
The ultimate goal of a NID which uses machine
learning is to be able to detect malicious traffic by
learning general properties of network attacks and
applying this knowledge to novel types of network
attacks.

Many successful systems rely on finding splitting
points in the data and often cannot natively handle
continuous values. One problem with these methods
is determining which ranges of values are important.
This leads to the problem of discretization: how to
split continues data up into a set of nominal values
for the purposes of analyzing data for classification.

Discretization can have a large effect on the out-
come of a classification and is especially important
for methods, such as decision trees(Robnik-Sikonja,
2004), which cannot handle continuous features.
Currently, most popular methods of discretization
such as the gain ratio (GR) only allow linear sep-
arations of data through thresholding. See section 2
for an analysis of the GR. One weakness of thresh-
olding is that the optimal choice of value ranges for
classification may require a non-linear partition of
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the data. This is especially true for many types of
network attacks, which may require very specific
ranges for length, time to live, etc. A classifier with
only threshold discretization requires more steps to
represent a non-linear partition of the data.

In order to guarantee that the ideal data partition
is found for a given decision, all possible data ranges
must be considered. However, this quickly becomes
computationally infeasible. Some method must be
used to select which ranges of values are analyzed
when partitioning data for a given decision.

This paper presents clustering based discretiza-
tion of data and compares it with the GR in order
to determine the impact of discretization in network
intrusion detection. Though discretization must lead
to some level of information loss, incorporating the
output of clustering into the discretization system
can also add information to the data set. In this
paper, a discretization method using unsupervised
learning based on Expectation Maximization is ex-
plored.

The rest of the paper is laid out as follows: in
Section 2, the unsupervised learning method for dis-
cretization and the main learning framework for the
proposed NID are outlined. In Section 2.5, an expla-
nation of how these methods are incorporated into
the main NID framework is presented. Experimen-
tal methodology and data sets are presented in Sec-
tion 3, results are examined in Section 4, and find-
ings are summarized and future directions explored
in Section 5.

2 Background

2.1 Related Work

A wide variety of machine learning methods have
been applied to the problem of intrusion detec-
tion. Network intrusion detection presents a num-
ber of unique challenges for typical machine learn-
ing frameworks(Garcia-Teodoro et al., 2009). More
popular methods include fuzzy logic, decisions
trees, unsupervised learning, artificial neural net-
works, and artificial immune systems(Hofmeyr and
Forrest, 2000). For a review of attempted methods
see (Garcia-Teodoro et al., 2009).

The effect of discretization has been previously
analyzed for decision tree based methods(Robnik-
Sikonja, 2004). Other research has attempted

to optimize currently used discretization meth-
ods(Quinlan, 1996); however, these analyses do not
include clustering methods such as the proposed un-
supervised learning method. To the authors’ knowl-
edge, this is the first analysis of discretization meth-
ods specifically for the problem of network intrusion
detection.

2.2 Expectation Maximization

Expectation maximization (EM) is a widely used
framework for the unsupervised learning task of
clustering (Dempster et al., 1977). EM accom-
plishes this task by finding an maximum a poste-
riori (MAP) estimate of a set of hidden labels, Y ,
for a set of observed data, X , through an iterative
two step process. This process consists of the ex-
pectation stage and the maximization stage. Each
label in Y is associated with a multi-variate Gaus-
sian function. These Gaussians are typically initial-
ized to random values or are uniformly distributed
over the range of values in X.

In the expectation stage, each data point x in X
is assigned a level of membership to each label (ie
cluster) y in Y . This membership level, l, is calcu-
lated as:

lxy =
e−(x−µy)2/(2σ2)

∑k
n=1 e

−(x−µn)2/(2σ2)

where σ2 is the covariance of the setX , µy is the ex-
pected value of cluster y, and there are k total clus-
ters. This is calculating the expected membership of
x in y.

In the maximization stage, each Gaussian func-
tion associated with Y is altered so that it maximizes
the probability of its set of membership levels. This
new expected value for each cluster y in Y is calcu-
lated through

µy =

∑j
x=1(x× lxy)

j

where j is the number of data points in X . This
value can be viewed as the weighted average of
all members of y. The expectation and maximiza-
tion steps are repeated until the total MAP estimate
crosses a certain threshold or a maximum number of
iterations is reached.

2
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The number of Gaussians or clusters used is fixed
for a given run of EM. Typically, the number of
Gaussians is chosen through performing EM on dif-
ferent numbers of Gaussians and choosing the num-
ber with the highest final MAP estimate.

2.3 Gain Ratio
The gain ratio (GR) is a calculation for discretiza-
tion used in the C4.5 algorithm, one of the most
commonly used algorithms for generating decision
trees(Quinlan, 1993). For each feature, all possi-
ble splitting points are examined in the range of val-
ues within the data set. For each splitting point, the
feature is treated as a nominal feature with two val-
ues: above the splitting point and below the split-
ting point. The GR is then calculated as the ratio
of information gained by using the current partition
to the intrinsic value of the partitioned data. More
formally, information gain is defined as

InfoGainF (D) = H(D)−
n∑

k=1

( |Dk|
|D| ×H(Dk)

)

where D is a partition of the data, Dk is the subset
of the partition where the target variable F is equal
to k, n is the number of possible values of the F ,
and H(X) is the entropy of the set X . The intrinsic
value of a set is

IntrinsicV alueF (D) = −
n∑

k=1

|Dk|
|D| ∗log2

( |Dk|
|D|

)

The gain ratio can then be calculated as

InfoGainF (D)

IntrinsicV alueF (D)

The GR penalizes using features with large sets of
unique values, which is not true of information gain
alone. This has been shown to reduce over-fitting
(Quinlan, 1993).

2.4 Random Forests
Random forests is an ensemble learning method
based on decision trees. It generally outperform sin-
gle decision trees(Breiman, 2001), and is less sus-
ceptible to over-fitting.

The decision tree model is a classic classification
tool used in machine learning. Figure 1 shows and

example of a decision tree for determining which
drug to give a patient for a certain disease. Each
internal node in the tree represents a condition or
binary decision, and each leaf represents a classifi-
cation or output. In figure 1 a green (thicker) line
represents a true response to the parent node’s con-
dition, whereas a red (thinner) line represents a false
response.

Random forests can be seen as an application
and extension of bootstrap aggregating (bagging).
Bagging is a general optimization of the supervised
learning task of classification. Instead of a single
strong classifier, a collection of weaker classifiers
are created on subsets of the training data. The out-
puts of these classifiers are combined to create the fi-
nal classification. Random forests extends this con-
cept by creating each classifier in the ensemble using
only a subset of the features of the total data set.

Figure 2 shows an example of a random for-
est. Random forests have been found to outperform
single decision trees in many scenarios(Breiman,
2001). By training on random subsets of the total
features, random forests can avoid over-fitting, one
of the drawbacks of decision trees.

The implementation of random forests used con-
structs decision trees using the C4.5 algorithm
(Quinlan, 1993). C4.5 uses the GR for discretization
of continuous values, though data can also be dis-
cretized beforehand. For more information on C4.5,
see (Quinlan, 1993).

2.5 The Intrusion Detection Pipeline
The proposed framework addresses the following
classification problem: Given: Features of a packet
received by a server such as packet length or pro-
tocol. Output: Classification of the given network
packet as normal or as an attack, or as a specific at-
tack group or attack type.

When enabled, EM is used to discretize all contin-
uous features in the data set. One-dimensional EM
is performed for each continuous feature separately,
so each feature does not affect the discretization of
any other feature. Once EM assigns labels to each
continuous value, these labels are used as nominal
values for the feature. When EM is not enabled, GR
is used for discretization. Figure 3 summarizes the
proposed NID framework.

Only training data was used for discretization. As
3
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Age Over 12?

Age Over 4? High Blood Pressure?

Family History of
 Stroke?

Drug E Drug C Drug DDrug ADrug B

All Data
All features for all 

patients

Choice
Drug A, B, C,

 D or E

Figure 1: An example of a decision tree which determines which drug to give a patient for a disease.

EM is unsupervised learning, a NID could use all of
the data for discretization without invalidating the
results. However, only using training data better re-
flects the standard use case of a NID, in which re-
training is infeasible due to the necessity of analyz-
ing traffic in real time. Therefore, for real world
NIDs, the current discretization would be based only
on previously seen packets. The nominal features
outputted by the discretization process were incor-
porated back into the data set, replacing the continu-
ous features. Classification was then performed us-
ing random forests as outlined in the above section.

3 Experimental Methods

For analysis, 43 features were used. The defini-
tions used for these features are outlined on the
KDD99 description website(KDD99, 1999b). Im-
plementation was done in java using WEKA(Hall
et al., 2009) combined with an optimization of
the standard WEKA random forest implementation,

fast random forest(FastRandomForest, 2013). Other
than the settings stated explicitly default settings
were used.

All experiments were run on an iMac running
Ubuntu 12.04 with an Intel Core i5 3470S CPU
clocked at 1600MHz and 32GB of RAM.

3.1 Data Sets

As network intrusion detection is a popular field,
there is a substantial selection of training and test-
ing data available. The most widely used data set
is referred to as “KDD99” or just “KDD” (Eldos et
al., 2012) and was used in The Third International
Knowledge Discovery and Data Mining Tools Com-
petition, which was held together with KDD-99, The
Fifth International Conference on Knowledge Dis-
covery and Data Mining (KDD99, 1999b).

The Third International Knowledge Discovery
and Data Mining Tools Competition used the cost
matrix in Table 1 for scoring, so all costs computed
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All Data

Subset 1
Random Subset of 

Features

Subset 2
Random Subset of 

Features

Subset 3
Random Subset of 

Features

Subset 4
Random Subset of 

Features

Choice 1 Choice 2 Choice 3 Choice 4

Vote

Final Choice

Figure 2: The random forest framework. An ensemble of weak classifiers is used as opposed to a single
strong classifier.

Normal Probe DoS U2R R2L
Normal 0 1 2 2 2
Probe 1 0 2 2 2
DoS 2 1 0 2 2
U2R 3 2 2 0 2
R2L 4 2 2 2 0

Table 1: Cost matrix used in The Third International Knowledge Discovery and Data Mining Tools Compe-
tition, as well as many subsequent papers. Columns correspond to groups packets were classified as; rows
correspond to groups that packets were actually members of.

for this paper used the same cost matrix.

3.1.1 KDD
KDD includes packets tagged with a variety of

attack types, each of which is a member of one of
five packet groups: normal, probe, DoS (denial of
service), U2R (user to root), or R2L(remote to lo-
cal). Aside from a label, the data for each packet are
limited to information that would be readily avail-
able either at the interface between the program be-
ing protected by the NID and the network or in the
packet itself, such as protocol, number of failed lo-
gins, and various flags. It contains 4,898,431 obser-

vations.

KDD results were included to provide a bench-
mark for comparison with other methods. However
there are several known problems with the KDD data
set (Tavallaee et al., 2009), such as different distribu-
tions of attack types in the training and testing sets.

For particularly time-intensive algorithms, the
amount of data needing to be processed is pro-
hibitive. EM is one such time-intensive algorithm.
Although five folds of the RF portion of the classi-
fication process can be completed in under one hour
when run on the full KDD training set (using the
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Original Data

Discretized Data

EM
(For each continuous feature)

1 2 3 4

Instance Feature 1
(Continuous)

Feature 2
(Nominal)

... ...

1 4.63 A .. ...

2 -6.06 T ... ...

3 ... ... ... ...

Instance Feature 1
(Discritized)

Feature 2
(Nominal)

... ...

1 3 A .. ...

2 1 T ... ...

3 ... ... ... ...

Random Forests

Classification

GR

Figure 3: The proposed intrusion detection pipeline. Note that the EM steps can be skipped, in which case
GR is automatically performed by the C4.5 algorithm
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FastRandomForest modification of the Weka Ran-
domForest class with no additional modifications for
efficiency), adding EM to the program causes the
estimated runtime of five folds to be more than 60
days.

3.1.2 NSL-KDD
The NSL-KDD dataset is an updated version of

KDD in which many of the problems present in
the original KDD data set are fixed(Tavallaee et al.,
2009). Whereas KDD contains 4,898,431 observa-
tions, NSL-KDD only contains 125,974. Because of
its improvements over KDD, NSL-KDD is used as
the primary data set for experiments. All of the ex-
periments run on NSL-KDD were also run on KDD.
KDD results are provided in appendix E for compar-
ison to official competition results (KDD99, 1999a).

3.2 Experiments

To guide the development of experiments, “stories”
were developed describing important, general sce-
narios that network intrusion detectors were likely
to encounter. For each experiment, the

Four experiments were developed, three of which
were based around what were decided to be the most
fundamental and crucial stories:

• NID encounters a known attack type.

• NID encounters a novel attack type.

• NID encounters a novel attack group.

The fourth experiment was performed using the
data used in the KDD’99 Classifier Learning Con-
test and the equivalent NSL-KDD data. The purpose
of this experiment was primarily to produce results
that could be compared with those of other network
intrusion detectors.

Due to the large size of the KDD data set, a 1%
subset of the total KDD data set was used to deter-
mine the number of clusters for each feature on all
experiments in which EM was run on the full KDD
data set, in order to reduce run time. Between the
Gaussian estimation and other memory optimiza-
tions, the program with EM enabled was able to run
five-fold cross-validation on the full KDD training
set in under 11 hours, a 130x speedup.

3.2.1 Known Attack Types Experiment
To assess how the two systems would perform

when classifying only known attack types, each was
tested separately on the full NSL-KDD data set. 5-
fold cross-validation was used to enable both train-
ing and testing on all available data, ensuring that
any strange observations were able to both alter the
model and be classified by it.

3.2.2 Novel Attack Types Experiment
The story behind this experiment is that a NID en-

counters an attack type that it has not trained on. As
NIDs are generally fairly successful at classifying
known attacks, aggressors consistently output new
attacks in hopes of beating NIDs.

In order to test how well a network intrusion de-
tection system could classify a novel attack type, the
same data sets were used as for classifying known
attack types. For each run, a different random fifth
of the data set was removed to decrease over-fitting.
From the remaining four fifths of the data, one at-
tack type was used as the testing data and the rest of
the data were used for training. All of the novel at-
tacks types were chosen from R2L because of R2L’s
large variation in attack characteristics (Sabhnani
and Serpen, 2003) and so that the knowledge that
was trained on would be approximately the same for
each attack. The disadvantage of choosing R2L is
that, even with improvements made in NSL-KDD,
there are still very disproportionate numbers of at-
tacks of each type. R2L’s affliction lies in warez-
client making up the bulk of its observations. Un-
fortunately, all of the other attack groups have char-
acteristics that make them less desirable choices for
this experiment than R2L. In the case of U2R, there
are not enough observations for it to be used. Probe
and DoS both have large numbers of observations,
but have similar disproportionate distributions of ob-
servations amongst attack types to U2R, as well as
less variety in attacks and enough observations to
drastically alter the model by excluding one of their
attack types from training.

The question to which an answer was desired
was ”What if a network intrusion detector has been
trained on all existing attack types and a new at-
tack type appears?”, not ”What if the training set
does not include one of the currently existing attack
types?”, where an existing attack type is any attack
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type that had ever been used anywhere before the
time the system was trained. Although the differ-
ence between these two questions may seem to be
nothing more than a bit of wordplay, the latter has
the potential to bias results.

The latter case decreases the quality of the train-
ing set by removing information about a given attack
group (the source of potential bias, as the excluded
data would be used for training any NID that were
to be used for real-world applications), causing ob-
servations of known attack types to potentially be
misclassified more often than they would have other-
wise been. Additionally, the poorer quality training
set would be expected to cause any novel attack type
to be misclassified more often because the model
would have less knowledge about where in feature
space the boundaries of the attack groups lay. The
case of a training set not including a known attack is
also less important than that of a new attack showing
up because the former can be solved by gathering
more training data.

The existence of a new attack does not affect the
quality of any existing model until the model learns
from it because any classification algorithm will al-
ways classify a given observation in the same way,
unless the classifier’s underlying model changes.
The catch in this question is that any attack that can
be used for training or testing purposes is an existing
attack, so the experiments carried out must techni-
cally be answering the second question.

Answering the wrong question, in this case, turns
out to not be a major problem. It is acceptable to pre-
tend that all existing attack types were trained on in
each novel attack type test (i.e. that the novel attack
is unseen) because the potential bias affects both dis-
cretization methods. Since the main question is how
the two methods perform relative to each other, this
approximation is safe.

Additionally, in these tests, it does not matter how
well the systems perform on known attack types,
as the tests for known attack types were run sepa-
rately. In any real-world NID, all of the available
data would be used for training, so the impact of the
exclusion of data on the classification of known at-
tack types does not provide any meaningful infor-
mation. Therefore, measurements of precision and
F-score also lack meaning for these tests. It is im-
portant to note that comparisons between leave-out

experiments should be made cautiously as leaving
out an attack type or group creates slightly different
data distributions.

3.2.3 Novel Attack Groups Experiment
The story for this experiment is that a NID en-

counters an attack group that it has not trained on.
The essential difference between a novel attack type
and a novel attack group is that the latter is indica-
tive of an entirely new method of attack. This ex-
periment was not carried out to answer the question
of how a classifier would perform if all of the at-
tack types in a group that the classifier had not been
trained on were suddenly observed, but to determine
how the classifier would fare against a single attack
type of an unknown group.

To test the classifiers’ ability to detect attacks
from unknown groups, NSL was used with one at-
tack group removed from the training data and all
but that one attack group removed from the test-
ing data. The results obtained from this experiment
were therefore aggregated the attacks by group, giv-
ing a more intuitive sense of how easy it was to clas-
sify some representative new attack type from a new
group of attacks.

3.2.4 KDD99 Competition Experiment
Many of the results available from academic net-

work intrusion detection systems are provided as
cost matrices and average costs from training and
testing on the official KDD data. In order to provide
results that can be compared to those, training and
testing were performed using the the official KDD
data.

4 Results And Discussion

As NSL-KDD was believed to provide training and
testing data that were more useful for learning about
and testing a NID’s ability ability to handle real
world attacks, respectively, it was chosen as the data
set to analyze the results of. Despite this belief about
NSL-KDD’s preferability to KDD, tests were run
on KDD as well in order to increase comparabil-
ity of the NIDs described in this paper with other
network intrusion detection systems. The results for
both tests on KDD and tests on NSL-KDD are pro-
vided; however, only the results of the tests on NSL
are discussed.
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Discretization
Strategy

Average
Cost

Precision Recall F-Score

EM 0.00337 0.99845 0.99828 0.99836
GR 0.00338 0.99848 0.99824 0.99836

Table 2: KDD-NSL average costs, precisions, recalls, and F-scores when testing on known attack types. For
precision, recall, and F-score, any attack is positive and normal is negative.

4.1 Experiment Results

4.1.1 Known Attack Types Results
Table 2 shows that, for both EM and GR, aver-

age cost is close to zero, while precision, recall, and
F-Score are all nearly one. These measures signify
that both discretization strategies are highly effec-
tive for constructing models that will be tested on
known data. Furthermore, the maximum difference
between the two discretization strategies for any of
these measures is 0.00004, signifying that their ef-
fectivenesses are similar.

The precisions and recalls of the individual
groups are very similar between the EM and GR ver-
sions of the RF model (See the confusion matrices in
Appendix B). Of these precisions and recalls, only
the ones for U2R fall below 95%. It is unsurpris-
ing for U2R to have such low precision and recall
because there are so few U2R observations in the
data set and, therefore, few U2R observations in the
training data. As R2L attacks are generally the most
varied, it seems that R2L should have the lowest pre-
cision and recall of the four groups, lending addi-
tional credence to the supposition that U2R’s poor
results are due primarily to lack of observations in
the training data.

The results of this experiment support the those of
prior research which found NIDs to be mostly suc-
cessful at classifying known attack types, (Verwoerd
and Huney, 2002) further validating this project’s
emphasis on the ability of NIDs to classify novel at-
tacks.

4.1.2 Novel Attack Types Results
The ability of the NIDs to classify novel attack

types is underwhelming, as evidenced in Table 3, es-
pecially in comparison to the the NIDs’ results from
the known attack types experiment. For four of the
seven comparable novel attack types (i.e. not warez-
client), neither NID successfully classified a single

observation. For only two of the seven comparable
attack types did both NIDs successfully classify at
least one observation correctly. For KDD results see
Appendix C.

Given the highly inequitable distribution of obser-
vations among attack types in the R2L group dis-
cussed in the experimental methods section, these
results are perhaps not too surprising. R2L’s distri-
bution problem is likely to bias all recalls downward.
When excluding warezclient from training, there are
very few R2L observations to train on, so the model
is unlikely to predict warezclient attacks correctly.
For all of the other attack types, most of the R2L
training has been done on warezclient attacks, so any
attack type in the R2L group that is not particularly
similar to warezclient is likely to be misclassified.

The difference between the recall of warezclient
for EM and that for GR is very small. EM correctly
classified two out of 890 warezclient observations
correctly, which is only slightly more than GR’s zero
out of 890; however, zero is a particularly trouble-
some number because GR might have been about
to classify instances correctly or it might have been
making terrible errors in its classifications, but the
data available cannot confirm which case it is. In the
former case, the difference between the two recalls
for warezclient would be considered to be negligi-
ble, whereas in the latter case it would be considered
significant.

Among the seven comparable novel attack types,
three have non-zero differences between the recalls
for EM and GR. Again, the other four compara-
ble attack types have no observations classified cor-
rectly by either system. All of the three non-zero
differences have magnitudes greater than 0.1, which
the authors of this paper had decided in advance
to be a threshold above which a difference was to
be treated as important. Three out of seven differ-
ences being important is evidence that choice of dis-
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Novel Attack Type GR EM ∆ # Obs
ftp write 0.31250 0.00000 -0.31250 32
guess passwd 0.00000 0.00000 0.00000 212
imap 0.00000 0.00000 0.00000 44
multihop 0.50000 0.25000 -0.25000 28
phf 0.00000 0.00000 0.00000 16
spy 0.00000 0.00000 0.00000 8
warezclient 0.00000 0.00028 +0.00028 3560
warezmaster 0.48750 0.71250 +0.22500 80

Table 3: NSL-KDD recalls of novel attack types.

cretization strategy is important for classification of
novel attack types; however, not all of these three
differences favor the same discretization strategy:
two are in the favor of GR, but one favors EM. Al-
though different discretization strategies have vary-
ing strengths and weaknesses, the results imply that
which strategy is chosen has important an important
impact on classification of novel attack types. Fur-
ther investigation is required to determine what the
strengths and weaknesses of various strategies are.

Whether the differences in these results were
caused spuriously is not clear because the numbers
of observations are very low for all of the novel
attack types. To obtain a better understanding of
how meaningful these results are, they are checked
against the novel attack group results for consistency
in the following sections.

4.1.3 Novel Attack Groups Results

Although the recalls in Table 4 are much lower
than those found in the known attack types experi-
ment, they are all non-zero. With far more observa-
tions for all groups but U2R, the novel attack groups
experiment provides more obviously significant evi-
dence about the importance of discretization strategy
choice. For KDD results see Appendix D. Probe,
DoS, and U2R all have recall difference magnitudes
greater than 0.1, supporting the case that there is an
important difference in classification ability between
EM and GR. DoS’ recall’s difference magnitude, in
particular, is extremely large, being close to 0.6. It
is difficult to come up with any way to explain away
this particular difference between GR and EM, as its
magnitude is large and DoS has over 180,000 obser-
vations. The difference in correct classification of

probe by EM and GR is similarly significant due to
the more than 45,000 probe observations. The sig-
nificance of U2R’s recall difference is unclear due to
U2R’s small magnitude.

R2L’s recall difference is not important in the
rather arbitrarily sense prescribed by this paper’s au-
thors; however, GR’s recall for R2L is around nine
times larger than EM’s is. Even if this is determined
to be an insignificant difference, there are still two
groups for which there are important and significant
differences between the recall for GR and that for
EM. With two out of four groups having clearly sig-
nificant and important differences, it is apparent that
choice of discretization strategy is important in for
classification of novel attack groups. The important
results obtained in both novel attack group and at-
tack type experiments which are based on few ob-
servations may also be significant.

Despite having two novel attack groups for which
there are important and significant difference be-
tween the classification abilities of GR and EM, it
is not clear whether EM or GR is generally a bet-
ter discretization strategy. Since the differences for
probe and DoS have different signs, it again appears
that EM’s and GR’s strengths lie in different places
when it comes to novel attack classification.

4.1.4 KDD99 Competition Results
Table 5 shows that the RF model with EM dis-

cretization classifies data such that the average cost
of a classification is lower than for the RF model
with GR discretization, although the average costs
of both are close. Furthermore, their average costs
are both extremely high. As the average cost in
the cost matrix for probe is less than two, a NID
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Novel Atk Group GR EM ∆ # Obs
probe 0.29212 0.15462 -0.13750 46624
DoS 0.31440 0.89109 +0.57669 183708
U2R 0.17788 0.06250 -0.11538 208
R2L 0.02386 0.00276 -0.02110 3980

Table 4: NSL-KDD recalls of novel attack groups.

Discretization
Strategy

Average
Cost

EM 2.65374
GR 2.70320

Table 5: KDD competition data average costs for NSL-KDD.

which classified all packets as probes would have
a substantially lower average cost than RF with ei-
ther of the discretization strategies used in this pa-
per. Since EM and GR performed almost equally
poorly, despite having exhibited important differ-
ences in earlier tests, it seems likely that the large
average costs are caused by some pathological prob-
lem in RF and/or KDD-NSL.

See Appendix F for the confusion matrices which
produced the average costs found in Table 5.

4.2 Aggregating The Results

From the novel attack type and novel attack group
experiments, it is apparent that discretization strat-
egy is an important factor in a NID’s ability to cor-
rectly classify incoming packets; however, it is not
clear what an optimal discretization strategy is. EM
and GR each performed especially well in different
areas and neither clearly performed better on known
packet types.

5 Conclusion and Future Work

It has been shown that discretization is an impor-
tant factor in model selection for a NID. Though
the proposed method of discretization, EM, does not
consistently outperform more common discretiza-
tion methods it has been shown that, in certain sit-
uations, the rate of detection can be significantly im-
proved through choosing an approproate discretiza-
tion strategy. One interesting future direction of re-
search would be to analyze and determine in which

situations EM discretization results in more accurate
intrusion classification than the GR.

Discretization necessitates information loss. EM
as implemented for this paper loses more informa-
tion then GR does because it creates Gaussians for
features independently of the target feature or other
features. It is possible that a multidimensional im-
plementation of EM would be more successful due
to its ability to consider the relationships among
continuous variables (i.e. its ability to retain more
information). Perhaps this would allow EM to per-
form closer to GR in the areas in which GR was
superior without sacrificing the advantages that EM
demonstrated.

There is likely a better discretization strategy that
has not been considered. Many other discretization
strategies exist, such as Gini coefficient, MDL (max-
imum delineation length), ReliefF, and MyopicReli-
efF. (Garcia-Teodoro et al., 2009) Furthermore, hy-
brid strategies can be developed using techniques
like voting systems. As EM and gain ratio each have
areas in which they are definitively superior to each
other, a hybrid strategy is a strong candidate for pro-
ducing better discretization.

Another possible future direction would be using
a more knowledge based discretization framework
to incorporate domain knowledge into the machine
learning model. Network administrators could use
the kinds of traffic they expect for a given network
to model the discretization scheme. This could al-
low a high degree of customization when deploying
a given system. For instance, a network administra-
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tor for a video streaming service could create a spe-
cial IP discretization which parses by country of ori-
gin, allowing the machine learning system to be able
to detect illegal video streaming traffic more easily.
This could allow increased human readability and
increased NID accuracy.

Recently, the area of adversarial machine learning
has become a prominent topic in network intrusion
detection. Adversarial machine learning involves a
malicious user intentionally mis-training the NID in
order to get malicious traffic through the NID un-
detected. For a more thorough review of adversarial
machine learning, see (Huang et al., 2011). An inter-
esting future direction would be to explore how dis-
cretization can affect the upper bound on how much
a malicious user can alter the space of a classifier.
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A Known Attack Types KDD Results

Discretization
Strategy

Average
Cost

Precision Recall F-Score

EM 0.01007 0.99752 0.99730 0.99741
GR 0.00010 0.99998 0.99997 0.99997

Table 6: KDD average costs, precisions, recalls, and F-scores when testing on known attack types. For
precision, recall, and F-score, any attack is positive and normal is negative.

B Known Attack Types Confusion Matrices

Normal Probe DoS U2R R2L Recall
Normal 958603 1301 3217 14 40 0.99525
Probe 9250 26402 5043 0 1 0.64876
DoS 559 3 3843978 0 0 0.99985
U2R 24 0 0 25 1 0.50000
R2L 647 3 2 1 467 0.41696
Precision 0.98919 0.95283 0.99786 0.62500 0.91749

Average Cost: 0.01007
Precision: 0.99752

Recall: 0.99730
F-score: 0.99741

Table 7: Confusion matrix for KDD with EM. Columns correspond to groups packets were classified as;
rows correspond to groups that packets were actually members of. For precision, recall, and F-score, any
attack is positive and normal is negative.

Normal Probe DoS U2R R2L Recall
Normal 972702 40 24 6 9 0.99992
Probe 52 41045 5 0 0 0.99861
DoS 20 3 3883345 0 2 0.99999
U2R 22 1 0 28 1 0.53846
R2L 20 0 2 3 1101 0.97780
Precision 0.99988 0.99893 0.99999 0.75676 0.98922

Average Cost: 0.00010
Precision: 0.99998

Recall: 0.99997
F-score: 0.99997

Table 8: Confusion matrix for KDD with GR. Columns correspond to groups packets were classified as;
rows correspond to groups that packets were actually members of. For precision, recall, and F-score, any
attack is positive and normal is negative.
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Normal Probe DoS U2R R2L Recall
Normal 67275 35 17 4 12 0.99899
Probe 41 11609 4 1 1 0.99597
DoS 17 9 45901 0 0 0.99944
U2R 16 3 0 31 2 0.59615
R2L 27 0 0 3 965 0.96985
Precision 0.99850 0.99597 0.99954 0.79487 0.98469

Average Cost: 0.00337
Precision: 0.99845

Recall: 0.99828
F-score: 0.99836

Table 9: Confusion matrix for NSL-KDD with EM. Columns correspond to groups packets were classified
as; rows correspond to groups that packets were actually members of. For precision, recall, and F-score, any
attack is positive and normal is negative.

Normal Probe DoS U2R R2L Recall
Normal 67274 36 18 4 11 0.99897
Probe 39 11612 3 1 1 0.99623
DoS 19 8 45900 0 0 0.99941
U2R 18 2 0 30 2 0.57692
R2L 27 0 0 3 965 0.96985
Precision 0.99847 0.99605 0.99954 0.78947 0.98570

Average Cost: 0.00338
Precision: 0.99848

Recall: 0.99824
F-score: 0.99836

Table 10: Confusion matrix for NSL-KDD with GR. Columns correspond to groups packets were classified
as; rows correspond to groups that packets were actually members of. For precision, recall, and F-score, any
attack is positive and normal is negative.
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C Novel Attack Types KDD Results

Novel Attack Type GR EM ∆ # Obs∗

ftp write 0.28125 0.00000 -0.28125 32
guess passwd 0.00000 0.00000 0.00000 204
imap 0.00000 0.00000 0.00000 48
multihop 0.50000 0.35714 -0.14286 28
phf 0.12500 0.00000 -0.12500 16
spy 0.00000 0.00000 0.00000 8
warezclient 0.00049 0.00000 -0.00049 4064
warezmaster 0.65000 0.08750 -0.56250 80

∗Number reported is for testing with EM. Because the implementation with
EM was tested on only 99% of the full KDD data set, GR had 16 additional
observations for warezclient (4080 total).

Table 11: KDD recalls of novel attack types.

D Novel Attack Groups KDD Results

Novel Atk Group GR EM ∆ # Obs∗

probe 0.40197 0.41542 +0.01345 162784
DoS 0.21118 0.23597 +0.02479 15378160
U2R 0.12500 0.12000 -0.00500 200
R2L 0.01465 0.01071 -0.00394 4480

∗Numbers reported are for testing with EM. Because the implementation
with EM was tested on only 99% of the full KDD data set, GR had additional
observations for each group in the following amounts: 1624 for probe (164408
total), 155320 for DoS (15533480 total), 8 for U2R (208 total), 24 for R2L (4504
total).

Table 12: KDD recalls of novel attack groups.

E Competition KDD Results

Discretization
Strategy

Average
Cost

EM 0.29267
GR 0.27458

Table 13: KDD competition data average costs for KDD data.
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F Competition Data Confusion Matrices

Normal Probe DoS U2R R2L Recall
Normal 59366 64 163 972 28 0.97975
Probe 194 27 0 4 3 0.11842
DoS 7751 490 221612 0 0 0.96415
U2R 16083 95 0 3 8 0.00019
R2L 1340 2510 313 0 3 0.00072
Precision 0.70062 0.00847 0.99786 0.00306 0.07143

Average Cost: 0.29267

Table 14: Confusion matrix for KDD with EM. Columns correspond to groups packets were classified as;
rows correspond to groups that packets were actually members of.

Normal Probe DoS U2R R2L Recall
Normal 59788 302 503 0 0 0.98671
Probe 81 130 4 6 7 0.57018
DoS 5984 149 223623 0 97 0.97290
U2R 15486 522 124 1 56 0.00006
R2L 527 3472 166 0 1 0.00024
Precision 0.73032 0.02842 0.99645 0.14286 0.00621

Average Cost: 0.27458

Table 15: Confusion matrix for KDD with GR. Columns correspond to groups packets were classified as;
rows correspond to groups that packets were actually members of.

Normal Probe DoS U2R R2L Recall
Normal 1651 2769 2772 0 266 0.22137
Probe 2662 82 5 2 3 0.02977
DoS 9037 266 401 5 2 0.04129
U2R 176 3 5 10 6 0.05000
R2L 1130 1275 16 0 0 0.00000
Precision 0.11265 0.01866 0.12535 0.00306 0.58824

Average Cost: 2.65374

Table 16: Confusion matrix for NSL-KDD with EM. Columns correspond to groups packets were classified
as; rows correspond to groups that packets were actually members of.
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Normal Probe DoS U2R R2L Recall
Normal 1474 2905 3079 0 0 0.19764
Probe 2563 180 3 3 5 0.06536
DoS 9415 214 82 0 0 0.00844
U2R 193 0 0 7 0 0.03500
R2L 707 1549 164 0 1 0.00041
Precision 0.10270 0.03713 0.02464 0.70000 0.16667

Average Cost: 2.70320

Table 17: Confusion matrix for NSLKDD with GR. Columns correspond to groups packets were classified
as; rows correspond to groups that packets were actually members of.
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Abstract

Field programmable gate arrays (FPGAs) are in-
tegrated circuits that give users the ability config-
ure the hardware after the board has been manufac-
tured. Due to their highly customizable nature, FP-
GAs can offer parallelization and program speedup
that a CPUs computational ability typically prevents.
This benefit does not come without drawbacks; the
speed and latencies associated with using FPGAs is
offset by the cost of transferring data between it and
the CPU. Therefore, running smaller scale programs
on the CPU may be more desirable than incurring
the data transfer penalty versus utilizing CPU core
cycles. The FPGA accelerated function may have
higher latencies and completion times than the same
Software based function or algorithm running on the
CPU.

Our project finds the point at which running a
hardware implementation on an FPGA is faster than
the functional software version based on run time. In
other words, we seek to find the estimated size of an
input image at which the runtime of using the CPU
to perform calculations is greater than the cost of ex-
porting the data to the FPGA plus the runtime of the
program in hardware. We developed a modeling ap-
plication that takes an python image processing file,
the degree of the polynomial that will fit the runtime
test results, and an estimation of the percent speedup
achieved through the FPGA; and then calculates the
offloading point. This point being the size of a dataset
at which it would be faster perform computations on
the FPGA than on the CPU. The image processing
code we tested our application on converted an im-
age to black and white, and the hardware we tested
with was the Altera DE2 board. Knowing this point
is valuable because it enables the user to make an in-
formed choice between the hardware or software ver-
sion of their program based on their needs.

1 Introduction

It is well known that hardware offers speed up that
not achievable by most software implementations of a
program. One such piece of hardware used to achieve
this speedup is the Field Programmable Gate Array
(FPGA), which allows the engineer to program the
hardware directly. The engineer is responsible for se-
lecting inputs, processing methods, and output, giv-
ing the programmer a large amount of control over
how the board is programmed and what it can do.
In addition to (and as a result of) the customizable
nature of the FPGA, it is incredibly conducive to
parallel programming; the programmer can simply
program different parts of the board to do different
operations, and the result of the process is that it
runs in parallel. Clearly, the FPGA has a lot of great
applications, and is very useful to speeding up run-
time for most programs.

Figure 1: Layout of the DE2 Altera board

However, in spite of all of the benefits that FPGAs
have, using them is not without some frustration.
Since the board is not hardwired into the computer,
offloading a computation to an FPGA incurs some
overhead. The process includes moving the data from
the CPU to the FPGA, giving control to the FPGA,
performing the calculations, moving all of the data
back onto the CPU, and then returning control of the
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program to the CPU. When the data set is not suffi-
ciently large, using the FPGA could possibly do more
harm than good, due to its computational expense.
However, there is a large enough set (often referred
to as the offloading point) that using the FPGA is
faster than using the CPU.

2 Motivation

Digital image processing (DIP) is a rapidly growing
field with a wide range of applications from medicine
to national defense. As the resolution and num-
ber of pixels of images grow, software implementa-
tion of DIPs grows increasingly less efficient; this is
doubly true for real-time applications. Research has
shown that offloading these techniques onto hard-
ware, including FPGAs, creates significant speed
up[6]. Therefore, finding the data size where it is
faster to run DIPs on hardware rather than software
is important.

FPGAs offer many advantages over CPUs, such as
high performance, optimization, computational den-
sity, and reliability. In addition FPGAs are known
for being highly reliable and having low costs. Fi-
nally FPGAs are truly parallel, making them very
attractive for computationally expensive tasks which
could easily slow down a computer[1].

3 Background

It is well known that some of the main considera-
tions when choosing between a software and hardware
implementation is weighing the features and flexibil-
ity of software against the superior speed and power
consumption of hardware. [2]. Many projects are
using a combination of software and hardware imple-
mentations (SW/HW) [5] to reap the benefits each
offer in ways that result in the highest overall pro-
gram performance. The difficult question to answer
becomes, which parts of the overall system should
be implemented in software and which in hardware.
Currently, researchers look at variables such as par-
allelizability, frequency of use, and the hardware ca-
pabilities in order to make that decision [7]. Our
projects uses variable data input sizes to analyze the
runtime of one potential aspect of a program, in or-
der to determine what size data results in enough of a
slowdown of the software implementation that hard-
ware becomes advisable.

FPGAs are re-configurable hardware that offer
benefits such as the ability to be an efficient matrix
multiplier in one run, and an image processing tool

the next. How much speed up they offer is heav-
ily dependent, as G. R. Morris coins, on ”the two
p’s, pipelining and parallelism.”[4] Their ability to of-
fer speedup is best seen in highly parallelizable algo-
rithms that can take advantage of the FPGAs paral-
lel nature. Morris explains that programs that should
be considered for mapping onto an FPGA rely on the
”p heuristics,” parallelization and pipelining. Other
considerations include the memory bandwidth of the
hardware, and the potential of the data reuse. If a
single function offers 1000% speedup, but only con-
stitutes 1% of the overall program, offloading may
just not be worth it. Morris calls this decision the
”FPGA Design Boundary”, and our project seeks to
determine this automatically, using the metric of pro-
gram runtime. Morris’s experiments prove that the
highly parallelizable operation of matrix multiplica-
tion may offer speedups of 200% of the, compared to
their software implementation. However, it is impor-
tant to note that this statistic is dependent on factors
such as system architecture and the algorithm itself.

FPGAs’ utility lies within their ability to take some
of the load off of CPU/GPUs, and perform multi-
threaded applications with minimal overhead. Much
in the same way that transferring data to the GPU
for computation incurs some overhead, transferring
function calls to the FPGA requires a performance
slowdown. Recent research involving the interplay
between the FPGA and the CPU include papers on
designing a way to identify and offload operations
that potentially offer the most speedup when imple-
mented in hardware from the CPU (which generally
is accessed via software) to the FPGA (which requires
knowledge of hardware design).

In their paper, ”Dynamic Hardware/Software Par-
titioning: A First Approach”[3] , Greg Stitt, Roman
Lysecky, Frank Vahid profile existing tools to identify
most frequently executed application software. Stitt,
et al., explain their method of dynamically partition-
ing a future software implementation in a SW/HW
implementation. Yet we have yet to learn of a tool
that can analyze if exporting these loops would be
truly beneficial. Therefore, compared to pervious
work which analyzed a programs usage frequency or
properties such as ”the three p’s”, our program ana-
lyzes runtime of software and hardware implementa-
tions and data transfer rate to determine if a program
should be implemented in hardware.

In ”A Study of the Speedups and Competitiveness
of FPGA Soft Processor Cores using Dynamic Hard-
ware/Software Partitioning,” [3] Roman Lysecky and
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Frank Vahid found speedups ranging from 200% to
1000% by implementing a once purely software imple-
mentation into a hardware/software implementation
of the program. By alleviating the CPU of a por-
tion of the computation, speedups were found and
they even discovered a reduction of power usage by
99%. This study is particularly interesting to our
project, because we believe our testing program will
be able to identify which functions of the program
should be offloaded, and reduce some of the manual
analysis with identifying which areas are best suited
to offloading. This results in the overall system per-
formance improvement and lower power consumption
compared to a software implementation alone. While
the speedup resultant is dependent on many charac-
teristics of the program (such as the three p’s), our
research has shown the FPGAs have the potential to
offer great speed up.

4 Our Idea

Our idea was to create an application that would take
in as input a specific image processing algorithm im-
plementation in hardware and software, fit the run-
times to a polynomial of a given degree, and dynami-
cally determine whether to run it on the CPU’s soft-
ware or the FPGA’s hardware.

Figure 2: High Level Apporach to Exporting to
FPGA

4.1 Relevance

Our method for determining the offloading point lies
between the two bounds of using our test results of
calculating the runtime for a set of image sizes and
empirically searching for the point and using a model
based to fit the data approach.

Empirical Method - the user has to provide a
large set of increasingly bigger image sizes, a
hardware implementation, and a software imple-
mentation. Using the three the application can
iteratively run the set of images on both the CPU

and FPGA. The application runs until the data
points overlap, once this occurs, the offloading
point has been found. The user can then deter-
mine if indeed the FPGA runs faster for their
specific use case.

Model Based Method - the user has to provide
parameters that describe the environment and
the task being implemented (such as the rate of
transfer to the FPGA) the image processing im-
plementation algorithm runtime, the size of the
input image, etc . . . These parameters are in-
puts to the model, which then is fitted based
off of these variable and returns optimal deci-
sion based on the fit and the values given by the
user.

Our Method - the user needs a smaller set of in-
creasingly bigger image sizes, the degree of the
polynomial fit for the run times of the hardware
and software implementations, and a hardware
and a software implementation. The user only
has to run the tests on the CPU to find the soft-
ware runtimes. These runtimes and the bit rate
of transfer to the given FPGA are used to create
a model, which will determine the runtime for
any given image. Using this the user can then
determine the offloading point by extrapolating
the data and seeing where the CPU runtime is
equal to the Hardware time.

4.2 Implementation

To determine the offloading point we set the software
time equal to the hardware time. To generate
a software time relation, we timed our software
implementation on 5 sets of three test images, and
used the equation for the quadratic curve that fitted
the data best. For hardware time, we used the lower
end of Roman Lysecky and Frank Vahid’s hardware
speedup estimation, and said it is equal to half the
software time (the computation done on the CPU)
plus the overhead associated with offloading and
onloading the data to the FPGA. This converts to
the following equation, which can then be solved for
x. X’s value is the size at the offloading point:

ax2 + bx + c1 = 1
2 (ax2 + bx + c1) + (c2 + c3)x

2ax2 + 2bx + 2c1 = ax2 + bx + c1 + 2x(c2 + c3)

ax2 + (bx− 2x(c2 + c3))x + c1 = 0

ax2 + [b− 2(c2 + c3)]x + c1 = 0

−[b−2(c2+c3])±
√

[b−2(c2+c3)]2−4ac1
2a (eq1)
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4.3 Hardware

Our FPGA board is an Altera DE2 Cyclone II. We
programed the board via the Quartus II environment
to generate hardware configurations using Verilog.
Successfully implementing a hardware version of our
image processing algorithm would have enabled us
to get hardware runtime results as done with soft-
ware. These data points could have been used to find
a fit for the runtime of the program, as opposed to
an estimate speedup which we used. Due to the im-
plementation problems that we had, our team simply
performed data transfer to and from the board, and
timed these transfers. Our implementation read and
wrote data to and from the SRAM memory of the
DE2 board, and used the USB to transport data, see
fig. 1.

4.4 Software

In our software implementation, we created an ap-
plication that ran our algorithm, recorded the times,
fitted them to a curve, then calculated the offloading
point for that algorithm. The first part of the ap-
plication was a python file that performed an O(n2)
image processing algorithm. It read a file from mem-
ory, and then based on the user’s preferences, either
inverted the colors, applied a red filter, or converted
the image to black and white. The application also
timed the program runtime, minus reading and writ-
ing the image to disk. We were then able to write
another python program that took that time data as
an input, and then find the equation for curve of best
fit. Finally, we used the coefficients from that curve
and substituted them into equation 1 along with the
FPGA data transfer bitrate, and solve the equation
for the offloading point.

4.5 Results

The image processing algorithm was run on the CPU
with our test set of images. We considered the run-
time of the algorithm to be the time it took to read
every pixel from the input image and change its value.
For each of our two implementations and for each of
our three images size we recorded 5 runtimes. The
three images sizes were 38KB, 300KB and 900KB in
a bmt format.

4.6 CPU

After running the software implementation five times
on the CPU and recording a runtime each time we
plotted the fifteen points using MATLAB. As shown
in Figure 3 the points were fitted to a quadratic curve.

Figure 3: Software Runtime vs. Image Size

This curve describes the relationship betwen the
software runtime and the size of the input image size.
From this curve we are able to extrapolate and de-
termine the runtime for any given image size.

4.7 FPGA

To determine the overhead associated with offloading
and onloading from the FPGA we measured the time
it took Quartus to write to and read from the FPGA.
For both offloading and onloading, we measured five
runs for all three images size for a total of fifteen
points each. In both cases the points were plotted
and the lines of best fit were found. These lines were
used to predict the data transfer time for any size
image.

Figure 4: Offloading Runtime vs. Image Size

Figure 4 shows the relationship between the image
size and the runtime. From this graph it is obvious
that there are three distinct clusters that determine
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the linear relationship between the input size and the
runtime of offloading.

Figure 5: Onloading Runtime vs. Image Size

Figure 5 shows the same three clusters that corre-
spond to the three different image sizes. These clus-
ters again determine the linear relationship between
the runtime of onloading and the input image size.

5 Evaluation

Figure 6: Software and Hardware Runtime vs. Image
Size

6 Conclusions and Future
Work

Our team developed a program which takes an im-
age processing program as input, and from this runs
the program on 3 different sized images. Currently
the user can only decide upon one polynomial degree

(our testing assumes quadratic fit, but this can easily
be changed). Additionally we only know the trans-
fer rate specific to the board we tested with. The
speedup achieved by the hardware was simply an es-
timation.

In any future work, we would like to test the fit
of the data to many polynomial degrees and have the
program dynamically choose the best fit and from this
calculate the offloading point. Additionally, getting
test data from the hardware implementation would
greatly increase the accuracy of our offloading point
estimation. Getting all of the aforementioned aspects
functioning, our improved program could take an in-
put hardware and software implementation, fit the
runtime data gathered to the curve that most closely
fits the data, and from this calculates the offloading
point. We would also like to extend the test set to a
wider range of input sizes for empirical verification.
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Abstract. The advent of dynamic software analysis has provided new methods and insight into the
automatic generation of test suites and the detection of program invariants. We propose that these
two tasks can be integrated to increase the efficiency and breadth of both. Using the KLEE symbolic
virtual machine and the Daikon invariant detector, we analyze the feasibility of probabilistic invariant
detection through automatically generated tests and invariant-backed test generation. We use symbolic
execution to evaluate the robustness of invariant detection with respect to incomplete testing suites. We
also use knowledge of program invariants to streamline the process of symbolic execution. Ultimately
we find that even with limited testing suites, Daikon approximates program invariants well. We also
describe possible modifications to KLEE’s symbolic execution process to make effective use of program
invariants. Lastly, we propose a method of integrating KLEE and Daikon for automatic test generation.

1 Introduction

The execution of a program can follow different paths
depending on the program’s inputs. Two related chal-
lenges faced by software engineers are:

1. Does the program behave correctly on all inputs?
That is, does every possible execution path do
what it is intended to do?

2. What statements can be made about the program
as a whole, regardless of execution path? That is,
what program invariants exist over all inputs?

The approaches used to solve these challenges
have historically been quite distinct, the former rely-
ing on exhaustive application of manually-generated
test suites and the latter on careful, proof-based
analysis of program structure. In recent times, tools
falling under the umbrella of dynamic analysis have
lead to the development of automated techniques for
testing, test suite generation, and invariant detection.
Interestingly, these techniques are closely related.
Symbolic program execution partitions the space of
possible program inputs based on the path of execu-
tion taken by the program on those inputs, reducing
the set of tests necessary for complete program cov-
erage to a single test for each cell of the partition.
Each cell represents a deterministic execution of the
program conditioned on a set of invariants (i.e. the
restrictions on input required for membership in that
cell). Dynamic invariant detection, meanwhile, traces
the execution of the target program on a set of inputs
(such as a test suite), using an inference generator

to determine what conditions hold on all executions.
We make two observations regarding the interaction
of symbolic execution and invariant detection:

1. Knowledge of program invariants can inform the
process of symbolic execution. Specifically, limit-
ing the scope of variables may drastically reduce
the number of distinct inputs that need to be
considered, speeding up the (generally expen-
sive) execution.

2. Invariant detection is imprecise without an ex-
haustive test suite, but even with automated
methods, such a test suite can be prohibitively
expensive to create. Incomplete test suites may
still result in useful invariants, but manually-
generated suites are likely to have systematic
gaps in coverage. Symbolic execution creates the
potential for randomized incomplete test suites,
which may allow for probabilistic detection of
program invariants.

As these observations suggest, there is significant
potential for integrating existing systems for symbolic
execution and invariant detection. Such integration
can improve the efficiency of tasks that are currently
cost-prohibitive, while also creating opportunities for
new techniques for a variety of tasks.

In this paper, we make use of the KLEE sym-
bolic virtual machine [2] and the Daikon dynamic in-
variant detector [4] to carry out two tasks motivated
by the above observations. In particular, we use in-
variants generated by Daikon to annotate target pro-
grams with assert statements and observe the perfor-
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mance of KLEE run on these augmented programs.
Further, we use the complete test suite generated by
KLEE to infer the robustness of Daikon with respect
to the completeness of test suites and to determine
the viability of detecting program invariants with a
randomized partial test suite. In light of these experi-
ments, we propose a method of integrating KLEE and
Daikon with the goal of more complete and efficient
testing.

In Section 2 we describe the KLEE and Daikon
systems in more detail. In Section 3 we outline our
methods for integrating the KLEE and Daikon sys-
tems. We present the results of our tests and dis-
cuss their implications in Section 4. Section 5 gives
an overview of related work, and Section 6 concludes.

2 Background

In this section we discuss the two systems, KLEE and
Daikon, which dynamically implement symbolic exe-
cution and invariant detection, respectively. In par-
ticular, we focus on the aspects of the KLEE and
Daikon that complement each other.

2.1 KLEE Symbolic Virtual Machine

KLEE [2] is a dynamically implemented symbolic ex-
ecution tool that aims to (1) cover every executable
line of code and (2) detect program traces which will
execute “dangerous” operations such as assert state-
ments. Furthermore, KLEE is capable of providing a
concrete test input that leads to each potential error.

KLEE runs a program symbolically, meaning that
each operation in a particular program trace adds to
a set of constraints that represents all possible input
values leading to that trace. Once the program trace
reaches an error or exit operation, KLEE solves the
set of constraints to produce a concrete input value
that will deterministically follow the program trace or
reports that no such value exists. KLEE explores ev-
ery program trace until either all branches have been
explored or a user-specified time is exceeded.

For example, consider the subroutine bar(x,y,z)
described in Figure 1 and the program trace of bar

that leads to foo2. At each branch of the program,
KLEE tracks the input constraints which correspond
to this trace. In order of observation, these con-
straints are x < 0, y < 0, and !(z * z < 0). At
exit, KLEE’s constraint solver will produce a con-
crete input such as x = -1, y = -1, z = 1 that sat-
isfies these constraints. However, observe that such
an input may not always exist. For example, the pro-
gram trace leading to foo1 generates the constraints

x < 0, y < 0, and z * z < 0, which is unsolvable
because an integer squared is always greater than or
equal to 0.

bar(x,y,z):

z = z * z

if x < 0:

if y < 0:

if z < 0:

foo1(x,y,z)

else:

foo2(x,y,z):

else:

if z < 0:

foo3(x,y,z)

else:

foo4(x,y,z)

else:

if y < 0:

if z < 0:

foo5(x,y,z)

else:

foo6(x,y,z):

else:

if z < 0:

foo7(x,y,z)

else:

foo8(x,y,z)

Fig. 1: A program that takes integer inputs x, y, and
z and has 8 distinct execution paths.

In the evaluation of KLEE on the GNU Core-
utils and Busybox suites, KLEE had high (aver-
age 90%) code coverage [2] and revealed errors that
had eluded developer tests for 15 years. These exper-
iments also revealed a high overhead: each utility was
run for 60 minutes and many did not finish in that
time frame.

KLEE’s primary strength in the context of test-
ing is that it builds a concrete test suite with high
code coverage. High code coverage suggests that the
test suite also has broad coverage of the execution
tree; unlike manually-generated tests, which are lim-
ited by the imagination of the programmer, KLEE
has no bias in the execution branches it tests.

Unfortunately, KLEE is weak in other respects.
Exploring all execution paths is computationally ex-
pensive and possibly inefficient depending on the pro-
gram implementation. For example, to achieve com-
plete coverage of bar(x,y,z), KLEE must explore all
eight branches of the execution tree (Figure 2) even
though only four of the branches are reachable and
lead to concrete test inputs.

Since !(z * z < 0) is an invariant of this pro-
gram, augmenting the execution path by check-
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Fig. 2: The execution tree for the program bar(x,y,z) shown in Figure 1.

ing for the possible values of z * z immediately
prior to the if statements (for example, by adding
an assert(!(z < 0)) statement at line 2 of bar)
changes the execution tree to the one depicted in Fig-
ure 3.

Fig. 3: The execution of bar modified by asserting the
sign of z prior to branching.

With this augmentation, KLEE explores a signif-
icantly smaller tree and still returns the four test in-
puts corresponding to reachable branches of the pro-
gram execution.

2.2 Daikon Invariant Detection

Daikon [4] dynamically detects likely program invari-
ants, properties that hold true for every execution
of a program. These invariants are expressed by a
broad grammar of properties and variables. By de-
fault Daikon checks 75 different properties, such as
is constant (x= c), in a range (a≤ x≤ b), or sorted-
ness (ls.isSorted()), and allows the user to expand
the list of properties. Daikon allows properties over a
wide variety of variables including function variables,
function paramenters, return values, global variables,
and results of observer methods. As part of its dy-
namic invariant detection process, Daikon also imple-
ments a system for detecting conditional invariants. A
conditional invariant is an invariant that depends on
some other value or property: “If x = 0, then function
returns an empty list” and “After n loop iterations,

the first n elements of the list are sorted” are both
conditional invariants.

Daikon infers invariants including conditional in-
variants through the inspection of multiple traces of
a program execution. Properties that hold for each
trace are reported to be invariants that hold in gen-
eral. Daikon uses dynamic instrumentation to track
variable values, feeding the result into an inference
generator that creates a variable grammar and ap-
plies a machine learning process to derive a set of
likely invariants. Accurate reporting requires that
the tested program traces (corresponding with dif-
ferent test inputs) have high coverage of the program
branches in its subroutines.

Daikon has potential uses for documentation,
avoiding bugs, debugging, formal verification, and im-
proving test suites. The last use case is the primary
focus of our application of Daikon.

foo(x,y):

y = y * y

if (x < 0):

if (y < 0):

z = -1

else:

z = 0

else:

z = 1

return z

Fig. 4: A program that takes integer inputs x and y.

Unfortunately, Daikon is limited by its depen-
dence on the test suite used to for invariant detec-
tion. We illustrate this problem more fully with an
example.

Consider the program foo(x,y) in Figure 4.
Given this program and the test suite:

• x = -1, y = 1

• x = 1, y = 0

• x = 2, y = -1
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Daikon will infer that the following invariance and
conditional invariance hold at the program’s exit:

• !(y < 0)

• z = 0 or 1

• x < 0 ⇒ z = 0

• !(x < 0) ⇒ z = 1

In this case, these are indeed program invariants and
will hold on every input. The accuracy of these in-
variants is a consequence of the completeness of the
test suite; the three tests explored every reachable
line of code in foo. On the other hand, consider the
following test suite:

• x = -1, y = 1

• x = -1, y = 0

• x = -2, y = -1

This test suite is incomplete since none of the inputs
reach the else case in which z = 1. Using these tests,
Daikon will infer that the following invariants hold at
the program’s exit:

• x < 0

• !(y < 0)

• z = 0

In fact, only the second of these invariants holds for
all possible inputs. The other two fail on any input
in which x is non-negative. Motivated by examples
such as this, we are interested in evaluating the ways
in which and the magnitude to which Daikon errs
when given only a partial test suite. Such an evalua-
tion is particularly interesting as developer test suites
may systematically avoid branches of the execution
tree [2], while complete suites may be computation-
ally infeasible to generate. If Daikon performs poorly
under partial test suites, then it is severely limited by
a program’s complexity.

3 Methods

In this section we outline two experiments examining
the possibilities for integrating KLEE and Daikon.
The first attempts to use the output of Daikon to
speed up KLEE’s execution. The second analyzes the
quality of invariants produced by running Daikon on
a random subset of KLEE’s output.

3.1 Using Daikon to Inform KLEE

As mentioned in Section 2.1, we believe that knowl-
edge of program invariants can refine and expedite
symbolic execution. This knowledge is particularly
important when branch conditions are difficult for

the symbolic machine to analyze. While difficulty
of analysis is unavoidable (in general, determining
the satisfiability of a conditional statement is NP-
hard), invariants can simplify statements to the point
that they are manageable. Moreover, the limitations
of KLEE’s constraint solver are such that knowl-
edge of invariants may allow KLEE clearer naviga-
tion in branches that previously involved unsolvable
constraints.

We run a simple experiment to evaluate the ex-
tent to which making invariants explicit speeds up
KLEE’s execution on branch-heavy functions. A vi-
sual outline of this experiment is given in Figure 5.
We develop functions, similar to the one presented in
Figure 1, that are composed of nested if statements
such that many of the branches are unreachable and
time KLEE as it symbolically executes them. For
each program, we then run the resulting test suites
through Daikon, developing a set of invariants. After
making invariants explicit by adding assert state-
ments to the program, we rerun KLEE on the mod-
ified programs and compare both the execution time
and number of tests generated to the original run.

This experiment accomplishes two goals. First, if
adding assert statements decreases the execution
time of KLEE without reducing the number of tests
generated and without violating the assert state-
ments, it shows that forcing KLEE to explicitly ac-
knowledging invariants can benefit to test suite gen-
eration. Second, by examining programs of differ-
ent sizes without changing the difficulty of solving
the constraint set, we can determine how much time
KLEE spends solving constraints versus traversing
the execution tree.

3.2 Probabilistic Invariant Detection

The goal of probabilistic invariant detection is to eval-
uate the effectiveness of generating program invari-
ants using Daikon on a partial test suite. As observed
in Section 2.2, the completeness of the test suite that
Daikon uses to infer invariants affects Daikon’s out-
put. In particular, an incomplete test suite (one that
does not cover all branches of the execution tree) may
cause Daikon to:

1. over-generalize application of invariants: infer in-
variants that hold for all inputs in the incomplete
suite but not in general. And,

2. over-specify invariants: fail to generate invariants
that hold in general because Daikon focuses on
too-specific invariants that are implied by actual
program invariants but are not general enough.
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Fig. 5: A proposed method of comparing the performance of KLLE with and without knowledge of Daikon-
generated invariants.

Fig. 6: The architecture of the experiment to evaluate Daikon’s performance using an incomplete test suite.
KLEE is used to generate a complete test suite. Daikon infers invariants based on these tests and separately
on a subset of these tests. The results are compared.
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We evaluate the degree to which Daikon is suscep-
tible to these errors by comparing the invariants gen-
erated by Daikon using a KLEE-generated complete
test suite and the invariants generated by Daikon us-
ing a subset of this complete suite (Figure 6).

We evaluate probabilistic invariant detection with
respect to three different types of programs: sort-
ing algorithms (selection sort, insertion sort, merge
sort, and quick sort), arithmetically complex algo-
rithms (computing the relative orders of a and b in
Zp, computing the greatest common denominator of
a and b using the Euclidean algorithm, computing the
greatest common denominator of a and b using prime
factorization, and computing the discrete logarithm
loga b in Zp using the Tonelli-Shanks algorithm), and
recursive algorithms (factorial, computing the sum
of the absolute value of list elements, computing the
number of distinct primes in the prime factorization
of n, and computing if a list is a palindrome). These
programs vary in complexity when measured with
respect to program invariants and size of execution
tree. The number of invariants detected using a com-
plete test suite vary from 15 (recursive factorial of
n < 100) to 712 (discrete logarithm in Z11 and Z13

using Shanks algorithm) and the number of KLEE-
generated tests (which are in 1-1 correspondence with
reachable execution paths) vary from 24 (recursive
palindrome on lists with size between 6 and 10) to
1024 (recursive sum of the absolute value of list ele-
ments on lists of size 10).

4 Results

This section presents the results of our two experi-
ments.

4.1 Results for Using Daikon to Inform
KLEE

We ran KLEE five times on a function with 16 reach-
able branches out of 32 total branches, and five times
on a function with 512 reachable branches out of
1024 total branches. In both cases, the unreachable
branches were caused by checking the condition z <

0 after squaring the variable z. We then added the
statement assert(!(z < 0)) prior to branching and
repeated both experiments.

In both cases, the addition of the assert state-
ments made no significant difference in the runtime
of KLEE. In the 32-branch case, KLEE averaged
21.1238 seconds before adding the assert statement
and 21.1344 seconds afterwards. In the 512-branch
case, KLEE averaged 23.9218 seconds before adding

the assert statement and 23.9210 seconds after-
wards.

These results demonstrate two important proper-
ties of KLEE. First, changing the order in which the
program execution encounters conditional branches
has no perceptible impact on KLEE’s execution time.
It is likely that in the pre-assert case, KLEE stores
the constraint !(z * z < 0) either upon executing
the statement that squares z or upon reaching the
z < 0 condition for the first time. Thus, prompting
KLEE to consider known invariants early in its execu-
tion does little to change its runtime. Second, KLEE
spends the vast majority of its execution time on
these programs evaluating the fairly basic rule !(z

* z < 0), so much so that computing an extra 496
test cases is fairly negligible in comparison. This re-
sult implies that knowledge of invariants could still be
useful in reducing execution time, though incorporat-
ing such knowledge is more complicated than adding
a series of assert statements to each function.

In future work, we propose a modification of
KLEE to allow a special statement to add constraints
to the set KLEE maintains as it executes the pro-
gram. The difference, with respect to assert state-
ments, is that KLEE would immediately accept these
constraints as true rather than attempting to find
examples invalidating them. While such statements
would not be risk-free—adding invariants that do
not actually hold over the entirety of the execution
tree would prevent KLEE from executing correctly—
they allow KLEE to bypass complex computation on
statements that are verifiable via known invariants.
This modification has the additional benefit of al-
lowing programmers to restrict KLEE’s symbolically-
generated inputs to a particular range within the pro-
gram.

4.2 Results for Probabilistic Invariant
Detection

For each of the twelve programs described in Sec-
tion 3.2, we run Daikon on randomly selected sub-
sets of the complete KLEE-generated test suite. We
choose subsets with sizes in increments of 10% of the
size of the complete suite. In each case we ensure a fi-
nite KLEE-generated test suite by limiting the range
of any integer arguments and the size of any list ar-
guments. We compare the resulting invariants to the
invariants generated by Daikon using the complete
test suite and determine the average recall (Table 1)
and precision (Table 2) over 20 runs.

Low recall corresponds to Daikon’s tendency to
over-generalize, while low precision corresponds to
Daikon’s tendency to over-specify. We anticipate that
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total execution
program invariants paths 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

selection sort 125 33 0.3828 0.3956 0.7768 0.8664 0.8696 0.9196 0.9356 0.9616 0.9796
insertion sort 167 120 0.6970 0.7533 0.7856 0.8222 0.8341 0.8886 0.9012 0.9449 0.9689
merge sort 190 120 0.9060 0.9222 0.9364 0.9404 0.9637 0.9575 0.9775 0.9858 0.9968
quick sort 201 120 0.9264 0.9473 0.9527 0.9577 0.9701 0.9806 0.9831 0.9786 0.9915

relative orders 63 104 0.5492 0.6286 0.6952 0.8063 0.8571 0.8762 0.9238 0.8968 0.9413
gcd by Euclidean alg. 76 360 0.7276 0.8375 0.8961 0.8217 0.9112 0.9204 0.9592 0.9039 0.9217
gcd by factorization 170 159 0.7212 0.7406 0.7982 0.7897 0.8594 0.8279 0.8544 0.8744 0.8729
discrete logarithm 712 235 0.7057 0.7582 0.7668 0.8076 0.8277 0.8827 0.8864 0.8611 0.9029

factorial 15 101 0.1853 0.2707 0.3413 0.3933 0.6880 0.7053 0.6880 0.7227 0.9293
sum of list elements 34 1024 0.9941 0.9941 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
distinct primes 64 49 0.6062 0.8625 0.8797 0.9266 0.9016 0.9453 0.9719 0.9672 0.9750
palindrome 78 24 0.4051 0.7295 0.9462 0.9769 0.9833 0.9821 0.9885 0.9962 0.9949

Table 1: Recall of invariant detection using different proportions of the KLEE-generated test suite in incre-
ments of 0.1. Average over 20 runs.

total execution
program invariants paths 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

selection sort 125 33 0.6632 0.8504 0.8324 0.8844 0.8913 0.9293 0.9451 0.9705 0.9863
insertion sort 167 120 0.5960 0.6830 0.7375 0.7727 0.8043 0.8480 0.8694 0.9228 0.9518
merge sort 190 120 0.7613 0.8660 0.9060 0.9186 0.9586 0.9654 0.9802 0.9892 0.9950
quick sort 201 120 0.7291 0.7762 0.8135 0.8567 0.9108 0.9355 0.9343 0.9628 0.9765

relative orders 63 104 0.7972 0.8082 0.8622 0.8625 0.8926 0.8976 0.9297 0.9128 0.9324
gcd Euclidean alg. 76 360 0.8547 0.9458 0.9722 0.9615 0.9795 0.9838 0.9851 0.9906 0.9979
gcd factorization 170 159 0.7990 0.8600 0.9032 0.9025 0.9200 0.9330 0.9389 0.9694 0.9763
discrete logarithm 712 235 0.6011 0.6576 0.6583 0.6886 0.7241 0.7339 0.7378 0.7325 0.7611

factorial 15 101 0.4964 0.6152 0.6919 0.7375 0.9053 0.9121 0.9053 0.9186 0.9817
sum of list elements 34 1024 0.8244 0.9185 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
distinct primes 64 49 0.6361 0.7263 0.7537 0.8317 0.8863 0.8631 0.8736 0.9036 0.8703
palindrome 78 24 0.5430 0.6982 0.7944 0.8355 0.8877 0.9108 0.9542 0.9676 0.9773

Table 2: Precision of invariant detection using different proportions of the KLEE-generated test suite in
increments of 0.1. Average over 20 runs.
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low recall is more detrimental to Daikon’s usefulness,
since it is easier for human programmers to weed out
false positives than to determine new program invari-
ants [3].

Our results show that both precision and recall
appear to increase at a sublinear rate with respect to
the proportion of test inputs. In other words, as more
test cases are added, the marginal benefit of adding
additional test cases decreases. This phenomenon is
exemplified by the recall and precision of the three
test programs (one from each category) shown in
Figure 7and Figure 8. Furthermore, recall and pre-
cision are both reasonably high even when using only
a small proportion of the complete test suite to detect
invariants. Although there is no formal definition for
a good approximation of invariants, in all but three
of the programs (greatest common denominator by
prime factorization, discrete logarithm, and factorial)
over 90% of invariants are detected using only 70%
of the complete test suite. Similarly, in all but three
of the programs (insertion sort, number of distinct
primes, and discrete logarithm), fewer than 10% of
the invariants that are detected using only 60% of
inputs do not hold for the complete test suite.

The performance of probabilistic invariant detec-
tion on the program that computes the sum of the
absolute value of list elements provides further in-
sight into the relationship between invariants and
symbolic execution. Computing the sum of list ele-
ments has very few program invariants (34) relative
to the number of execution paths (1024). This ratio
suggests that each branch of the execution tree is sim-
ilar in that the same invariants hold on each branch.
If it were the case that the invariants were not consis-
tent across the execution tree, Daikon would interpret
these differences as conditional invariants. Therefore,
it is not surprising that Daikon correctly infers all of
the program invariants for the sum of list elements
using on 30% of the complete test suite. In future
work, it would be interesting to test this hypothesis
on other programs with low ratios of invariants to
execution paths.

On the other hand, it is not clear from our results
which program properties make it difficult for Daikon
to well-approximate program invariants with a par-
tial test suite. Although we hypothesize that the fea-
sibility of probabilistic invariant detection is inversely
related to the variability of different execution paths,
it is unclear how this variability should be measured.
Tables 1and 2do not suggest any correlation between
the performance of probabilistic invariant detection
and either the number of invariants or the number
of execution paths. One possible direction for this re-
search is to explore a measure of invariant variability

in a program’s execution tree and how this measure
relates to Daikon’s ability to approximate invariants
with an incomplete test suite.

Fig. 7: Recall of invariant detection for programs of
each type: selection sort of lists of size 4, comput-
ing the greatest common denominator of a < 15 and
b < 15 using prime factorization, computing if a list
with size between 6 and 10 satisfies the palindrome
property. Numbers displayed are an average over 20
repetitions.

Fig. 8: Precision of invariant detection for programs
of each type, averaged over 20 repetitions.

5 Related Work

Generating test suites. The Eclat tool [6] incor-
porates a small fault-revealing subset of test inputs
from the larger set of tests, allowing the developer
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to focus on a few useful inputs. As part of this tech-
nique, redundant tests are discarded. This procedure
corresponds to choosing one input on each faulty exe-
cution branch. The larger set of tests may come from
the developer test suite, or, alternatively, Eclat pro-
vides a technique for generating legal inputs.

Previous work on integrating static and dynamic
analysis tools to generate test inputs (primarily
[1]) have focused on using static analysis to guide
dynamically-driven test generation toward program
vulnerabilities. Although it uses different techniques
(in particular, a visibly pushdown automata), this
system incorporates similar ideas to ours while aim-
ing to produce test cases exposing program vulnera-
bilities as opposed to a generic high-coverage suite of
tests.

Substra [7] guides test generation using program
constraints inferred by Daikon and based on subsys-
tem states and define-use relationships. These con-
straints, as well as the sequence in which they occur,
define valid input sequences that may appear in real-
world applications.

Improving symbolic execution. An evaluation
of various symbolic execution techniques [2] suggests
that scalability is a significant limitation of symbolic
execution techniques for test generation. Various op-
timizations to KLEE and other symbolic execution
tools such as KLOVER [5] provide some improve-
ment.

Evaluating invariance. Previous evaluations of
Daikon’s invariant detection system has primarily fo-
cused on the evaluation of conditional invariants and,
in particular, on the relationship between splitter se-
lection and generated invariants [3]. Although this
evaluation compares different methods of splitter se-
lection, it does not examine how these methods are
affected by the test cases used to infer invariance.

6 Conclusion

Motivated by the complementary advantages and dis-
advantages of symbolic execution and invariant de-
tection in the context of dynamic analysis, our re-
search aimed to integrate these two tools in order
to make the automatic generation of complete test
suites more efficient. Using the KLEE symbolic vir-
tual machine for symbolic execution and the Daikon
invariant detection system, we determine that even
though Daikon’s output depends on the completeness
of the test suite, it is generally robust with respect to
partial test suites. In other words, it can be expected
that a set of inputs not covering every branch of a
program’s execution tree is sufficient to guide Daikon
to infer a mostly accurate set of program invariants.

Related to this result, we propose the following di-
rection of research: first define a measure of program
variability between execution paths. Then evaluate
the correlation between this measure and the preci-
sion and recall of probabilistic invariant detection.

Our second contribution explores the idea that
knowledge of program invariants may guide the sym-
bolic execution process. Although the results of this
experiment are inconclusive, they suggest possible
modifications to the symbolic execution process that
use prior knowledge of invariants to decrease the
number of branches KLEE must explore and conse-
quently limit the computationally expensive process
of constraint solving.

Finally, these two results suggest a method for
augmenting an incomplete developer test suite. Since
Daikon approximates invariants well in spite of test
suite incompleteness, the program invariants pro-
duced by Daikon run on the developer tests will likely
hold on all inputs. Furthermore, past research sug-
gests that eliminating the few false positives would be
a relatively trivial process for a human programmer.
These invariants can be transformed into statements
which can guide a modified version of KLEE through
a simplified execution tree of the program, ultimately
producing a complete test suite.
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Abstract

There are similarities that exist in code that is similar but not
identical that humans can easily find but that computers sometimes
have a hard time identifying. Tools that can identify which of many
files contain similar code and which lines are similar would be helpful
for many reasons, from amateur programmers trying to obtain better
search results that accounts for the actual source code they have writ-
ten, to experts searching for posted questions that contain code similar
to code they have written so that they can help answer questions. Ex-
isting tools that perform these tasks are duplication detection tools
used in industry such as CloneDR and Copy/Paste Detector (CPD)
from PMD, which use techniques like string matching and comparing
abstract syntax trees, and plagiarism detection tools used in academia
such as MOSS and Sherlock which often use statistical techniques such
as winnowing and tokenization.

We seek to identify the limits of some of the more commonly used
tools, particularly in how accurately they can classify code as similar in
ways that humans would see as relevant or related. We performed an
experiment in which we compared a few plagiarism detection tools as
well as a promising technique, code compression, that might be used to
enhance results. We compared the ability of MOSS, Sherlock, and code
compression with gzip to provide us with a ranking of code similarity
that lined up with humans’ rankings. We found that in most cases
neither MOSS nor Sherlock was able to accurately discover which code
snippets were similar. Code compression gave us promising results,
but it is hard to imagine code compression as a stand-alone technique,
given how barebones it is. Future work should be done to examine its
usefulness given a wide variety of code and similarity types.

1

62



1 Introduction

The ability to identify similar sections of code is a difficult but important
task. Detecting similar parts of code within or between projects has im-
portant applications in both academia and industry. There are two areas
in which code similarity detection is particularly important, which involve
finding exactly or close to exactly duplicated code and relatedly, finding
instances of plagiarism. In industry, each line of duplicated code costs a
company money to maintain, and bugs are more prone to be uncaught if
there is duplicated code where a bugfix wasn’t implemented. This has been
the impetus to develop tools that can identify poorly factored code, which
typically look for exactly duplicated code or code that has been minorly
edited from some other version elsewhere in the project. In academia, con-
cerns about plagiarism detection in source code has led to the development
of tools that provide some estimate of how much code within two files may
be plagiarized based on some similarity score generated by the tool. Given
the sheer amount of submitted code that must be screened for plagiarism,
there is a great motivation for some sort of automated system to assist in the
manual work of reading through submitted source code. This motivation has
led to a decent amount of work done to develop tools that can accuraately
identify which pieces of code are potential plagiarism cases. Unfortunately,
once tools were developed that did a ’good enough’ job of ranking code as
being potentially plagiarized, the development of new plagiarism detection
tools has stagnated.

Besides these two use cases, we see a need for code similarity tools that
are less specialized. In particular, it seems that finding code that relates to
one’s project would be helpful for a variety of reasons, from simply providing
extra reference points of how someone else has written the same functional-
ity, to narrowing down search results to include those with code that is most
similar to that which a user has already written. These types of tools do not
yet exist as stand-alone tools, though they may be minimally implemented
and integrated into some search recommendation algorithms for websites
which allow users to upload or host code (e.g. GitHub).

In this paper, we will review and summarize some popular techniques
that are applied to detect code duplication as well as some algorithms that
are used to detect plagiarism.
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2 Our Idea

Originally we aimed to develop a system that allowed users to upload their
own code so that it could be used in a search engine to find relevant code
forum posts (specifically taken from StackOverflow). We felt a tool like this
would be helpful in cases in which programmers are attempting to find rel-
evant help posts, yet do not yet know the proper terminology. For instance,
a new computer science student might be unsure how to word a question
about what they are struggling with, so it might help them to be able to
upload a segment of code directly and not worry about wording. Or, an
experienced computer programmer might have an altruistic goal of helping
out as many questioning programmers as possible and want a better way
to find questions they could easily answer, given code they have previously
written.

Through our examination of pre-existing tools, we found several that we
deemed as useful to solve our task. MOSS, a plagiarism detection tool, in
particular seemed like the solution to our code-matching task. We planned
to combine the functionality of MOSS with the StackOverflow API, Stack-
Exchange, in order to build a working prototype.

However, we made an assumption regarding the ability of a specific pla-
giarism detection tool, MOSS, to cross into the realm of general code simi-
larity identification. In practice, the tool we planned to use was unable to
detect similarities in similar code if the code was not essentially a copy-and-
pasted version of the original with only minor alterations such as identifier
name changes and slightly different control flow while maintaining almost
identical content and functionality.

After seeing a need for a more general tool to identify similar pieces of
code that did not make any assumptions about the code being copied and
then deliberately altered to mask the plagiarism, we decided to investigate
code similarity detection techniques and the effectiveness and limitations of
tools that implement them in order to come up with a better direction for
future work in this topic to go in.

We have identified and examined a few existing tools to figure out which
techniques work in various situations. There are many different tools that
perform similarity detection in source code, including matching code exactly,
matching code according to some predefined threshold, matching while ig-
noring variable names, and matching code in specific languages. In section
III, we will discuss relevant background information. This includes existing
tools and how accurately their results line up with what real humans think
is similar. In section IV, we will present the experiemental setup. In section
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V we will present the results and discussion. Finally, in section VI we will
conclude with an overview of the general problems we encountered when
trying to create systems based on the existing systems and discuss future
directions guided by our results.

3 Background and Related Work

Despite our belief that it is important and useful to identify publicly-available
code that is somehow ’similar’ to an arbitary code sample, the fact that there
are only a couple use cases where these tools are of necessity has led to the
development of a few highly specialized tools that essentially work to de-
tect similarity in the way that the specific use case needs it to work. Most
of the tools that currently exist and are being used are great at detecting
code that has been directly copied and has only minor alterations made to
it. However, detecting similarities between different code fragments could
mean either detecting that the two fragments are similar based on looking
at the code itself, or it could mean identifying that two code fragments have
similar or identical functions (e.g. for loops versus while loops). For the
purposes of this paper, we will discuss only code similarity detection tools
that examine the code itself rather than the output or function.

We will now discuss the differences between the tools and techniques used
to detect duplicate code in industry versus those used to identify plagiarized
code in academia.

3.1 Code Duplication

Code duplication detection tools are common in industry due to the high cost
of maintaining each line of code. In industry, these tools are used to identify
code that is poorly factored and which might benefit from refactoring or
procedure extraction [10]. Duplicate code typically arises from the ’copy-
and-paste’ style of programming in which a chunk of code is copied from one
location and pasted in another, often with no or very minimal changes to
the copied version of the code [10]. Identifying duplicate code must account
for the fact that some (sometimes trivial) changes may have been made in
one version of the duplicated code. The goal is to identify what are termed
as ’code clones;’ a code clone occurs when one code fragment is the clone
of another as long as they are similar by some definition of similarity or
duplication [10].

Roy et al. (2009) [12] suggested four types of similarities based on both
textual and functional similarities can exist between any two code clones.
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The first type refers to identical code fragments with variations only in
whitespace, layout and comments. The second type contains syntactically
identical code fragments that are only different in identifiers, literals, types,
and variations included in the first type. The third type may also include
some added or deleted statements. The final type occurs when two or more
code fragments perform the same computation but are implemented differ-
ently. The difficulty to detecting code duplication increases from the first
type to the last type, with most existing tools being capable of detecting the
first two types of similaties fairly easily, and very few efficient tools existing
that can fully handle the second two types.

There are many code duplication detection tools. Each tool has a specific
focus on its potential use cases. But in general, we can classify the tools
into four categories based on the information it can extract from the source
code, and the analysis it performs. The four categories are textual, lexical,
syntactic and semantic [12].

Textual approaches perform little or no pre-processing of the code sub-
missions. On most instances, raw source code is used, and is divided into
sub-strings. The result is a set of fingerprints. Then, the fingerprints are
hashed, and by comparing hash values, the systems identify code fragments
with the same hash values as clones.

Lexical approaches (also known as the token-based approaches) pre-
process the source code by transforming it into a string of tokens, according
to the lexical structure of the specific programming language in which the
source code is written. This encoding abstracts away the concrete names
and values of parameters. The tokens are then transformed into a suffix
tree, and by analyzing the suffix tree, the systems can detect code clones.
Dup used the lexical approach with a parameterized matching alorithm. It
is most effective in detecting the first and second types of clones, and can
sometimes detect the third type by a maneuver involving a sort of concate-
nation of the first and second types [12].

Syntactic approaches use a parser to convert source code into abstract
syntax trees (ASTs), which can then be processed by either tree-matching
or metrics-based algorithms.

Finally, semantic approaches usually use a program dependency graph
to analyze the source code. The nodes of the graph represent expressions
and statements, and the edges represent control and data dependencies [12].
This representation abstracts away the order in which statements occur, and
is effective for the fourth type of clones.
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3.2 Code Plagiarism

Code plagiarism may also arise from a copy-and-paste style of programming,
though this time one assumes that the plagiarizer will deliberately change
any elements of the code that do not alter its functionality. For example,
a plagiarizer may change the whitespace and layout, rename identifiers, re-
order code blocks and statements within code blocks, change control flow,
etc [6].

In terms of how one detects that two files are similar enough that there
is plagiarism, the types of similarity occuring can be categorized along the
same lines as code duplication with the four types of code clones.

However, the tools are built with the assumption that a user of the
tool(usually a professor) is not going to rely on the tool to identify all lines
in the code that are plagiarized; rather, it is most important for the tool
to simply identify files that are most similar to each other since a human
component will have to be involved anyway.

Existing plagiarism detection tools can be categorized based on their
algorithms. In this paper, we will evaluate and compare a couple source-
code plagiarism detection tools that use different categories of algorithms.
As suggested by Mozgovoy, plagiarism detection algorithms can be classified
into three categories: fingerprint-based systems, string-matching systems,
and parameterized matching algorithms [6].

Tools based on the fingerprint approach work by creating ’fingerprints’
for each file which contain statistical information about the file. These fin-
gerprints may include, but are not limited to, the following type of data:
average number of terms per line, number of unique terms, and number of
keywords. The systems create the ’fingerprints’ by extracting and count-
ing the attributes from source code submissions, and flagging the pairs of
submissions which are suspiciously similar for humans to inspect further.
However, the drawbacks to tokenization are that the tools created are inher-
ently language-dependent, and tokenization can cometimes make two very
different lines of code appear to be similar [6].

Many of the earliest plagiarism detection systems were fingerprint-based
systems. In 1976, Ottenstein developed a tool for detecting identical and
nearly identical student work [8], [7] using Halstead’s software metrics to
detect similarities by counting operators and operands for ANSI-FORTRAN
modules [3], [4].

Extending on Ottenstein’s work, Robinson and Soffa developed ITPAD
(Instructional Tool for Program Advising), another plagiarism detection tool
that incorporated new metrics to Halstead’s metrics in order to improve
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system performance [11]. In addition to counting the common attributes,
ITPAD breaks each program into blocks and builds a graph representing the
structure of each file submission. It then generates a list of attributes based
on the lexical and structural analysis and compares pairs of submissions by
counting these characteristics.

Some of the most well known and recent string-matching-based systems
include MOSS [1], JPlag [9], Yet Another Plague (YAP3) [14], and Sherlock
[5]. In most string-matching-based systems, including the ones mentioned
above, there is an initial preprocessing stage called tokenization. At this
stage, each substring in the source-code file is replaced with predefined and
consistent tokens, such as identifiers, types, integers, strings, and so on; for
example, different types of loops in the source-code may be replaced by the
same token name regardless of their loop type (e.g. while loop, for loop).
This method is also used to replace variable names so that variation between
files, based only on identifier names that are up to the user’s discretion, is
decreased. Each source-code document is then represented as a series of
token strings. The tokens for each document are compared to determine
similar source-code segments. Overall, this process effectively helps detect
similar programs with consistent structures but renamed identifiers.

One of the earliest string-matching plagiarism detection tools, Measure
of Software Similarity (MOSS), is one of the tools that we have studied
more in depth. Instead of relying on a source file’s lexical and semantic
information, it is based on a statistical approach that divides programs into
k-grams, where a k-gram is a contiguous substring of length k. Each k-
gram is then hashed, and MOSS selects a subset of these hash values as the
program’s fingerprints, thus making MOSS a combination of string-matching
and fingerprint-based systems. At a high level, source code similarity is
determined by the amount of fingerprint duplication between the files – the
more fingerprints they share, the more similar they are [13].

Finally, the DUP tool is based on a parameterized matching algorithm
[2]. The algorithm detects identical and near-duplicate sections of the
source-code by matching source-code sections whose identifiers have been
substituted or renamed systematically.

4 Experimental Setup

Given that MOSS did not provide an accurate rating of which files were
most similar in regards of our initial project concept, and after multiple
failed attempts with other similar tools such as Sherlock, we decided to
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perform a study of the bounds of these tools with respect to what a human
would be able to identify as similar or related code.

Our goal through our rounds of experiments was to identify the strengths
and weaknesses of several different code similarity tools. To test this, we
identified two code samples taken from students in the introductory Com-
puter Science course at Swarthmore College, that seemed typical of introduc-
tory programming assignments, and thus should have many related Stack-
Overflow posts. One was recursively writing the Fibonacci sequence while
the other was writing code for a simple game of hangman.

To start our experiment, we first identified a single highly relevant Stack
Overflow post that contained code within the question portion. Next, we
gathered more posts by using the original post’s “Related Posts” section in
the article. For the initial post and its related posts, we stripped out the
code snippets from each to save in separate python files for testing. The
search for Fibonacci sequence posts yielded 8 code samples; the hangman
search contained 10.

To create a baseline for our comparisons, we ranked the posts manually
against the base file to determine how “useful” they seemed and if there was
a high degree of similarity. We defined “useful” to mean containing similar
chunks of code and being marginally related to the same task, without much
other irrelevant code.

Then, all files obtained from StackOverflow posts were run side-by-side
against the base file (taken from the intoductory students’ work) on two
different code plagiarism tools, MOSS and Sherlock. We also performed a
related experiment using code compression techniques.

The first plagiarism detection tool that we used to compare code was
MOSS. This tool uses a string-matching algorithm called winnowing to re-
turn the number of line matches as well as the percentage of each file that
these lines make up. Figure 1 is sample output from running the MOSS
program.

The second tool was Sherlock which uses digital signatures to find sim-
ilarities between files. A digital signature is a sequence of bits that have
been joined into a number. It is formed by taking several words in an input
file and turning them into a sequence of bits. Sherlock returns a percent-
age similarity index. We also ran Sherlock with a zero percent sensitivity
threshold so it would detect any bit of similarity; otherwise, Sherlock only
reports results when the similarity index is over twenty percent.

Lastly, we performed a code compression analysis in which we gzipped
the individual base files as well as concatenated files that contained the base
file code along with the StackOverflow post code. We then compared the
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Figure 1: An example run of the MOSS Plagiarism Detection System.

concatenated file sizes to what would be expected. The expected value was
determined as what the size would be if we added the compressed sizes of the
two individual files composing the concatenated file. We then calculated the
difference in these file sizes; presumably, the files with a greater difference
should be similar because more code was able to be compressed.

5 Results and Evaluation

None of the three tools was able to accurately identify which code samples
were similar in terms of matching up with how similar a human rates the
code snippets. Most importantly, very few of the files that we ran actually
were identified as having any similarity at all. Only two out of the eighteen
file pairs we ran in MOSS and three out of the eighteen files we ran in
Sherlock did not have a 0% matching rate. See Table 1 for a breakdown of
the results, including the StackOverlow post IDs and the percentage scores
for each file with each tool.

All of the files that contained matches were from the tests on the Fi-
bonacci Sequence code, and all posts related to hangman had 0% matching
rates.
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Of the files that did contain matches when testing with Sherlock, two
out of the three were highly ranked pre-testing, which meant we thought
these files would help someone performing a search. For the MOSS results,
one of the two files was highly ranked; the other would be deemed a false
positive. This file contained a large amount of irrelevant code that a searcher
would need to sift through to get their answer, leading to our low initial
ranking. Unfortunately, there was also one other file that was highly ranked
that showed no similarity and thus was a false negative. As far as we are
concerned with our expectations for the code plagiarism tests, these results
were unsatisfactory. We were hoping for some similarity to also be reported
for the other files, which was not the case.

File ID MOSS (lines matched) Sherlock (%)

15305362 0 0

15515920 0 0

15611781 0 0

15820601 0 0

15994428 7 66

1678091 0 0

17624149 0 33

19871921 7 28

4935957 0 0

494594 0 0

Table 1: Fibonacci Sequence individual file sizes

In an exploratory effort into analyzing code similarity using code com-
pression, we produced a more rudimentary measure of similarity between
two files. In tables 2 and 4, we present the results of our code compression
tests.

In the Fibonacci Sequence code, the file that exhibited the most compres-
sion was the same file that returned a matching with MOSS and Sherlock
but was not highly ranked pre-testing. The file with the second highest
difference in the compression experiment was the false negative mentioned
above. This file was ranked in the top two when we rated files on usefulness;
this could be a case in which code compression yields better results than
using the code plagiarism tools. Overall, the five files that had the largest
compression differences were all ranked in the top five. This method, at
least with this code sample, contains promising results for future direction.
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See Tables 2 - 5 for a complete breakdown of the results.

File ID Compressed Size (MB)

fib (base) 156

15305362 177

15515920 91

15611781 270

15820601 167

15994428 133

1678091 320

17624149 177

19871921 327

4935957 89

494594 162

Table 2: Fibonacci Sequence individual file sizes

File ID Sum of Individual Files (MB) Compressed Size (MB) Difference (MB)

15305362 270 333 63

15515920 199 247 48

15611781 368 426 58

15820601 247 323 76

15994428 220 289 69

1678091 423 476 53

17624149 268 333 65

19871921 405 483 78

4935957 206 245 39

494594 245 318 73

Table 3: Fibonacci Sequence compressed file sizes
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File ID Compressed Size (MB)

hangman (base) 1344

19898080 180

6339473 492

9855011 762

9970378 581

17983653 302

19246381 1237

19341882 1174

19760186 1132

Table 4: Hangman individual file sizes

File ID Sum of Individual Files (MB) Compressed Size (MB) Difference (MB)

19898080 1442 1524 82

6339473 1769 1836 67

9855011 1982 2106 124

9970378 1774 1925 151

17983653 1565 1646 81

19246381 2438 2581 143

19341882 2373 2518 145

19760186 2340 2476 136

Table 5: Hangman compressed file sizes

We believe that the code plagiarism detection tools were much more
sensitive than we originally predicted them to be. We had assumed that
they would match any bits of code that were similar, even in very minor
ways; instead, it appears that the code has to have almost identical structure
for similarity to be detected. Our overestimation of the lack of sensitivity
of these tools led us to these results. As for code compression, we obtained
better results that we had expected. The files that we deemed helpful all
appeared in the top half of the rankings.
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6 Conclusions and Future Directions

Detecting similarites in code is difficult because the current use cases are
fairly specific and tools haven’t yet been developed to address a more general,
broader case. The tools that currently have been developed are focused on
meeting the exact needs of those use cases. One use case we have found to be
particularly important is detecting similarities in code that are less obvious
than exact duplication. We theorize that with this broader case, a tool can
be developed to allow people to find online forum posts containing code that
are similar to existing code that the user has supplied because they think it
is helpful. Through our experimentation, we discovered how fine-tuned the
tools were for particular cases; this conclusion was reached after the tools
did not detect similarities between code samples that are obviously similar.

One problem may be the granularity of some of these tools. Perhaps,
they could be altered to work in our use case, potentially by either chang-
ing source code or combining them with other pre-existing tools. Future
work may include research into the viability of producing a new tool that
integrates several similarity detection techniques to be able to identify all
four types of code clones. This research would likely involve research into
heuristics that can accurately weed out many of the samples and only run
detailed analyses on those most likely to be similar.

References

[1] A. Aiken. Moss: A system for detecting software plagiarism.
http://www.theory.stanford.edu/ aiken/moss/.

[2] B. Baker. On finding duplication and near-duplication in large software
systems. Proc. IEEE Second Working Conference Reverse Engineering,
pages 85–95, 1995.

[3] M.H. Halstead. Natural laws controlling algorithm structure? ACM
SIGPLAN Notices, 7(2):19–26, 1972.

[4] M.H. Halstead. Elements of Software Science. Elsevier, 1977.

[5] M. Joy and M. Luck. Plagiarism in programming assignments. IEEE
Trans. Education, 42(2):129–133, 1999.

[6] M. Mozgovoy. Desktop tools for offline plagiarism detection in computer
programs. Informatics in Education, 5(1):97–112, 2006.

13

74



[7] J. Ottenstein. An algorithmic approach to the detection and prevention
of plagiarism. ACM SIGCSE Bulletin, 8(4):30–41, 1976.

[8] J. Ottenstein. A program to count operators and operands for ansi-
fortran modules. IBM Technical Report CSD-TR-196, June, 1976.

[9] L. Prechelt, G. Malpohl, and M. Philippsen. Finding plagiarisms among
a st of programs with jplag. J. Universal Computer Science, 8(11):1016–
1038, 2002.

[10] Prajila Prem. A review on code clone analysis and code clone detec-
tion. International Journal of Engineering and Innovative Technology
(IJEIT), 2(12):43–46, 2013.

[11] S.S. Robinson and M.L. Soffa. An instructional aid for student pro-
grams. SIGCSE Bulletin, 12(1):118–129, 1980.

[12] Chanchal K. Roy, James R. Cordy, and Rainer Koschke. Comparison
and evaluation of code clone detection techniques and tools: A qual-
itative approach. Science of Computer Programming, 74(7):470–495,
2009.

[13] Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. Winnowing:
Local algorithms for document fingerprinting. SIGMOD, pages 76–85,
2003.

[14] M.J. Wise. Yap3: Improved detection of similarities in computer pro-
grams and other texts. Proc. 27th SIGCSE Technical Symposium, pages
130–134, 1996.

14

75



SketchyCode: An Accessible Interactive
Thinking Space for Programmers.

Senior Conference Final Report

Team 08: Z. Lockett-Streiff and N. Verosky

December 15, 2013

Abstract

Although popular Integrated Development En-
vironments (IDEs) like Eclipse gather devel-
opment project resources into a central inter-
face to streamline code management, they take
traditional text editors as their point of de-
parture and therefore generally lack tools for
fluidly interacting with projects at their most
abstract, structural level. Research projects
like CodePad [PGR10] have explored ways of
filling this gap in existing IDEs’ functional-
ity by tying birds-eye-view code visualization
into the coding environment using specialized
hardware, but to our knowledge no previous
projects have taken advantage of tablets’ ac-
cessibility and portability to build interactive
code-sketching tools for mobile touchscreen de-
vices that interact with traditional IDEs.

We present SketchyCode, an Android appli-
cation that sits on top of a backend Eclipse plu-
gin to represent software project hierarchies as
collections of free-floating modules on a draw-
able background canvas. SketchyCode merges
a two-dimensional model of Eclipse’s project
tree with on-screen pencil-and-paper sketching
to facilitate brainstorming and project recon-
ceptualization as part of the development pro-
cess. Finally, we outline an experimental
setup that could use SketchyCode to explore
the potential impact of integrating high-level
code sketching and visualization into tradi-
tional programming environments and discuss
SketchyCode’s broader possible uses in devel-
opment, education, and communication.

1 Introduction

Getting bogged down in the minutiae of plan-
ning out a large-scale programming project
can be messy. Furthermore, few widely-known
tools exist to facilitate this process outside of
the classic media of paper and whiteboards,
which can become cluttered and disorganized
with disjoint thoughts. Some of these existing
tools require specialized and expensive hard-
ware that may not be accessible to the average
programmer.

While an IDE like Eclipse enables users to
view outlines of their projects, such applica-
tions are often incredibly cluttered and create
information overload. A typical IDE workflow
contains the following, among other compo-
nents:

• The text editor window

• A package explorer

• A project outline

• Other auxiliary functionality which may
vary with the type of project being de-
veloped.

Eclipse has done well with organizing these
modules to optimize space for the editor win-
dow. However, this high concentration of infor-
mation may overwhelm the developer’s ability
to focus their thoughts. For instance, Parnin
et al. cites the phenomenon of navigation jitter
in which a developer rapidly navigates through
numerous document tabs [PGR10], resulting
in an accumulation of unproductive time. We
propose SketchyCode, an Android tablet app
which communicates with the Eclipse IDE to
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provide users with a dedicated ’skeleton’ per-
spective of their projects and enables them to
sketch out their ideas.

1.1 Idea

The essential idea behind SketchyCode is to
integrate high-level pencil-and-paper sketch-
ing into the development process to give the
developer a way of interacting more fluidly
with existing code, wrapping their understand-
ing around a given project’s overall structure,
and imagining possible directions for extend-
ing and modifying current behavior. Since this
birds-eye-view taking inventory of a project as
it stands and considering potential structural
modifications is the kind of work a program-
mer might want to do without being bound to
a desktop computer and is not widely accessi-
ble given the specialized hardware required by
systems like CodePad, SketchyCode aims to let
viewers intuitively visualize changing relation-
ships between projects’ components on mobile
devices. Specifically, we implemented this as
an Android app that fetches a given project
hierarchy from SketchyCode’s backend Eclipse
plugin and graphically represents the project as
a collection of free-floating type-level modules
on a drawable background canvas. We believe
that this setup will allow developers and edu-
cators to efficiently and conveniently concep-
tualize and communicate programs’ structural
relationships without having to adapt to new
programming environments or acquire special-
ized hardware.

1.2 Motivation

Our target audience for this tool is the broad
spectrum of programmers for whom access to
an Android tablet is feasible. We recognize
the limitations inherent in our demographic,
but restricting our scope was necessary for a
project still in its prototype stage. Sketchy-
Code grants users the ability to not only orga-
nize the components of their project in a sin-
gle location, but also to draw connections be-
tween them to indicate related ideas. Equipped
with a visualization of the big picture of a
project, programmers can avoid losing the di-
rection of their work and streamline the devel-
opment process.

1.3 Contribution

The impetus for SketchyCode is the work
of Parnin et al., the developers of CodePad.
CodePad provides peripheral working spaces
which link to an IDE and enable developers
to share notes and code with each other. How-
ever, CodePad has a noticeable impracticality:
this technology requires specialized, expensive,
and not widely available hardware. The idea
of CodePad is very practical, but would reach
a wider audience on a more mainstream plat-
form. SketchyCode fills this void by provid-
ing the beginnings of CodePad functionality by
tapping the thriving Android tablet market.

Our project is a unique contribution to ex-
isting research since mobile applications have
only recently become popular. For reference,
the first iteration of the Apple iPhone was re-
leased in 2007, and the iPad not until 2010,
the year the CodePad paper was published.
A cursory scan of Google Play revealed very
little: an application titled “Android Code-
Pad” which acts as a stand-alone code viewer.
Android CodePad has no IDE integration or
brainstorming space and thus is not in the do-
main of our project.

2 Background

The primary impetus for SketchyCode is the
work of Parnin et al [PGR10], the developers of
CodePad. CodePad provides peripheral work-
ing spaces which link to an IDE and enable
developers to share notes and code with each
other. The form factor on which we are mod-
eling SketchyCode is the portable CodePad, a
mid-sized tablet. However, the hardware of
the portable CodePad is limited by the bulk
of tablet computers leading up to and during
2010. The authors admit “a more apt device
comes in the form of an iPad.”[PGR10]. In
the years following the 2010 SOFTVIS sympo-
sium, tablet form factors have been drastically
streamlined. The authors of SketchyCode are
more experienced with Android development,
and so we created our project on the Android
platform.

Previous research has also explored the po-
tential benefits of reorganizing IDEs around
”bubbles” or ”modules” (as opposed to
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windows or tabs). In particular, Code
Bubbles[cod] allows programmers to group rel-
evant project components into working sets of
draggable and editable code bubbles. Impor-
tantly, the Code Bubbles team has conducted
usability studies demonstrating not only that
this more fluid two-dimensional layout can re-
duce development time but that reductions in
development time stem primarily from changes
in how the user conceptualizes a project and
stores it in working memory – and only sec-
ondarily from more obvious differences in in-
terface navigability and the time it takes to
execute a predetermined task.[BZR+10] Of
course, Code Bubbles still operates at the
level of statement-for-statement code manip-
ulation and is not concerned with integrat-
ing birds-eye-view sketching into the devel-
opment process, which suggests that higher-
level project organization tools using draggable
bubbles might amplify Code Bubbles gains in
project conceputalization, even (or especially)
if they don’t impact the click-for-click literal
code manipulation process. Finally, Code Bub-
bles’ usability studies suggest that sketching
tools’ somewhat abstract goal of streamlining
the way developers understand projects and
manipulate them in working memory really can
lead to quantitatively verifiable changes in de-
velopment time.

3 Evaluation

We successfully implemented a SketchyCode
prototype that allows the user to export an
existing Eclipse project to their Android de-
vice for sketching. The prototype includes an
Eclipse backend that packs a given project’s hi-
erarchy of types and methods into a string that
is sent over the network to SketchyCode’s An-
droid frontend. The Android frontend maps
the project’s types onto modules floating on
a sketching-enabled background canvas and
nests the project’s methods within the appro-
priate type-level modules. The user can con-
ceptualize the project from different angles by
dragging modules to different spatial locations
on the canvas, toggling modules based on rele-
vance (or deleting them entirely), adding new
candidate methods to existing types, and per-
forming basic pencil-and-paper sketching on
the background canvas.

3.1 Workflow

We will walk through the workflow of our app
using a sample Java project, SCDemo. The
SketchyCode workflow starts with the IDE.
The user selects their project in the package
explorer and then selects the “Send to Sketchy-
Code” option in the toolbar menu (Figure 1).

Figure 1: Sending a Project to SketchyCode

This action prompts Eclipse to set up a
server to which a String containing project
metadata is sent (package name, class names,
method names). Upon opening SketchyCode,
the app accesses the server, retrieves the
String, and parses it. The components of
the parsed String are passed into NoteModule.

These NoteModules are displays on the tablet
screen, along with functionality for writing on
the screen, drag-and-drop, and adding to, col-
lapsing, and deleting methods from modules
(Figure 2). Additional ancillary functionality
for erasing writing and refreshing data from
the server is also available. As a weak security
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mechanism, the server is closed once accessed
by the tablet. Refreshing requires the user to

re-send their project to SketchyCode.

Figure 2: Inside the tablet app

3.2 Impact and Next Steps

SketchyCode has reached a stage where its abil-
ity to facilitate software conceptualization and
brainstorming can now be meaningfully tested.
We propose an experiment in which individual
participants are each given access to a complex
software project consisting of multiple inter-
acting components and asked to make a spe-
cific change to the software’s behavior with
no additional documentation or explanation.
Subjects would be given access to the code as
an Eclipse project and would be free to use
pencil, paper, and any additional development
tools they deem helpful. Participants would
receive a brief tutorial on basic SketchyCode
and Eclipse usage, after which they would be
randomly split between a control group and a
SketchyCode group which would be given ac-
cess to SketchyCode during the software devel-
opment task.

We expect that given a sufficiently complex
programming task, the SketchyCode group

would be able to make the specified project
changes in a shorter period of time than the
control group if SketchyCode does indeed help
streamline software reconceptualization. Sec-
ondarily, this experiment would give us an op-
portunity to systematically collect more quali-
tative data about how SketchyCode impacted
participants’ development experiences, how its
interface might be made more intuitive, etc.
and compare this feedback against subjects’
performance on the software development task.

Although SketchyCode’s stated goal of
streamlining the way projects are planned, rep-
resented in working memory, and understood
throughout the development process is primar-
ily qualitative, previous studies like that con-
ducted by Code Bubbles’ developers [BZR+10]
indicate that development tools’ effects on
high-level project organization lead to concrete
gains in development time on top of more sub-
jective improvements in ease of use and fluid-
ity of thought. The Code Bubbles study sug-
gests that for tools providing more intuitive
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code visualization environments, times gains
attributable to increased fluidity of software
conceptualization significantly outweight those
attributable to the greater click-by-click effi-
ciency more advanced code editing function-
ality allows for. Since SketchyCode currently
does not support code editing and therefore al-
ways increases click-by-click development time,
the contrast between these layers is especially
stark: a decreased task completion time in
the experimental SketchyCode group would be
telling since it would indicate that gains in
high-level project conceptualization necessarily
outweighed losses in click-by-click code editing
efficiency.

Initially, we intended to implement limited
code refactoring, enabling the user to con-
trol large portions of their project from the
tablet. Code refactoring would drastically
change our user testing. Currently, a user can
view their project skeleton and plan out the-
oretical changes in their project without see-
ing any changes in their project. Refactoring
would enable users to control large portions of
their project by creating functions to encapsu-
late the major functionality of their work. A
user’s project could become significantly more
modular by defining such functions up front.
Our user testing would also change as a result
of implementing code refactoring. Instead of,

for example, gauging how quickly a user can
navigate their project with the SketchyCode
workflow, we can actually test a user’s ability
to create a new project from scratch using our
app and compare it to the same project made
using a traditional IDE setup.

4 Conclusion

While this app is still in its early stages, it
shows promise as a project-organizational tool.
It enables users to zoom out and view their
projects at a high level so they can remain
focused on the task at hand. Furthermore,
we believe that the project-specific learning
implicit in the development task motivating
our app hints at SketchyCode’s wider poten-
tial as a teaching and communication tool, and
that variants of this experiment could explore
SketchyCode’s effectiveness in education and
presentation environments beyond its obvious
relevance to the development process.

One of the big next steps is implementing the
tablet-to-IDE transmission and refactoring of
code. SketchyCode will be even more useful if
its outline visualization can be used to quickly
add and remove functions, and possibly other
project data as well. Project skeletons can be
efficiently designed and created.
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Abstract

While there currently exist several image-processing lan-
guages that provide a simple syntactical structure and
are quickly and efficiently executed, we believe that there
is a void all these image-processing languages share:
the inability to give immediate visual feedback. The im-
age processing domain deals exclusively with images and
image manipulations, and thus we feel this domain is
uniquely suited to benefit from live coding - a compiling
technique which allows for developers to instantaneously
see the results of their code modifications. To this end, we
have created Likely, a Domain Specific Language (DSL)
that not only has a straightforward syntactical structure
and a speedy execution, but also the novel feature of live
coding.

All languages rely on a compiler and an interpreter,
and Likely is no exception: it uses LLVM as its com-
piler, and Lua as its interpreter. We chose to use LLVM
chiefly because it has a Machine Code Just in Time com-
piler, which offers support for live coding, the critical
aspect of our language. In addition, it has well estab-
lished optimization passes to increase function efficiency,
and it can run on all major hardware architectures. Fur-
thermore, we chose to use Lua because it is lightweight,
efficient, and easily embeddable in C++, the language
behind Likely. Consequently, by leveraging these open
source libraries we created an extremely powerful lan-
guage that is able to match the speed of other existing
image processing languages, and thus it is able to differ-
entiate itself from the field with its live coding environ-
ment.

1 Introduction

A domain specific language (DSL) is a programming lan-
guage that is specialized to a particular application do-
main, which stands in contrast to more common general-
purpose languages, such as C++ and Java. They are typi-

cally used to facilitate easier design and implementation
of complex systems, and they have extremely specialized
but powerful features that specifically apply to their tar-
geted domain. This paper is the first to present Likely,
a DSL that eases algorithm design for image processing
projects by integrating both the intuitive aspect from high
level languages and the powerful aspect from low level
languages. In addition, Likely incorporates live coding,
which gives the developer immediate visual feedback for
all code modifications.

The primary goal of Likely is to simplify the creation
of efficient image processing algorithms. To this end, we
created a live coding environment that dramatically in-
creases the usability of this DSL, and serves as the defin-
ing characteristic of this language. Thus, while there are
other image processing DSLs that exist, none incorporate
this feature that we feel is extremely important in algo-
rithm creation and modification.

In addition, many DSLs are created for an extremely
specific subdomain within image processing, and are
only useful for very exclusive, unique situations. As a
result, we feel that there is a need for a general-purpose
image processing DSL, and thus Likely was created with
this goal in mind. Any person who is working with im-
age processing algorithms could benefit from using this
language, and could gain a new perspective from the in-
novative live coding environment.

Likely also has many features that make it an ideal lan-
guage for prototyping new image processing algorithms.
Both the live coding feature and the included IDE are
specifically designed to make the creation of new algo-
rithms much easier and more intuitive for developers.
Furthermore, despite the fact that many of its features
were designed for prototyping, Likely can also be used
to create algorithms for commercial or production level
applications. This can be done in C++ by accessing the
Likely standard library and using Likely functions, sim-
ilarly to how a developer would use OpenCV or other
available image processing libraries. Hopefully, this will
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Figure 1: The Dream environment Figure 2: A basic function in Dream

prevent developers from needing to rely on separate tools
for prototyping and producing.

2 Background

Generally, algorithms for image processing are written in
one of three different types of languages: high level lan-
guages (e.g. Matlab), low level languages(e.g. C, C++),
or domain specific languages (e.g. Diderot), and each
language type has its own distinct pros and cons. High
level languages are typically used because they have sim-
pler language structures and it is often quicker to write
functional code in them. For example, Matlab has a
very simple interface for matrix operations and manipu-
lations, which allows for quick and easy image process-
ing algorithm design. On the other hand, low level lan-
guages are used because they offer far more optimization
and execution speed when dealing with large amounts of
data. This is particularly valuable because image pro-
cessing algorithms typically deal with massive data sets,
which need to be analyzed and processed in a reasonable
amount of time. Nonetheless, low level language code is
normally more complex and difficult to write, and thus
can be a barrier to people with less coding experience.

DSLs were created to combine the simple language
structures of high level languages with the speed of low
level languages. This idea has proved to be quite useful
in a variety of different domains, and accordingly sev-
eral DSLs for image processing already exist. However,
many were written for subdomains within the image pro-
cessing space and are not useful in the general case. For
example, computed tomography and medical resonance
imaging are used to measure a wide variety of biological
and physical objects, and the increasing sophistication of
imaging technology creates the demand for equally so-

phisticated computational techniques to analyze and vi-
sualize the image data. To this end, a domain specific
language called Diderot was created specifically for this
image processing subdomain, and through the creation
of a high-level model of computation based on continu-
ous tensor fields, it provides imaging scientists the ability
to quickly develop reliable, robust, and efficient code [6].
Other subdomain specific examples for image processing
DSLs include Teem, a light-weight collection of libraries
that was designed for image processing research [4], and
Scout, a data-parallel programming language for graph-
ics processors [3].

In addition to subdomain specific DSLs, there exist
several general DSLs for image processing which are
comparable to Likely. Some languages, like Adobe Pixel
Bender, have well documented language structures and
hardware-independent compilers that perform domain
specific optimizations. Pixel Bender has its own unique
IDE that creates a low learning curve for users, and by
supporting parallel processing and all bit depths, this
DSL has proven to be extremely useful. Moreover, Pixel
Bender can run on a variety of additional Adobe applica-
tions, which further increases its popularity [1]. Another
example of a general DSL is Neon, which allows image
processing algorithms to be written in C#, but compiles
them into human readable, highly efficient, code opti-
mized for a multicore CPU or a GPU [5]. Nonetheless,
Neon was only recently created, and thus not as widely
used in the image processing community. The goal of
Likely is to have comparable functionality and efficiency
compared to similar general purpose image processing
DSL’s. We hope that this, combined with the live coding
feature, will be the catalyst for wide spread adoption of
Likely within the image processing community.
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Figure 3: Examples of Likely language syntax

3 Our Idea

3.1 Technical Background

Likely was designed with three goals in mind: first, it
needed to be as fast or faster than a low level language
like C or C++, second, the language structure needed to
be simple and intuitive to use, and third, the novel fea-
ture of live coding needed to be supported. These goals
informed all of the design decisions that we as develop-
ers made. To this end, we chose to write Likely on top
of the Low Level Virtual Machine (LLVM) compiler in-
frastructure. Using LLVM has provided several benefits:
first, LLVM incorporates many powerful and well-tested
optimization passes. Furthermore, in addition to these
generic optimizations, we also created domain specific
optimizations that we coded from scratch, and together
all of these optimizations ensure that Likely functions
are extremely efficient. Second, LLVM includes a Ma-
chine Code Just-In-Time (MCJIT) compiler. The MCJIT
is the engine that makes the live coding environment pos-
sible. Just in time compiling works by first compiling
the entire Likely standard library into LLVM’s interme-
diate representation byte code when the IDE is launched.

Next, when a user creates a new algorithm using func-
tions from the standard library, it takes the given func-
tion inputs and inserts them into the compiled byte code
of the called function. This code is then compiled to ma-
chine code and executed “just-in-time”, with the results
displayed in the IDE. Building on top of LLVM provides
one final benefit to Likely: the ability to run on almost
all architectures [2]. Likely is written in a portable sub-
set of ISO C++, which means that it can run anywhere
that LLVM can. This means that more people on more
machines will be able to access and benefit from Likely.

The other goal of Likely is to provide a simple intuitive
language for creating new image processing algorithms.
Creating a language begins with an interpreter. In this
case, Likely leverages the interpreter included with the
scripting language Lua. Lua was chosen for several rea-
sons, none being more important than the fact that it is
fast, lightweight, and it is very easily embed in other pro-
gramming languages, especially C++, which is of course
useful in the case of Likely. The Lua interpreter and its
typing system allows for user code to be quickly con-
verted into C++ code and then into the LLVM byte code.
This system also allows new domain specific functions to
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Inexperienced Programmer Experienced Programmer
No Experience with Image Processing 1.5 3.0

Experience with Image Processing N/A 4.0

Table 1: Results of User Testing (each number represents average level of user satisifaction with Likely on a scale of
1-5, 1 being unsatisfied, 5 being very satisfied)

be saved into the Likely standard library and later used
by other developers.

3.2 The Live Coding Environment

Live coding is the single most important and unique
feature of Likely. In order to implement this property,
Likely comes with its own Integrated Development En-
vironment (IDE) called Dream. Dream is divided into
two sections: a code section on the left and a live section
on the right. All live coding functionality in Dream is
enabled by a CTRL+Click (hereafter referred to as click-
ing), and clicking on an image variable in the code sec-
tion will cause it to appear in its most recent state in the
live section, while clicking on any image in the live sec-
tion will cause it to disappear. Moreover, a click in the
code section on an instance of a function call will cause
basic information about that function to appear in the live
side of the IDE. This information includes a basic func-
tion description, required inputs, and basic input descrip-
tions.

In addition to providing visual feedback for algo-
rithms, the live side of Dream is also useful for error re-
porting. Because Likely just-in-time compiles new algo-
rithms, as developers type errors can be detected in real
time, and when detected an error message is displayed
on the live side. This can be very useful for developers
because real time error reporting can make errors much
easier to interpret and correct, as they typically were cre-
ated on the most recently changed line.

3.3 Language Structure

Within Dream, Likely has a simple language syntax for
algorithm creation. Likely only has one object, the
likely matrix, which represents images or videos, and
each matrix has several properties that are contained in
its matrix header. Each header contains basic informa-
tion about the matrix, namely the data type, the number
of channels, rows, columns, and frames. Further, it also
contains permissions for the matrix: whether it can run
in parallel, whether it can run on the GPU, and whether
or not arithmetic operations on it can become saturated.
All of these values can be retrieved or set with acces-
sor functions from within Dream. Lastly, because Likely
has only one object type, there is no need to specify data

types such as int, float, etc.
To modify matrix objects functions can be

called. Function calls have the form new matrix =
f unction{input}(old matrix).... Functions are defined
as either nullary (they take no inputs), unary (one input),
binary (two inputs) or ternary (three inputs). A useful
aspect of functions in Likely is that inputs that are
known at compile time are differentiated from inputs not
known until run time. Visually, braces ( {} ) signify a
compile time argument, typically a constant value, while
parentheses ( () ) signify a run time argument, typically
an image. Using different identifiers for these argument
types provides further opportunities for code optimiza-
tions. Additional syntax, including if statements, for
loops and while loops are important language elements
and are reserved for future work.

4 Evaluation

4.1 User Testing

In order to properly evaluate Likely, we set up an ex-
periment that aimed to evaluate two distinct properties:
how enjoyable and easy it is to program with Likely, and
what groups of people will find Likely to be useful and
would potentially employ Likely in future projects. As a
result, we had multiple participants program with Likely,
and after initially allowing them to explore the IDE for
two minutes, we gave them multiple fundamental tasks
to complete. We gave each participant a total of twenty
minutes, and all but one finished in the allotted time pe-
riod. After either twenty minutes had gone by or the par-
ticipant completed all the assigned tasks, we gave them
a five-question survey that served to measure the effec-
tiveness of Likely. Each question was scored on a scale
between 1 and 5, and we averaged the five scores in order
to create a final overall score that showed the participants
general satisfaction with using Likely. After this survey
was completed, we also asked participants to rate both
their familiarity of working with image processing, and
their familiarity of writing code, as either experienced or
inexperienced.

The results of our experiment exposed that general ex-
perience with programming correlated with whether a
participant would find Likely to be both easy to work
with and practical to use. Accordingly, participants who
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Figure 4: Likely benchmark results. Speed is calculated over OpenCV image processing library.

had no coding experience took a long time to complete
tasks that other participants quickly accomplished, and
thus we believe people who fall into this category should
probably not be the target audience for Likely. Further-
more, the participants who had experience working with
image processing and coding gave Likely the highest
overall score, which indicates that people who know how
to code and have worked with image processing would
find Likely to be the most useful.

Nonetheless, it is important to note that only four peo-
ple participated in our study, and thus this experiment has
an extremely small sample size, and thus no statistical
conclusions can and should be made. This was strictly
a preliminary study that was created to show how one
would go about measuring the effectiveness and target
audience of Likely, and further data needs to be collected
in order to draw valid conclusions.

4.2 Results and Performance

Likely now has a completed backend structure that sup-
ports fast function execution, as well as a live coding en-
vironment with a basic language structure. Nonetheless,
the Likely standard library is still incomplete, and thus
it is imperative that new functionality is added to ensure
that Likely can be useful as a DSL. To this end, we have
implemented functions that help to achieve this goal, and
we have added functionality for several basic image pro-
cessing functions. Likely now supports ten data types,
unsigned 8, 16, 32, and 64 bit, signed 8, 16, 32, and
64 bit and floating point 32 and 64 bit. Additionally,
casting between all of these data types is possible and is
done internally for several functions. Thresholding im-
ages at user specified threshold values are now supported

as well. Expanding the standard library continues to be
the priority for the language and represents a large part
of future work.

As was mentioned in the idea section, for Likely to be
worthwhile and practical it needs to be as fast or faster
then generic C++. To this end, a benchmark test was
written for all functions implemented in Likely. The
comparison function was written in OpenCV, a collec-
tion of open source image processing libraries written in
C++ that is popular within the image processing com-
munity. The results for the multiply and then add (madd)
function are shown in figure 3.

5 Conclusion

While the creation of Likely is off to a good start, there
still is a lot of work to be done before Likely is consid-
ered to be a viable alternative to existing DSLs. Mainly,
the Likely standard library needs to be expanded until it
reaches the standard set by other open source image pro-
cessing languages. For Likely to ever be widely adopted,
this goal is of the utmost importance, and thus achiev-
ing this is still our number one priority. We also hope
that the live coding feature promotes a paradigm shift in
how developers think about writing code, and we hope
that this shift occurs not just in image processing, but in
other applicable domains as well. While Likely still has
a long way to go before it meets the industry standard,
we believe that there is a strong foundation on which to
build, and we are excited to see how Likely will evolve
in the upcoming years.

In summary, the ultimate goal of Likely is to give de-
velopers the ability to easily create efficient image pro-
cessing algorithms. As a result, Likely incorporated an

5 85



innovative live coding environment and included built in
efficient domain specific optimizations. We hope that
these contributions will facilitate future research in im-
age processing algorithms in the academic community.
In addition, the user testing that we performed indicated
that people with image processing and programming ex-
perience had the best experience using Likely, and fur-
thermore these types of people indicated that they see
real value in using Likely. We hope that Likely can
find traction outside of the academic community, and we
hope that the live coding environment and simple lan-
guage structure will make Likely an attractive option for
regular users who want to create image processing algo-
rithms.
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Abstract

Multithreading is one of the most prominent ap-
proaches to concurrency in modern applications.
The benefits of multithreading include increased
performance, modularity, responsiveness, and in-
teractivity. However, concurrency bugs have
made debugging and testing multithreaded soft-
ware extremely difficult. We claim that the
likelihood of concurrency bugs in multithreaded
software depends in large part on the behav-
ior of the threads. In this paper, we conduct
a measurement study on commonly used multi-
threaded, Mac OS X software in order to classify
their thread behavior according to the follow-
ing two behavior types: Computation threads
and event-handler threads. We expect event-
handler threads are, due to their short and un-
predictable behavior, more likely to contain con-
currency bugs. Overall, a better understanding
of thread behavior can inform future efforts to
eliminate concurrency bugs.

1 Introduction

One of the most highly researched topics in com-
puter science is concurrency, which is the simul-
taneous execution of several tasks on a computer
system. Simultaneity can be either physical or
simulated: physical simultaneity is achieved by
executing different tasks on different processors,
whereas simulated simultaneity comes from in-
terleaving the execution of different tasks on a
shared processor space. In either of these cases,
it is possible for these tasks to interfere with each
other in negative ways [6].

The rising need for concurrency can be traced
to two key factors: increased computational
demands and advancing hardware. Modern
software must perform computationally inten-
sive tasks, such as scientific computing, im-
age and video processing, and running web
servers. Supporting software of this kind requires
more sophisticated hardware. With Moore’s
Law set to expire, chip manufacturers have
adapted by developing multi-core technologies,
such as multiprocessors, GPUs, and FPGAs.
Several software-level concurrency abstractions
have arisen to drive this advancing hardware and
to more fully take advantage of a computer’s ar-
chitecture.

Multithreading is one of the more common ap-
proaches to single-system concurrency. A thread
is a preemptive, OS-managed, lightweight pro-
cess. In the best case, threads can achieve phys-
ical parallelism on multiple processors, and thus
achieve higher performance. When the OS needs
to make scheduling decisions, simulated simul-
taneity takes over. Compared to processes, the
primary software abstraction for an OS-managed
instance of a running program, threads are more
lightweight because they share their parent’s
memory and address space. By separating con-
cerns among threads, multithreading can provide
modularity. Threads can also help increase the
responsiveness and interactivity of a program.
For example, a thread can wait around for user
input.

The major risks associated with multithreaded
software arise from the sharing of resources.
Sharing memory with the parent increases the
potential for race conditions. Programs can
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deadlock when two or more threads are wait-
ing for the other to finish. Thread starvation
can occur when a thread runs indefinitely with-
out relinquishing some shared resource, prevent-
ing other threads from making progress. As a
great deal of time and money has been spent on
testing, debugging, and researching new ways to
avoid concurrency bugs, developers would ben-
efit from research into reliable multithreading.
Further, because multithreaded software is vir-
tually ubiquitous, research into minimizing these
risks has the potential to affect everyone who
owns and operates a computer.

We claim that the likelihood of multithreaded
software to contain concurrency bugs is linked
to how its threads behave. Certain thread be-
haviors, we believe, are riskier than others. In
this paper, we present our measurement study of
thread behavior in multithreaded software sys-
tems. In Section 2, we discuss earlier research
that address problems associated with multi-
threading. In Section 3, we highlight the primary
objective of our measurement study, define two
thread behavior types, and describe the methods
for our data collection and analysis. In Section 4,
we present the results of our experiments for dif-
ferent pieces of multithreaded software on Mac
OS X. We present the implications of our experi-
ments in Section 5, as well as future directions to
take this research, and our concluding remarks.

2 Background & Related Work

Concurrency bugs in multithreaded software
have plagued researchers and developers for
decades. Various efforts to reduce thread-level
bugginess have been introduced, such as Stable
Multithreading (StableMT). StableMT attempts
to make multithreaded software more reliable by
mapping inputs to a restricted set of schedules
that have been tested for correctness [5]. Other
approaches to multithreading have evolved, such
as cooperative threading, which lowers the prob-
ability of race conditions by running only one
thread at a time, and yielding only given an ex-
plicit yield invocation [6]. These efforts, how-
ever, are far from perfect solutions. For exam-

ple, cooperatively threaded systems are prone to
thread starvation.

We expect that a better understanding of
thread behavior will advance efforts to reduce
thread-level bugginess. In order to characterize
the behavior of a given thread, we need to be able
to study its history. Recent work by Trümper et
al. (2010) and Blake et al. (2010) provide some
of the tools necessary for studying thread be-
havior, although for motivations different from
those expressed in this study. Trümper et al.
develop a tool for understanding multithreaded
software behavior more holistically, for the pur-
poses of software optimization and understand-
ing system behavior. Their visualization soft-
ware allows users to select a representative sub-
set of spawned threads and trace their method
boundaries [4]. Our study is more interested in
the behavior of the threads themselves. Blake et
al. study how effectively modern desktop appli-
cations use threads on multi-core architectures
by looking at context switches and GPU utiliza-
tion, but focus mainly on CPU idle time and do
not collect statistics on thread behavior [1].

We base our method on Blake et al.’s ex-
perimental setup. In particular, Blake et al.
use DTrace, a dynamic tracing framework that
can report when a thread is created, destroyed,
started, or stopped [3]. Developed by Sun Mi-
crosystems, Inc., DTrace was originally created
to help developers observe, debug, and tune sys-
tem behavior, and is currently available for So-
laris, Mac OS X, FreeBSD, NetBSD and Oracle
Linux.

3 Our Idea

3.1 Objective

The more we can say about a thread’s behav-
ior, the more we can assess its risk to the soft-
ware. Our objective is to measure several pieces
of commonly used software in order to classify
their thread behavior according to the two fol-
lowing behavior types: Computation threads and
event-handler threads.
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3.2 Definitions

Computation threads satisfy the conventional
need for parallelism; they are often used to divide
up equal amounts of disjoint work across several
processors (see Figure 1). The optimum is to
use roughly as many threads as there are pro-
cessors, otherwise time is wasted dealing with
context switches, OS-communication, and cache
misses.

Figure 1: Computation threads can in-
crease performance of a non-parallelized
program (A) by doing similar-sized chunks
of work at once (B).

Consider a classic, parallelized matrix multi-
plication algorithm. If the input matrices grow,
then the threads will be doing either more deci-
mal multiplications or more dot products. Note
that the runtime of a computation thread grows
with respect to the size of its input. Further-
more, we expect that computation threads have
very active lives, by which we mean that the ra-
tio of the time a thread is on a CPU doing work
to the time that it is alive (i.e. created, until
destroyed) is very high. The number of con-
text switches occurring on that shared processor
space has the potential to deflate this ratio.

Event-handlers are routines that execute upon
the realization that some “event” has occurred
(i.e. they are told to execute when some condi-
tion has been met; see Figure 2). Traditionally,
these are run synchronously as part of an event-
loop and are invoked by a dispatcher. However,
threads can handle events as well, eliminating
the need for a dispatcher.

Consider the following implementation of a

Figure 2: Event-handlers do very short
bursts of work. An event-handler’s lifes-
pan can last anywhere from microseconds
to the entire lifespan of the program.

web server: when a listening socket gets a new
connection, it spawns a thread upon receiving a
new request. The thread processes the request,
sends the appropriate response message, closes
the connection, and exits. In this instance we
see that input size has little to no bearing on a
given thread’s runtime. Furthermore, we expect
that event-handlers either have short lifespans
or that they work in short bursts before transi-
tioning to some inactive state (off the CPU; see
Figure 2). Some event-handlers may have such
short lives that they are on the processor once
and are destroyed before they have the time to
context-switch.

The problem with event-handlers is that they
have more unpredictable behavior; we cannot al-
ways know when they will be triggered, and if
they are, they can have detrimental effects on
the rest of the software [6].

3.3 Methods

Using DTrace, we compile thread histories for
various multithreaded software systems. We an-
alyze these thread histories to describe the over-
all behavior of threads in the system.

We studied the behavior of dozens of thread-
related DTrace probes and identified two that
gave us the most consistent and relevant results:
on-cpu and off-cpu, from the sched provider. As
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the name suggests, these probes tell us when the
CPU is about to start or end the execution of a
thread [3]. All of our experiments were run on
an early-2011 MacBook Pro running Mac OS X
10.7.5 with a 2.3 GHz Intel Core i5 processor.

To determine the time from thread creation
to thread destruction, which we refer to as the
thread’s lifespan, we measure the time from the
thread’s very first event to its very last. To de-
termine active time, or the amount of time a
given thread is actually on the CPU, we add up
the time from every on-cpu to off-cpu.

If we find that thread execution time grows
with respect to the input size, and the thread has
a high activity to lifespan ratio, then we claim
that the software in question is using compu-
tation threads. Alternatively, if the activity to
lifespan ratio is very low and thread execution
time does not grow with respect to input size,
we believe the software is using event-handler
threads.

4 Evaluation

We collected data on the thread histories of three
popular Mac OS X desktop applications: Mi-
crosoft Word, Safari, and Preview. We also col-
lect data on a Parallelized Game of Life (PGoL)
program to test whether we see the behavior we
would expect from a computation thread-based
program. We visualized the results by graphing
thread activity over lifespan against thread lifes-
pan.

4.1 Preliminary Result

In order to test our hypothesis on computation
thread behavior, we collected thread history data
on PGoL. PGoL takes as input an n x n board
size, specified by the user, divides the board into
t segments, where t is the number of threads also
specified by the user, and runs the game in paral-
lel. We run PGoL three times with four threads
and three different board sizes (n = 1000, 3000,
and 5000). As we would expect from a computa-
tion thread-based program, we get the following
results (see Figure 3):

Figure 3: Graph depicting the expected
behavior of computational threads, ob-
tained by running PGol. Each color is a
cluster of four threads that denotes a sep-
arate run.

1. Clustering of thread behavior. Because the
disjoint work is evenly distributed across
four threads, we see that for each run the
threads exhibit roughly equal runtimes and
ratios of activity to lifespan.

2. Threads are active for a significant por-
tion of their lives. We expect computation
threads to have very active lives.

3. Thread lifespan is dependent on input size.
As the input size grows, so does the thread
lifespan. Input size horizontally shifts the
cluster.

Figure 4: Graph depicting thread behav-
ior of Microsoft Word. (A) Threads that
are alive from launch to exit. (B) Threads
that live a short time and are active for an
even shorter time. (C) Extremely short-
lived threads with a high active to alive
ratio.

Next, we collected data on Microsoft Word. A
73 minute generic run of Microsoft Word, which
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involved a user typing, highlighting text, and
inserting comments, generated 236 threads and
gave the following results (see Figure 4):

1. Four threads appear to be alive from launch
to exit. However, they still exhibit what we
expect to be event-handler-like behavior be-
cause they are active for a relatively short
percentage of their lives.

2. Most threads live a short time and are active
for an even shorter amount of time.

3. Some threads are so short-lived that they
have a high active to alive ratio. As the
threads begin and end almost instanta-
neously, they do not get context-switched.

Figure 5: Graph depicting thread behav-
ior of Safari.

These results lead us to believe that Word
is exhibiting mostly event-handler-like behavior.
We see similar clustering results for Safari. A
2.5 minute generic run of Safari, wherein we nav-
igated to Google and searched for cats, yielded
100 threads. These threads fit into the categories
of behavior outlined above (see Figure 5). We
see similar results from Preview.

In order to test our hypothesis that event-
handler threads are not dependent on input size,
we collected data on a Preview run with a large
pdf (1.8 MB) and a small pdf (11 KB). As ex-
pected, thread lifespan does not grow with input
size (see Figure 6).

4.2 Discussion

We see from our results that three distinct pieces
of software (Microsoft Word, Preview, and Sa-

Figure 6: Graph depicting thread behav-
ior of Preview given (above) a small input
size, and (below) a large input size.

fari) exhibit similar clusterings of thread behav-
ior. The threads can be categorized into the fol-
lowing behaviors: threads that wait around for
user input, and threads that pop up, do some
activity, and disappear. Both of these behaviors
are expected of event-handler type threads (see
Figure 2). Further, we expect these software to
be event-handler thread-based programs because
they are highly interactive programs that are
mostly driven by user input. PGoL, on the other
hand, demonstrates the behavior we would ex-
pect from computation threads. That clearly is
not the behavior we are seeing from the threads
generated by Word, Preview, and Safari.

5 Conclusion

Multithreading is everywhere. Our measurement
study seeks to advance efforts to minimize the
potential for concurrency bugs so that we can
continue to enjoy the benefits of multithreading
without the risks. If we find that threads with
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event-handling behavior are more likely to lead
to concurrency bugs, we can adopt better ap-
proaches to dealing with concurrency bugs.

For example, Charcoal is an approach to co-
operative threading that is currently in devel-
opment. It is a C dialect which introduces an
activity, which improves on existing cooperative
implementations by allowing for implicit yields,
thereby preventing thread starvation [6]. Activ-
ities are a possible solution to the short-lived,
unpredictable behavior of event-handler threads.
Further study into the thread-type composition
of multithreaded software will inform the useful-
ness of such an activity-centric implementation.

5.1 Future Work

The DTrace probes we used only provide a sub-
set of the total useable information to create a
detailed description of thread histories. As fu-
ture work, we would like to test and use other
probes to capture blocking, mutex locking, bar-
rier or condition waiting, and yielding. There
are hundreds of relevant probes, so we have a
few possible directions to take this research.

Our definitions for computation threads and
event-handler threads applies more to thread be-
havior on an individual basis. With more infor-
mation, we may be able to classify entire groups
of threads. For example, we may be able to de-
termine if a software system is using a thread
pool, or perhaps employing cooperative thread-
ing. The data we are already collecting provides
a promising segue into determining this kind of
data.

We also do not have substantial data from soft-
ware that use computation threads. We would
like to experiment with other pieces of software
for which we have not seen the code, and ver-
ify our PGoL results. Computationally intensive
applications would be an ideal place to look.

Finally, we would like to perform more rig-
orous testing of the software studied in this pa-
per, perhaps by automating the application runs.
This would produce more reproducible data and
allow us to form more in-depth comparisons be-
tween two runs of the same application.
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Abstract

The increasing number of tasks we can
perform on our mobile devices feeds pos-
itively into the demand for devices with
longer battery power. Since mobile de-
vices have become integral parts of our
daily lives with the number of tasks we
can accomplish far outpacing battery per-
formance improvements, consumers have
increasingly encountered the issue of ef-
ficient device usage and battery life man-
agement. In this paper, we examine An-
droid devices in particular and present
BatTrace, an Android analysis tool that
evaluates battery performance on the an-
droid platform by tracing system calls.
BatTrace will execute different types of
popular system calls, and extract the cor-
relation between a particular system call
and its influence on the battery. Subse-
quently, it will trace system calls made by
individual Android applications and use
system call performance data to profile
each application. Finally, the analysis on
the correlation between system calls and
their battery usage, as well as the correla-
tion between each application and system
calls they initiate, will be combined to es-
timate battery usage of individual Android
applications.

1 Introduction

Our project is motivated by an issue that we face
daily: limited battery power on our mobile devices.
The vast power available at our fingertips in mobile
devices is tamed by the amount of battery physically
available. Wanting to track application behavior and
the resultant energy usage, we used strace in combi-
nation with C programs and Android system data to
perform dynamic analysis on Android devices, un-
covering low-level explanations as to what is really
draining the battery.

Hypothesizing system calls to be the key to under-
standing battery usage at a low-level, we used strace
to profile applications system call usage. Such test-
ing gave us aggregate statistics on which system
calls were used and how often. In the process of
tracing popular 3rd party applications (e.g. Face-
book, Gmail, etc.), we also recorded battery usage
by utilizing built in Android system data pre and
post traces.

Once aware of the most used system calls, we cre-
ated C programs to repeatedly run those calls and
collect battery statistics. It is important to note that
in future versions of BatTrace we will need to col-
lect statistics on all system calls, as the most fre-
quent calls may not drain the most power. However,
starting with the most frequent system calls and the
C programs repeatedly ran, we acquired an avetage
measure of how much battery each system call con-
sumes. From the aggregate trace data and average
system call consumption data, we were able to make
predictions on battery usage of 3rd party applica-
tions. In collecting high level data on battery con-
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sumption, we hope to better inform Android users
which applications drain their battery level most,
providing a good set of guidelines for mobile users
to follow when low battery crisises hit. With our
fine-grained system call data, we hope to better in-
form software developers and hardware manufactur-
ers which system calls consume the most power.

2 Background and related work

Historically much power consumption research has
focused on using utilization-based methods (on in-
dividual components, e.g. CPU). However, mod-
ern smartphones employ complex power strategies
in device drivers and OS-level power management,
sometimes rendering utilization as a poor model for
representing power states and deducing battery us-
age (?). While sometimes strong correlation ex-
ists between utilization and power consumption, of-
ten applications have constant power consumption
while in certain states (while utilization fluctuates)
or have high power consumption while low utiliza-
tion (?; ?). Merely focusing on CPU and other
component-specific utilization levels do not capture
tail-power states and the more intricate workings of
power management. Additionally, measuring uti-
lization via performance counters results in accuracy
loss (?).

Instead of modeling power with utilization, sys-
tem calls, the only way of interacting with hardware
and performing I/O, serve as a much more precise
indicator of power consumption (?). System calls,
an indispensible aspect of mobile applications, pro-
vide accessible insight in how an application is using
the underlying hardware. Past work and tools, most
notably eProf, show correlating application behav-
ior with power usage (via system calls and power
readings) has been more successful than utilization-
based approaches (?; ?; ?; ?). Using the findings of
eProf and other studies as justification, we measured
and classified system calls on Android smartphones
in terms of their effect on battery life.

While eProf foregrounded system calls as an ef-
fective indicator of changes in power state, eProf
used system calls as a means toward profiling appli-
cations’ power consumption on a sub-routine level
(?; ?). Developing models based off of system
calls supplied a powerful tool, however the eProf

research did not study battery drain as a result of
particular system calls themselves and the frequency
with which applications rely on certain system calls.
Other work in smartphone battery research, includ-
ing detecting energy-related bugs, correlating wire-
less signal strength with battery consumption, and
generating battery usage information on the process
or application level, has relied on system calls (?;
?; ?). We plan to supplement the research area
by focusing our study on the system calls them-
selves, rather than using them as a means in track-
ing changes in power state, detecting bugs, measur-
ing signal strength effects, or producing higher-level
profilings as explored previously.

3 Our Idea

While dynamic analysis on traditional devices in-
volves the most efficient use of finite computing re-
sources, mobile devices introduce a new problem;
finite power. The issue we immediately encounter
when trying to analyze mobile software applications
is that we almost never have access to the source
code of the applications. This is especially true
given the fact that most mobile software is propri-
etary in nature, leaving open source software to the
relics that are desktop computers.

Figure 1: The Android environment stack. Trace
location marks where we will be intercepting system
calls

With this in mind we set out find a way of mea-
suring mobile battery usage at very low level (soft-
ware wise). We decided a good approach would in-
volve monitoring activity at the system call level us-
ing strace. We wanted to profile a variety of sys-
tem calls based on how much battery is used while
they are running. We intended to establish a baseline
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battery consumption level so we know how much
battery is used by just the OS. Then, using simple
programs that repeatedly make the same system call
many times, as a single call is often immeasurable,
we can determine how much battery was used as a
result of initiating a particular system call.

Once system calls were profiled, we proceeded to
the last phase of the analysis. Our goal was to iden-
tify the system calls initiated by the Dalvik VM as a
result of running an individual app. By identifying
the types of system calls, as well as the number of
calls made to an individual system call, we were able
to predict applications’ impact on the battery based
on what we learned about battery usage for individ-
ual system calls. While this approach may not be
the most accurate, we believe it is an approach that
will allow us to profile any application regardless
of the author or the nature of the software’s license.
While this design is not the only approach, with al-
ternatives such as dynamic binary instrumentation,
we think our way capturing system calls supplies the
necessary information to properly model power us-
age by individual Android applications.

4 Evaluation

In the process of analyzing battery usage through
system call tracing we successfully found most used
system calls by popular Android applications, wrote
C programs to repeatedly execute those system calls,
recorded battery usage as a result of particular sys-
tem calls, gathered system call data of popular apps
dynamically, and made predictions based on the
aforementioned data. This section is split into sub-
sections based on the above categories.

4.1 Frequent System Calls

In relating system calls to battery usage, we first
traced 10 popular Android applications to acquire
a list of the most frequent system calls. We traced
Google Maps, Facebook, Angry Birds, Youtube,
Google Play, Gmail, Twitter, Skype, Pandora, and
Instagram using strace, collecting the ten most used
system calls by each. Applications were run for
at least 2 minutes simulating normal usage patters.
More detailed information on the usage patterns ap-
pears in the Appendix with the system call frequency
results appearing in the Table 4.1.1.

We found there were 14 most frequent, unique
system calls among the applications tested. Some
of the systems calls in the 14 did not make the top
ten as often (and munmap never), however these
calls if not in the top ten often fell just outside it,
so we decided to include them. With this list, we
knew some significant system calls to recreate in
order to gather battery usage data. A complete test
should include all of the systems calls run, however
we focused on the most frequent calls in this early
stage of our research. Later, including all system
calls will be important as the frequent calls are not
necessarily the system calls responsible for using
the most power.

System Call # Appearances
clock gettime 10
ioctl 10
getpid 10
epoll wait 10
getuid32 10
futex 10
mprotect 10
cacheflush 9
read 7
write 6
sigprocmask 4
gettid 2
gettimeofday 1
mmap2 1
munmap 0

Table 4.1.1 Frequent System Calls in Popular
Android Applications. Appearances denote how
many times a certain system call was in a top
10 most frequent system call list for each of 10
different applications tested.

4.2 System Call C programs

In developing averages for battery usage per sys-
tem call, we created C programs for each of the 14
unique system calls. Once these programs were cre-
ated, we ran a bash script running directly on the
device that took a battery reading before and after
each program completed. An example system call C
program can be seen in the Appendix.

While the execution time and number of calls
made varied among programs, they all ran for at
least ten minutes, giving us a significant change in
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battery. After running the script for each program,
we recorded an average of battery level consump-
tion per system call for each of the 14 unique most
frequent. See results in Table 4.2.1.

System Call # Battery Consumption
clock gettime 0.006425
ioctl 0.011998
getpid 0.004161
epoll wait 0.009926
getuid32 0.006628
futex 0.005474
mprotect 0.006501
cacheflush 0.004312
read 0.010881
write 0.016212
sigprocmask 0.005274
gettid 0.003000
gettimeofday 0.008013
mmap2 0.006066
munmap 0.006474

Table 4.2.1 Battery Consumption of System Calls.
For readability consumption is displayed per every
1,000,000 calls.

Even at the level of a million calls, the battery
consumption average for each system call was very
small. Such small battery drain of most calls made
us critical of our experimental design, measuring the
average drain of a particular system call by repeat-
edly running it. Futhermore, each unique system call
was rerun using the same parameters, while the pa-
rameters of system calls made by 3rd party applica-
tions varied. In the future, we plan to capture the
battery drain of system calls in the wild, consider-
ing parameters. A more detailed discussion of how
we modeled power and future improvements contin-
ues in the analysis of error and future work section.
While being wary of our battery consumption av-
erages for the 14 system calls tested, realizing our
method of modeling power needs revision, we con-
tinued with our predictions.

4.3 Prediction Data

To make our predictions on battery usage of popular
Android applications based off of battery consump-
tion per call statistics, we needed a complete list of
system calls made by those applications, in partic-
ular at this stage getting the number of times each

system call was made. Using strace, we attached to
application-specific processes and recorded the nec-
essary data. Before and after attaching to processes,
we recorded the battery level of the Android device
to enable later comparison between predicted con-
sumptionand observed battery consumption. The
Android applications we used for predictions in-
cluded Google Maps, Facebook, Youtube, and Pan-
dora. Observed consumption data can be found in
Table 4.4.1.

4.4 Predictions

With prediction data (which systems calls are made
by certain applications with their frequencies) and
average consumption per call for the 14 system calls
we focused on, predicting battery usage was a matter
of summing the estimated consumption for each sys-
tem call. We predicted each system call’s power us-
age by multiplying the number of times it was called
by our estimated usage for that particular call. As we
did not consider parameters at this stage in our re-
search, the estimated battery usage for a call was the
same for each call within an application and across
applications. We admit such oversimplication. Once
taking this sum, we added a baseline reading of how
much power is used by tracing an almost completely
idle application (we used weather clock) to simulate
power used by the system, enabling accurate com-
parison to the traced 3rd party applications.

When calculating these predictions, we only had
the ability to include consumption of system calls
for which we had average consumption statistics.
While this is not complete and may seem limiting,
the 14 unique calls we focused on were the top 14
used system calls for each application tested. Com-
parison between predicted consumption and ob-
served consumpted can be seen below in Table 4.4.1.

Application Predicted Observed
Google Maps 2 6
Facebook 2 4
Youtube 2 5
Pandora 2 4

Table 4.4.1 Battery Consumption Predictions and
Observations.

After seeing the differences between predicted
and observed battery consumption for the applica-
tions tested, our suspicions surrounding the way we
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gathered average battery consumption per system
call were made stronger. The predictions, due to the
very small estimated drain of each system call, were
equal to the baseline measure of tracing the mostly
idle weather clock. The predicted consumption as a
result of system calls was insignificant. We explore
our sources of error and directions of future work in
the next section, outlining how our predictions can
be improved.

4.5 Analysis of Error & Future Work
Our project turned out to have had inherent flaws in
the experimental design that naturally led to errors–
the difference between the predicted values and the
actual readings, as can be witnessed from the Table
4.4.1. We have identified three main issues that we
discuss in this section:

• Lack of system call parameters: Parameters are
passed to system calls in the same way that they
are passed to other functions. These parame-
ters contain important information that guides
a system calls behavior. Same system calls
with different parameters are essentially carry-
ing out different tasks. In the C programs that
we wrote (example shown in Appendix), we
ran system calls with generic parameters that
do not necessarily match those that were ac-
tually called in the test applications. In other
words, it is possible and likely that system calls
with varying parameters will drain battery dif-
ferently. Thus, error existed in creating a aver-
age consumption for each call based on a single
set of parameters while not considering the pa-
rameters of test applications.

• Insufficient data collection: Our predictions are
calculations of data from 14 most frequent sys-
tem calls instead of all the system calls initiated
by the test applications. This design fails to
capture the power consumption of less frequent
system calls, and in particular less frequent sys-
tem calls that use relatively high power. Due to
this limitation, the power usage data we man-
aged to collect from the top 14 system calls was
not fully indicative of the actual power usage.

• Design of our C programs: We designed our
C programs so that each runs a single system

call repeatedly in a for loop for a set number of
iterations. Though this was a clever manipula-
tion of the knowledge we were given, we con-
cluded that it might not have been the best de-
sign. For instance, when “getpid” is called the
first time, the value returned from calling the
system call is almost certainly cached. Thus,
for the rest of the iterations, power usage is sig-
nificantly diminished, giving lower power us-
age than would occur in the wild where the se-
quence of system calls would differ.

In the future, we would like to improve upon
these errors, making our experimental design
more accurate and complete. Furthermore, we
hope to expand our project, so that it can be
used as a useful guide for battery-conscious
smartphone users. In particular, we hope to
make an downloadable tool that provides on-
line analysis.

5 Conclusions

Despite the success of system call tracking on the
mobile device, it is clear system calls alone do not
provide an absolute measure of power consumption.
Though we discuss some of the possible reasons
why the predictions of our model were so far off,
it is unlikely that these reasons are solely respon-
sible for the differences between the predicted val-
ues and the actual battery readings. During our test-
ing, it became apparent to us that additional power
drain was occurring as a result of higher level pro-
cesses that do not interact directly with the under-
lying OS. We suspect the Dalvik VM (and the Java
code running on it) contributed to the power drain
observed. However, while system calls do not reli-
ably provide an absolute measure, they proved to be
useful in calculating a relative measure of power ef-
ficiency across applications. By running a variety of
apps for a set amount of time, we were able to mea-
sure power consumption via the system calls they
triggered and, in turn, use the power consumption
data to compare the applications to each other. A
tool such as the one proposed in this paper could one
day be part of the off-line development suites of soft-
ware writers across the globe as the focus on energy
efficiency shifts from hardware to software. How-
ever, this tool could also prove useful as an online
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• Pandora: created new station, added variety to
existing stations, listening to different stations
throughout

• Instagram: scrolled through dash, looked
through trending posts, liked several posts,
looked at user profiles

While simulating normal usage seemed important
in capturing averages for system call battery drain
and the most frequent calls, future study should fo-
cus on usage patterns that generate a complete list of
system calls with varying parameters.

A.2 Example C Program
When desigining tests to estimate the average con-
sumption of the 14 unique system calls we consid-
ered, we created C programs to repeatedly run the
call, collecting battery data before and after via a
bash script. The basic structure of the C programs
followed the example below.

/* getclocktime.c */
#include <sys/syscall.h>
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/time.h>

int main() {
struct timespec ts;
unsigned long long i;

//750,000,000 calls
for(i=0; i<750000000; i++) {
syscall(SYS_clock_gettime,

CLOCK_REALTIME, &ts);
}
return EXIT_SUCCESS;

}

Figure A.2.1 Example C Program for
get clocktime system call.

While this design will have to change in future
work to improve predictions, we wanted to be as
transparent as possible in how we acquired average
battery consumption for each system call so far.
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Abstract
Following the model of earlier studies of desktop software,
we perform a survey of thread-level parallelism in common
mobile applications. In particular, we study the Android and
iOS platforms, through a representative sample of 3rd-party
software in their respective app stores. Ultimately, we con-
clude that multiple cores may not be necessary for the ma-
jority of mobile experiences, observing that iOS apps tend to
have slightly greater average parallelism, with slightly lower
variance, than Android apps.

Keywords multi-core, thread-level parallelism, mobile apps

1. Introduction
In chip engineering, there are two broad strategies for in-
creasing computational speed: design processors that can
sustain higher clock rates, and design systems that incorpo-
rate more processing cores. The former strategy has more or
less hit a plateau, as overheating and the limitations of mod-
ern cooling systems have come to present an inherent physi-
cal barrier. Therefore, in recent years, the majority of time
and energy has instead gone into developing more paral-
lel hardware: multiprocessors containing several cores each,
and computer systems that contain one or more of these
multprocessing chips. However, while this frontier contin-
ues to advance, its computational benefits remain limited by
the structure of the software that it serves: to take advantage
of parallel hardware, developers must practice good parallel
design patterns.

We suspect that many systems do not fully utilize their
parallel capacities, and, in this paper, we seek to extend the
existing body of research in this area into the realm of mobile
devices.

2. Background and related work
As a field of computer science, parallel design has a rela-
tively long history, dating back to the early days of servers
and networked computers. We draw our inspiration from a
couple of more recent studies.

2.1 Parallelism on desktop workstations
In 2010, Flautner et al. studied a range of desktop appli-
cations running on Microsoft Windows 7 and Apple’s OS
X Snow Leopard, analyzing for parallelism. [10] Using the
metric of Thread Level Parallelism, or TLP (see section
3.1), they concluded that 2-3 cores were more than sufficient
for most applications, and that current desktop applications
were not fully utilizing multi-core architectures.

Other studies in a similar vein date back to 2000, when
Flautner et al. first investigated the thread-level parallelism
and interactive response time of desktop applications. [9]
This study was done when multiprocessing was prevalent
mostly in servers and had only just begun to enter into desk-
top machines. While servers were considered to be a natural
fit for multiprocessing, due to the parallel nature of serving
multiple clients, the benefits of multiprocessing for desktop
applications were not obvious. Now, as multiprocessor sys-
tems are entering the smartphone market, we believe it is a
natural extension of these studies to ask whether the benefits
of multiprocessing are fully realized on mobile devices.

2.2 Multi-processing in Android phones
Since its initial release in May 2007, Android and the de-
vices that run Android OS have evolved rapidly. The first
commercially available phone to run Android was the HTC
Dream, released on October 22, 2008. [3] HTC Dream had
a Qualcomm MSM7201A chipset, including an ARM11 ap-
plication processor, ARM9 modem, and high-performance
digital signal processors. [12] In 2010, Google and several
handset manufacturers launched a line of smartphones and
tablets as their flagship Android devices under the name
Nexus. The Nexus One, manufactured by HTC in January
2010, was released with Android 2.1 and had a Qualcomm
QSD 8250 with a single core Qualcomm Scorpion CPU [5].
The world’s first Android device with a multi-core processor
was the LG Optimus 2X, which was equipped with NVIDIA
Tegra 2 system-on-a-chip and a 1 GHz dual-core processor.
[4]

The latest Samsung Galaxy S4 and Galaxy Note 3,
released respectively in March and September 2013, are
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equipped with multiple-core processors. All versions of
Galaxy S4 and Note 3 are equipped with quad-core pro-
cessors, and flagship models shipped to certain markets are
even equipped with octa-core processors. Both Galaxy S4
and Galaxy Note 3 can run the latest Android 4.3 Jelly Bean.
[1] [2]

2.3 Multi-processing in iPhones
Historically, Apple has been very tight-lipped about the in-
ternal components of its products – iPhone processors in-
cluded. However, with a little bit of investigative work, var-
ious third parties have determined that the first two iPhone
models, released in 2007 and 2008 respectively, both had
single-core processors clocked at around 412 MHz. In 2009,
with the release of the purportedly fast 3GS model (the ”S”
stood for ”speed”), the iPhone got a boost to 600 MHz. Em-
pirical data shows that subsequent iPhone models have had
variable speed processors, ranging from 750 MHz at the low
end (of the iPhone 4) to 1.3 GHz at the high end (of the
iPhone 5S). Speculation has it that these models use their
variable clock rates to conserve energy whenever possible,
an important consideration on mobile devices. [8]

It wasn’t until the iPhone 4S that Apple first began using
dual-core processors, with the introduction of their A5 chip
in 2011. They threw in an improved version of this chip,
along with a three-core graphical processor, in the iPhone 5.

Interestingly, it had been a year earlier, in 2010, that Ap-
ple released the first version of iOS to support multi-tasking,
iOS 4. This release was further notable for including Grand
Central Dispatch, a new technology that offered developers
a simple, high-level interface for efficient thread manage-
ment. The operating system first shipped on the iPhone 4,
which, with its single-core A4 processor, could not support
genuine parallelism. Nevertheless, the A4 was sufficiently
fast to achieve an illusion of concurrency, and the new op-
erating system and multi-threading technology helped pave
the way for the advent of the 4S the following year.

3. Methodology
In the interests of consistency, we have tried to model our
methodology on the aforementioned work by Flautner et al.
In this section, we will summarize that approach, then go on
to discuss the particularities of working with Android and
iOS systems. It is important to note that we carried out all
of our research using actual, physical phones. This hardware
allowed a far higher degree of accuracy and transparency in
our data collection than any kind of emulation would have
offered.

3.1 Metrics
There are several different common metrics for quantifying
parallelism in computer systems.[9][10] One simple and in-
tuitive metric is Machine Utilization, which is a measure of
the percentage of total processing resources that gets used

during execution. The formula for Machine Utilization is
shown in Equation 1:

Machine Utilization =

∑n
i=1 cii

n
(1)

In this equation, n is the number of thread contexts in
the subject machine, and ci is the fraction of time that i =
0, ..., n number of threads were executed concurrently. If
all processors in the machine were fully utilized during the
execution of the benchmark, Machine Utilization would be
1. This intuitive metric is, however, not suitiable for the type
of study we conducted. Applications on mobile devices tend
to incur a significant amount of idle time, when no threads
are being executed in any of the processors, due to a high
degree of user interactivity and I/O activity.

We therefore decided to use Thread Level Parallelism
(TLP), the same metric that Flautner et al. used in their pio-
neering research. TLP is a variation of Machine Utilization
that factors out idle time. The formula for TLP is given in
Equation 2:

TLP =

∑n
i=1 cii

1− c0
(2)

As in Equation 1, n is the number of thread contexts in
the subject machine, and ci is the fraction of time that i
threads were executed concurrently. TLP output values will
fall between 1 and n.

One last caveat we had to consider was how exactly to
measure c0, the idle time of the system. While this measure-
ment might be straightforward on a relatively simple operat-
ing system, both Android and iOS are constantly running a
host of background processes. Some of these processes are
indispensible to the active app, while others may serve en-
tirely unrelated functions of the system; (for example, they
might monitor cellular connectivity). Our goal was to mea-
sure each app in as much isolation as possible, but, since
we had no sure way of determining which background pro-
cesses were a part of the app and which weren’t, we ran all
of our TLP calculations twice. The first time, we assumed
that all background processes constituted ”idle” time for the
foreground app, while the second time we assumed that they
were ”active.” The reality is most likely somewhere in the
middle (see section 5 for further discussion).

3.2 Benchmarks
We conducted two separate sets of experiments. The first
was intended to encompass a broad and representative cross-
section of applications currently available on the Android
Market and iTunes app stores. Our sampling policy involved
selecting three applications from each of seven popular cat-
egories:
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1. Business

2. Entertainment

3. Games (Action)

4. Games (Puzzle)

5. Media

6. News

7. Social Networking

To ensure that these applications accounted for a substan-
tial amount of user experience, we pseudorandomly selected
them out of the 50 most popular free apps for each category.1

For our second set, we handpicked 10 apps that had cross-
platform success on both Android and iOS. We found two
such apps in each of five popular categories:

1. Entertainment

2. Games

3. Media

4. Productivity

5. Social Networking

The goal here was to conduct a more focused study of
how each mobile operating system handles parallelism dif-
ferently, by controlling for the particular software being run.

We collected data on each of these benchmarks in a three-
pass process. The first pass involved exploring basic func-
tionality without our debugging software running. This pass
enabled us to gain familiarity with each app; observe its
baseline behavior; and take care of setting up any accounts,
granting any permissions, completing any tutorials, etc. that
would be required on an initial run. During our second and
third passes, we recorded data while manually engaging the
central features of each app, as we had previously deter-
mined them. The purpose of recording in two passes was to
help control for noise associated with background processes
that we did not have control over. As much as possible, we
tried to reproduce the behavior of the second pass during the
third pass, based on careful notes of the input we had pro-
vided.

On Android, each of the second and third passes spanned
a duration of 90 seconds, while they spanned 45 seconds on
iOS (see section 3.4.1). This duration always included the
opening and start-up time for each app.

3.3 Android setup
3.3.1 Systrace
Systrace helps analyze the performance of an application
by capturing that application and other Android system pro-
cesses, then representing them in a graphical format.[6] The
tool comes with the Android Software Development Kit
(SDK), available for free at the official Android developer
website. In order for an application’s activity to be traced,
the application must be run on a physical device connected

1 We used the Python random library to generate pseudorandom values. We
had to reject a couple of apps on the basis of requiring preexisting accounts
or coroporate affiliations.

to a developing system via USB. Systrace, which runs as a
Python script on the developing machine, then establishes
a debugging connection via the Android Debugging Bridge
(ADB). Systrace calls ATrace, a native Android binary, via
ADB, and then ATrace in turn uses FTrace to capture ker-
nel events. FTrace is a Linux kernel tool for tracing function
execution in the Linux kernel. FTrace operates through in-
strumenting kernel functions; when the kernel is configured
to support function tracing, the compiler adds code to the
prologue of each function.[7] This routine does cause some
overhead to the application that is being traced, but quanti-
fying the exact amount of overhead is outside the scope of
this paper.

Systrace outputs combined data from the Android kernel
and generates an HTML report that gives an overview of ev-
ery activity that was processed on the device for a given pe-
riod of time. The output trace file shows a detailed overview
of CPU activity, including process name, start time, process
and thread id, and the CPU on which the process was exe-
cuted. We built a Python script of our own to parse the string
output data and compute the duration and TLP for all cores
in the subject system.

The version of Systrace that we used came included in
the Android SDK 4.2 (API 17).

3.3.2 Hardware
Our Android device was a Samsung Galaxy S3 I747, which
has a Qualcomm MSM8960 Snapdragon chipset with 1.5
GHz Advanced Dual-core. The operating system on the de-
vice was upgraded to version 4.1.2.

3.4 iOS setup
3.4.1 Instruments
Apple restricts most low-level access to system information
on iOS, but it does provide Instruments – a free, first-party
debugging package, bundled with every download of Ap-
ple’s Xcode IDE. Instruments incorporates a wide variety of
tools for measuring anything from backlight brightness and
battery usage to zombie processes and memory leaks. These
tools, which permit some degree of customization, are es-
sentially a front end to DTrace, a common dynamic instru-
mentation program for Unix-based systems. DTrace itself re-
lies on making modifications to the system kernel, but Apple
does not allow third-party developers that privilege directly.

Through Instruments, we ran the Time Profiler tool,
which claims to perform “low-overhead time-based sam-
pling of processes running on the system’s CPUs.” This tool
does not have a visible impact on the operation of most apps,
but it does seem to incur a fair amount of overheard on the
computer system that runs it. Although our initial goal had
been to record over 90-second time windows, trial runs indi-
cated that this duration would consistently cause Time Pro-
filer to hang indefinitely, requiring a force quit. We therefore
chose to record over a less taxing 45-second range, which
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was still unreliable, but resulted in crashes only around 50%
of the time. 2

We used the latest version of Instruments at the time of
our research, v5.0.1, running on Mac OS 10.9.

3.4.2 System preparation
In order to further reduce noise in our data and enhance
the isolation of the foreground app, we deactivated several
of the automatic features of iOS 7. Among these features
were Background App Refresh, (which schedules apps to
run time-limited tasks in anticipation of their next use) and
the parallax effect, (which acceses accelerometer data to re-
render UI elements at high frequency). Both of these features
are easily controlled via the Settings menu. Finally, we made
sure to open the iOS 7 app switcher and kill all apps before
the start of each data collection pass.

3.4.3 Hardware
Our test device was a 16 GB iPhone 4S with a dual-core
A5 processor running at around 800 MHz. At the time of
data collection, it had just over 1 GB of free space and was
running iOS 7.0.4. We connected it via USB 2.0 to a 2011
iMac with a 3.1 GHz Intel Core i5 processor and 8 GB of
RAM.

4. Experimental results and analysis
In total, we collected data on 52 distinct apps – 21 for An-
droid, 21 for iOS, and 10 that ran on both platforms. The
arithmetic mean of all TLP values we calculated was around
1.28, indicating a low, yet non-negligible degree of paral-
lelism among mobile apps. Generally speaking, TLP values
were significantly higher when calculated with background
processes counted as a part of the active process than when
calculated with background processes as idle. Likewise, TLP
values for iOS tended to be higher than those for Android,
on the order of 1.33 to 1.22 for TLP w/background and 1.15
to 1.00 for TLP w/o background.

At the extreme ends of our TLP w/background ranges, we
had values as low as 1.02 (for Android) and as high as 1.70
(also for Android). In fact, the variance for our Android data
overall (0.028) was significantly higher than the variance for
our iOS data (0.008).

Beyond these broad comparisons, there were no obvious
patterns that emerged in our data. Category or genre of app
does not appear to be a strong determinant of TLP, although
it is true that, in our direct comparison of 10 apps, both
platforms had maximal TLP values for Entertainment and
Social Networking apps and minimal TLP values for Games.

For a complete listing of our data, please consult the
tables and figures on pages 6-9 of this paper.

2 We confirmed this crash rate on multiple systems, suggesting that it was
not an error in our setup. It remains unclear why Instruments could not
handle the full 90 seconds, even despite a large buffer size.

5. Discussion
Trying to suss out the primary culprit behind our low TLP
values is a difficult business, since actual parallelism is a
product of hardware, application, and operating system com-
bined.

On the hardware side, even a phone equipped with a
multi-core processor may redirect its most parallel compu-
tations to a designated GPU, for which we have no source
of data. (There’s a decent chance that this divison of labor is
precisely why our Games category had some of the lowest
TLP on the CPU.) The hardware may also shut down one
of its cores altogether to conserve energy, preempting any
potential for parallelism. (Although, given that our devices
were receiving continuous USB power throughout data col-
lection, this possibility seems unlikely.)

On the application side, even an app with many threads
may be designed to offload the bulk of its processing to
a remote server, then retrieve the results in a less parallel
fashion. (On iOS, the Pho.to Lab app functioned exactly like
this.)

And, lastly, the operating system needs to do the actual
scheduling of those threads, and it is anything but predictable
how the OS will balance the work of a single application
alongside other duties of the system.

Amidst all this uncertainty, we can minimally conclude
that counting background processes as non-idle work, asso-
ciated with the foreground app, is the better metric to be us-
ing for TLP. On the Android side, parallelism was practically
nonexistent under the other metric, which runs contrary to
our intuition that at least a few apps should have good par-
allel design. Meanwhile, on the iOS side, the primary two
background processes we observed were SpringBoard and
backboardd, both of which handle crucial, UI-related ser-
vices for all apps, (such as processing taps and gestures on
the multi-touch display). The activity of these processes is
thus inherently tied to the activity of the foreground app, and
we would be remiss to count it as idle.

Further discussion of issues specific to one operating
system or the other follows below:

5.1 Android
The aforementioned high TLP value of 1.70 was a definite
anomaly, produced by an application called Drippler. Drip-
pler is a rather simple news and magazine app that pro-
vides daily tips and updates about the mobile devices with
which the user accesses it. We did not have access to the
source code, but, upon examining the trace data of the app,
we found out that it uses the thread pool function, which
is a built-in Java technology for generating and managing
threads. We suspect that thread pool was what enabled and
facilitated Drippler’s strongly parallel behavior.
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5.2 iOS
If there is one obvious reason why iOS apps would have con-
sistently higher TLP values than Android apps, it’s Grand
Central Dispatch (GCD). Managing pthreads and mutex
locks at a low level can be intimidating for many devel-
opers, resulting in a high barrier to entry for parallel design.
However, using GCD is a very straightforward process, for
which there exists a wealth of official documentation and
accessible tutorials. As a testament to the ubiquitousness of
this technology, it is an industry best practice for iOS devel-
opers to assign all heavy computation to background threads
via GCD, in order to avoid UI hangs. Thus it is logical to
assume both that GCD would increase the amount of paral-
lelism in an average iOS app and that it would yield fairly
consistent TLP values across the board, given that it is the
single go-to strategy for managing threads.

6. Future directions
For this paper, our goal was to study apps in isolation as
much as possible. This would allow us to determine whether
or not mobile developers were building good parallel struc-
ture into their own apps, on an individual basis. However,
these data alone cannot answer the broader question of
whether multiprocessors are right for smartphones. For in-
stance, it could be the case that typical usage of one of these
devices – which involves listening to music, checking e-
mail, tracking geolocation, and downloading software up-
dates all at once – actually yields far higher TLP, close to
2.00. In this case, multiprocessors would be an invaluable
component of mobile systems, even if individual app de-
velopers don’t know how to make good use of them. Thus,
future work might include recording data based on other
usage patterns.

Another obvious realm to explore would be the third
major mobile operating system: Windows Mobile. While
Windows-based phones currently hold less than 5% market
share, they are on the rise and already twice as prevalent as
the next closest runner-up (Blackberry).[11]

Finally, on all of these platforms, it would be worth col-
lecting additional data, both to increase the rigor of our ex-
isting conclusions and to look into related questions. These
questions might include: how consistent TLP results are
across many runs of the same app; what kinds of threading
behavior different apps exhibit; and how much parallelism is
handled by the GPU.

7. Conclusion
For the vast majority of mobile applications, having access
to two cores on a fast, modern multiprocessor seems to be
overkill. Either the current demand for software does not re-
quire it, or developers do not currently know how to meet a
demand that does. Nonetheless, there is reason to believe that
improved tools for handling multi-threading, such as Java
thread pools and Apple’s Grand Central Dispatch, may al-

ready be helping developers bridge the gap between physi-
cal capacity and realized potential. We believe that there re-
mains room for further progress on these sorts of high-level
technologies.
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Table 1: TLP data by category and operating system
(w/back. = counting background as part of the active process)

(w/o back. = counting background as idle)
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Figure 1

Table 2: Direct TLP comparison data
(calculated with background as part of the active process)
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Figure 2
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Abstract

With more and more business being built online, there
is a need for fast, accurate, and automated usability test-
ing tools. However, as the web expands and evolves, our
tools must also evolve. Websites built using AJAX pro-
vide new problems for traditional task based evaluation
methods because a single url could correspond with mul-
tiple states.

We build the tool UseJax to discover whether an auto-
mated usability tool can work with AJAX webpages and
still approximate human behavior. We implemented Use-
Jax as a plugin for CrawlJax, a webcrawler designed to
index AJAX webpages. UseJax has two phases, a crawl
phase where a graph of the website is constructed, and
an analysis phase where UseJax applies a keyword based
heuristic to simulate human behavior traversing the web-
site.

Our tests of UseJax confirm that we are able to find
states without a unique url. We were also able to use
site search. However, UseJax was less capable at solving
tasks than humans. If UseJax could solve a task, humans
could almost always solve the same task. But UseJax
had difficulty solving tasks that humans solved with ease.
Furthermore, using CrawlJax as a base for UseJax limits
its effectiveness as a tool: UseJax crawls the entire web-
page as opposed to a directed crawl. Large websites with
large branching factors will lead to long crawl times and
as a result long analysis times.

1 Introduction

The goal of web usability testing is to determine how
easy a site is to navigate. A significant portion of us-
ability testing is task based. Traditionally, a human sub-
ject is given a series of tasks to accomplish on a website.
Sample tasks might involve purchasing an item or finding
information about a noteworthy individual. The subject
accomplishes the task while a researcher observes his or

her actions. The researcher gathers both qualitative and
quantitative data. Was the website frustrating to use? Did
any of the buttons not behave as the user expected? How
long did the user take to complete the task? How many
links did he click?

In this day and age, even the smallest businesses are
expected to have some sort of web presence, and if these
websites are not user friendly it may cost them customers
or business opportunities. While they may be able to
create a website, many small companies may not have
the resources to hire private user experience firms or the
knowledge to conduct usability testing. Using human
subjects to test a website is a slow and costly process.

Recently, a number of tools have been developed to
automate some or all of this process. To our knowledge,
no tool exists that attempts to model frustration or similar
qualitative features. The majority of automated testing
has focused on gathering quantitative data. In particular,
the number of clicks a user needs to complete a given
task is a commonly discussed metric. If a large number
of clicks are required to complete an important task, the
website may have serious design flaws.

The number of links required to solve a task is not the
only assessment of usability, if usability was that sim-
ple then a simple web crawler could preform usability
testing. A second important factor is whether following
those links is intuitive. If the clicks are easy for the user
to find and interact with, then the user may not mind if
solving a task requires a large number of clicks. Con-
versely, a website that could complete any task with a
single click would have a homepage so cluttered that
users would find it hard to find anything that they wanted.
Our tool tries to approximate human behavior, following
links that humans are likely to click on.

Other tools exist for discovering usability issues in
websites. However, previous techniques have focused
on entirely page-based websites and neglected websites
built using AJAX. More and more websites are using
AJAX in their designs. In this paper, we introduce Use-
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Jax, a tool developed to automate usability testing on
AJAX webpages.

In addition to finding information this way, we use a
site’s search functionality when there is no clearly visible
link to better approximate human behavior. One draw-
back to this approach is that the web crawling application
time depends on the size of the site. Large websites may
take too long to crawl. However, smaller companies with
smaller websites are most in need of a cheap and quick
usability testing tool. UseJax excells at evaluating these
smaller websites.

2 Background

UseJax looks to bring together usability testing, AJAX,
and usability automation, three topics about which there
are varying degrees of documentation. What we wanted
to focus on are some of the ways these pieces interact
and how they are going to be used by UseJax.

2.1 Usability Testing

There are a lot of pieces of information about how to
make a website with a positive user experience. Some
of the most important qualities are usability, accessiblity,
and findability. Usability refers to a general ease of use
for the website. Accessibility means that all users should
be able to access the page’s content, regardless of disabil-
ity or computer skill. Findability simply means that the
content needs to be easily found. We focused on the issue
of findability because it is the most readily automatable.

There were also some less official usability rules we
wanted to take into account. One of the most commonly
repeated is the three click rule. The three click rule
states that websites should be designed so that no con-
tent is more than three clicks away. However, there is
also evidence showing that user satisfaction is not actu-
ally strongly tied to number of [1]. In consideration of
this rule, we felt we could limit the depth our tests of
user approximation. We decided that UseJax by default
follows the three click rule, and gives up trying to solve
any task that requires more than three clicks.

The majority of automated usability tools we found
were not actually fully automated, in that they were not
using just a program and offline inputs. Instead, most
tools were added into the test site while it was online so
that the tool could collect live data about how users were
interacting with the site. Others looked at other potential
issues a user might run into, such as the readability of
the content of webpage or the load time. These were def-
initely helpful tools, with readability going into the idea
of web accessibility and load time factoring into how us-
able people feel a site is. However, we didn’t feel these

tools were truly automating the process of usability test-
ing.

One tool which did look at findability issues through
an actually automated system was the Bloodhound
Project[2]. It was able to navigate webpages using In-
foscent Simulations to approximate how users navigate
along a website using ”proximal cues” such as font size
and color and other information they already know or
learned about the goal. This technique resulted in mod-
erate to strong correlations with actual website users.
However, these results omit any users which used built-in
website search functions or did not leave the homepage,
ignoring information which could be found through state
changes but without changing the URL. We did not ex-
pect our system to reach the level of Bloodhound for ap-
proximating humans, but we did want to be able to take
advantage of AJAX and search where their system could
not.

Site search is implemented in most current websites
and we felt a usability tool should be able to make at
least some use of it. However, how much do users use
site search? Research suggests that less than one third
of people are finding the page they need via site search
immediatly; most people start by browsing the links on
the site [3]. In fact, during our own usability tests, we
found that humans never took advantage of site search.

2.2 AJAX and Usability

In traditional page-based sites, the only way to change
the user’s perception is to load a new page with a new
url. This leads to some awkward behavior: changing
one line of text requires loading an entire new page.
AJAX (Asynchronous Javascript and XML) is a web-
developing technique that allows the programmer to
change a page’s content without loading a new page.
AJAX can dynamically insert elements, such as mes-
sages or links, into the Document Object Model (DOM)
of a webpage.

For the purposes of this paper we are defining an
AJAX state change as a change that modifies the DOM
and user perception of the page, but does not have a new
url. AJAX poses new challenges for usability [4]. The
main challenge is that AJAX redefines what makes up a
”state.” In a page-based system, each state is represented
with a unique url. In an AJAX-based system, a single url
could be shared by multiple states. This interferes with
some common browser functions, such as the back but-
ton or bookmarks, because it is unclear which state a user
wants to go back to or save.

The notion of unclear states also affects automated us-
ability tests. For a task-based usability test, the url of the
target state is not sufficient to distinguish that state. To
set up the test, unique elements from the DOM of the tar-
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get state might be taken out and pointed to. We also have
to be able to distinguish when we are in these unique
states and what paths were taken to reach them.

2.3 CrawlJax
The tool we are building UseJax off of is CrawlJax.
CrawlJax is a tool designed to dynamically look through
AJAX webpages [5]. By looking at the Document Ob-
ject Model (DOM) of a webpage, it can look for user
interactions which could trigger a change in the DOM
tree. If a new state is different enough, it is added to a
state-flow graph. This API has also been used for deter-
mining accessibility of AJAX applications [6] as well as
for clustering websites based on certain features [7].

3 UseJax

UseJax is our usability testing tool. When given a simple
task, UseJax will simulate how a human would attempt
to solve the task and record the number of clicks needed.

We choose to focus on information retrival tasks as
these are the easiest to automate. It is possible to au-
tomate other tasks, such as online shopping. However,
many more complicated tasks can be reduced to an in-
formation retrival task. For example, an online shopping
task, ”Purchase a new Dell laptop” can be rephrased as
”Find the price of a new Dell laptop” with the hope that a
user who found information about the laptop could then
see the ”Buy Now” button.

UseJax tasks are very simple. A start url and goal
url are manually inputted into UseJax. The task is
solved by finding a series of clicks that leads from the
start url to the goal url. On AJAX webpages, it is
possible that different AJAX states have the same url.
Thus, UseJax can be configured to add conditions to the
goal. For example, a sample goal might be ”find the
url www.sample.com/target and make sure the message
’You found the goal’ appears in the DOM tree”. Thus,
UseJax can distinguish between multiple AJAX states
with the same url.

UseJax uses a two-phase process to solve tasks: the
crawl phase and the analysis phase. The crawl phase
builds a graph that represents the website, and the analy-
sis phase simulates human behavior on this graph.

3.1 Crawl Phase
The first step to completing a task is the crawl phase.
During the crawl phase, UseJax takes advantage of the
Crawljax interface to crawl a website.

UseJax begins its crawl by loading the start url and
identifying all eventables on the page. A eventable is any
object that triggers a dom change. The most common

Figure 2: Sample State Flow Graph

eventable is a url link that loads a new page. Other types
of eventables are buttons and hover text. UseJax then
triggers each eventable in turn, looks at the new DOM,
and recursively repeats this process.

In order to take advantage of site search, UseJax must
be given the search term prior to the crawl phase. Once
in the crawl phase, it will fill any input field with the
given search term. When the eventable connected to that
input field is eventually interacted with, the next state
will be the search results of that term. The CrawlJax
interface allows only one search term per input field type,
and this must be inputted pre-crawl. This means UseJax
cannot conduct multiple searches in a single crawl phase.
This means we cannot evaluate search on more than one
target state during a single run. It also means UseJax
cannot handle more complicated input field systems like
one might find on a hotel booking website.

As proof of concept, we constructed a simple example.
In this example, the start url has two eventables: a link to
the about page and a button. Clicking on the button trig-
gers a DOM change, a secret message and link appear.
The url does not change: this button does not load a new
page, but rather modifies the DOM of the current page.
Figure 1 illustrates this change.

The end result of the Crawl Phase is a directed State
Flow Graph. AJAX states are vertices in the graph. Ev-
ery vertex represents a unique DOM state. Note that two
vertices could have the same URL, but different DOM
states. One AJAX state is connected to the other if it
is possible to obtain the second state from the first by
triggering an eventable. The state flow graph of the pre-
viously described example is illustrated in Figure 2

This simple examples already exposes the strength of
UseJax and the weakness of the page-based approach.
Observe the somewhat convoluted path required to find
the secret page from the start page: load the start page,
identify that the button triggers a DOM change, click the
button, look through at the modified DOM, realize that
a new link has appeared, and finally click on the link. A
conventional page based approach could never access the
secret page, whereas UseJax finds it with ease.
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Figure 1: On left, homepage. On right, homepage after DOM change has been triggered.

3.2 Analysis Phase

Once the crawl phase is complete, the analysis phase be-
gins. Using the state flow graph, we attempt to find a
path from the start state to the target state. We use a sim-
ple greedy search algorithm, implementing a number of
heuristics designed to approximate human behavior. We
constructed four heuristics to use when searching for a
path from the start state to the target state.

The first heuristic we constructed was keyword based.
Given a sorted list of keywords, the search chooses click-
ables based on the keyword list, with higher ranked
words getting priority over lower ranking words. For
example, if we wanted to find information about buy-
ing a laptop, we might use [”Inspirion 15”, ”Laptop”] as
our keyword list. The purpose of this heuristic was to
be a very simple yet robust way of navigating a website,
especially when the user has no prior knowledge of the
website or the goods it is offering.

The second heuristic is similar to the first heuristic, but
is much more specific and therefore a more important as-
sessor of usability. It used only the first keyword of the
first heuristic, usually the title of the target webpage or
a slightly shortened form, and then looked for it only
within the title or header tags in the HTML. Originally
this heuristic was meant to capture things which were of
larger sizes than the things around them, but Crawljax
does not provide access to the CSS of the states it is sav-
ing after it has crawled.

The third heuristic was programmed to take advantage
of site search. Almost every web page these days has
its own internal search, often powered by Google, and is
often a useful way to find out of the way pages. How-
ever, human beings use search as a first resort less than
30 percent of the time. Even when users are unable to
find the page their are looking for, they still not the most
likely to use the search. However, we believe that it is
an important feature of the site that the search be well

implemented enough that a quick scan of the results will
provide where to go. Therefore, after using the search
the search this heuristic then defaulted to heuristic 1 be-
havior, clicking all of the results which have matching
keywords.

We also combined our heuristics to create a fourth
path creating method we thought would best approxi-
mate users. It first attempts to use heuristic 2, then
heuristic 1, then heuristic 3 for each of its eventables.

We also created an optimal heuristic that assumes per-
fect knowledge of the website and always finds the op-
timal path. This is not a realistic simulation of human
behavior, but it can be helpful to know the ’optimal’ path
to solve a task.

The advantage of splitting UseJax into two seperate
phases is that multiple Analysis phases can be run on a
single state flow graph. It is very simple to implement
new heuristics and have them run alongside of, or instead
of, the four implemented heuristics.

4 Evaluation

We tested both the effectiveness of the Crawl phase and
the effectiveness of the Analysis phase.

4.1 Crawl Evaluation

To test the effectiveness of the crawl phase, we ran Use-
Jax on four sites. Site1 is the proof of concept page seen
in Figure 1. Site2 is the Swarthmore Computer Science
department homepage [8]. It is entirely page based and
uses no AJAX elements. Site3 is the Swarthmore DASH
[9]. It only has a few unique urls, but relies heavily on
AJAX. Site4 is the Swarthmore College homepage [10].
It uses AJAX and is substantially larger than the other
three sites. In order to speed up the crawl, we imple-
mented a depth limit for each site. Webpages that are too
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Site1 Site2 Site3 Site4
Crawl
Suc-
cessful

Yes Yes Yes No,
Aborted

Crawl
Time

4s 6 min,
31 s

18 min,
25 s

2 hr

Depth
Limit

2 3 1 2

Number
of
States

4 109 22 1013

URLs
Visited

3 109 5 617

Avg
DOM
Length

0.488
kB

11.747
kB

76.482
kB

60.47
kB

Largest
Branch-
ing
Factor

2 38 21 50

Table 1: Crawl Evaluation

far away from the homepage will not be crawled. We
summarize the results of the crawls in Table 1

UseJax is capable of successfully crawling websites
that use AJAX and websites that use no AJAX. It is inter-
esting to note that crawling a page-based website is sub-
stantially faster than crawling a AJAX-heavy site. Site2,
a no-AJAX site, took 18 minutes to crawl. Site3, an
AJAX-heavy site, took 2 hours to crawl.

This is a result of the complexity of the DOM. Sites
that use AJAX typically have much longer DOMs than
sites that use the page-based approach. Site2 had an av-
erage DOM length of 11.7kB, whereas Site3 had an av-
erage DOM length of 76.4kB. As part of the crawl phase,
UseJax need to search through the entire DOM to iden-
tify eventables. Thus, a longer average DOM length con-
tributes to a longer Crawl phase.

While UseJax successfully crawled three of the test
sites, we terminated the fourth crawl after two hours
passed. Site4 has a much larger number of states, and
as a result requires much longer to crawl. UseJax has
difficulty with large sites. We discuss some implications
of this result in Section 5.

4.2 Analysis Evaluation
One goal of UseJax, and automated usability tools in
general, is to approximate human behavior. To test how
well UseJax succeeds in this task, we ran a series of us-
ability tests. A small sample of humans (5-10 college
students) were given a start url and information retrival
task. They were told to load the given url and complete

the task. The tasks were intentionally chosen to be par-
ticularly easy for a human to solve.

For each task, we give the start page, the instruction
as given to the human subjects, the most common human
solution, and the solution UseJax found.

Task 1
Start Page: Swarthmore CS Department Homepage
Task: ”Find information about the recent ACM compe-
tition”
Human Solution: Click on ACM Results link in Current
CS News section of homepage (1 click)
UseJax Solution: Same as human solution

Task 2
Start Page: Swarthmore CS Department Homepage
Task: ”Find information about the CS21 Course”
Human Solution: Click on Courses, then click on CS21
(2 clicks)
UseJax Solution: Same as human solution

Task 3
Start Page: Swarthmore CS Department Homepage
Task: ”Find information about Lisa Meeden”
Human Solution: Click on People, then click on Lisa
Meeden (2 clicks)
UseJax Solution: Failed

UseJax does not implement natural language process-
ing. When looking for links, UseJax does not consider
synonyms or categorizations. While every human was
able to make the connection that Lisa Meeden is a person,
UseJax could not make the connection. One workaround
fix is to add the word ’people’ to the keyword list. How-
ever, this reveals one of the weaknesses of UseJax; the
user may be required to set up the keyword list to help
guide UseJax to the proper destination.

Task 4
Start Page: Swarthmore College Homepage
Task: ”Find information about McCabe library”
Human Solution: Click on Libraries, then click on Mc-
Cabe (2 clicks)
UseJax Solution: Failed

Our other tasks on the Swarthmore College Homepage
were similarly unsuccessful.

As we mentioned in the previous section, UseJax has
difficulty with large sites. The McCabe site was never
added to the state flow graph, so there was absolutely
no chance for UseJax to find a path from the start state
to the McCabe page. However, we feel that if UseJax
had been allowed to run longer, it would have eventually
inserted the McCabe page into the state flow graph and
successfully passed this task.

None of our human subjects used site search. This is
most likely because the tasks they were given were very
obvious: there was never a true need to resort to search. It
also conforms with previous research that humans rarely
use site search unless absolutely necessary. However, we
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did test UseJax’s search capabilities seperately. We dis-
covered that UseJax requires very site specific informa-
tion to be able to take advantage of its ability to input
search terms. In particular, UseJax must be manually
told what the search field is labeled. When search is set
up properlty and given good search terms, UseJax almost
always found the target state. In fact, UseJax could solve
all four tasks listed above when told to use search instead
of trying to simulate human behavior by following links.

Setting up search requires a bit of manual configura-
tion, and most humans do not take advantage of search
functionality. Thus, we consider search to be an ancil-
liary function of UseJax: nice to have but annoying to
set up and not completely relevant to its main goal of
approximating human behavior.

5 Limitations

UseJax is effective at small websites, but it posesses three
major limitations. We briefly discuss these limitations
below.

5.1 Non-clickable Interactive Elements

AJAX is very powerful and allows a wide range of in-
teraction. UseJax only captures click-based and search-
based interaction, but does not handle other forms of in-
teractivity. As an example, a website could display a
message after a fixed amount of time. Over 93% of user
interaction with websites is click-based or search-based
[2], so we feel missing the remaining 7% is an acceptable
loss.

5.2 Depth Limit

During the crawl phase, UseJax attempts to create a state
flow graph of the entire website. It is incredibly time
consuming to try to index an entire website. Instead, we
implement a depth limit. If the shortest path from the
start page to a page is greater than the depth limit, the
page will not be crawled and will be excluded from the
state flow graph. Thus, if the optimal path from the start
state to the target state is long, the search may give the
erroneous result ”no path found” instead of the true path.

We do not feel this is a major concern. The Law of
Clicks shows that users are very unwilling to follow a
long series of links. Research shows most users will give
up on completing a task after following three clicks [1].
We feel most well-designed pages should not require a
long list of clicks to reach important information. If ab-
solutely necessary, the depth limit can be increased, al-
though this will substantially increase the time required
for the crawl phase.

5.3 Branching Factor

A larger concern is dealing with websites with a large
number of clickables on a single page. If a site has an
average of k clickables per page, then the crawl phase re-
quires storing kd states, where d is the depth limit. Site4
encountered this problem: there were thousands of states
that needed to be crawled. At this time, sites with large
branching factors are temporally infesable.

One potential solution is to preform a more targeted
crawl. UseJax attempts to store the entire state flow
graph. Instead, a new usability tool could use heuris-
tics to focus the crawl and only store a portion of the
state flow graph. The drawback of this method is that
you lose the benefit of the two-phase approach. A new
crawl would have to be preformed to test a new heuristic,
instead of testing all heuristics on a single crawl.

6 Conclusion

Usability testing is a wide field with a variety of nu-
ances and qualitative measures; it seems unlikely we will
ever be able to entirely automate the process. Whether it
is enjoyable to browse around a site seems like some-
thing we won’t be automate without particularly ad-
vanced AI. What we can do is automate some of the
smaller, more quantitative measures. With UseJax we
looked at whether content was findable by a limited num-
ber of clicks. There are other static evaluation tools to see
whether color combinations work or whether the time to
load the page will be frustrating. If enough of these tools
worked well enough, a robust, automated usability test
program could be made.

For future work evaluating findability of AJAX sites
we should explore different bases to build this tool on.
Ironically, the problem with using CrawlJax is that it is
too robust as a web crawler. We would prefer to work
with something which allows more fine grained control
over how which eventables it will crawl. This would
hopefully make the time to find target states more man-
ageable for websites with large branching factors. To im-
prove user approximation, some basic natural language
processing would be helpful. For a website findabil-
ity tool, the most useful language processing to include
would be categorization (to know whether a keyword is
a person, for example) and synonym detection. It would
also be helpful to be able to consider the CSS of the web-
page: when users can’t find a link relevant to what they
want they click around easily visible links until they can
find a new relevant link. A web crawler like CrawlJax
with a built in decision tree might make the perfect base
for such a tool.
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Who Tracks the Taint Tracker?

Circumventing Android Taint Tracking with Covert Channels

Dane Fichter and Jon Cronin

December 20, 2013

1 Abstract

Modern smartphones are responsible for a growing number of functions in our daily lives, and
consequently hold an increasingly large amount of sensitive data. Many mobile operating systems
alert the user to each application’s use of sensitive data upon install, but cannot prevent applications
from using this data in malicious ways. The research community is aware of this threat, and
has developed information flow tracking software to detect misuses of private data. However, this
software is not foolproof. A clever attacker can leak private data from an application in an undetected
manner using techniques such as application collusion, data obstruction, or a combination of these
methods. Our research evaluates the effectiveness of techniques that extract sensitive data from
phones and their ability to evade detection from TaintDroid, an information flow tracking software.

2 Introduction

The issue motivating our project is related to smartphone security, in particular relating to poten-
tially malicious applications abusing Android’s permission mechanisms. Smartphones allow users to
download applications created by third party developers who present a potential risk. Particularly
in the Android Marketplace, where applications are not thoroughly vetted for malicious intent, it is
increasingly likely that apps are misusing sensitive information. Upon downloading an application,
the user is prompted as to whether they would like to grant the app certain permissions, for exam-
ple use of the device’s microphone or the user’s contact list. This layer of security is deceivingly
reassuring for many users, and multiple papers have been written detailing how these permissions
can be (and are in practice) circumvented to access and relay sensitive information to external servers.

Due to these known security threats, the research community has recently begun to try to ame-
liorate these issues. TaintDroid is an application that tracks the use of sensitive data across a mobile
operating system, with the intention of finding phone applications that use this data in inappropriate
ways. TaintDroid is a highly sophisticated application that catches misuse of data successfully, but
it can be fooled by known methods of data extraction such as application collusion and implicit flow.

Our project is thus motivated by the existing research (see below) related to covert channels in
the Android OS and detection of malicious applications, as well as real life security concerns we
hope to highlight related to Android applications. In contrast to previous research, which identified
general techniques for evading information flow tracking, we highlight specific ways that TaintDroid
fails to recognize improper sending of this data and test the success of common evasion techniques.
Furthermore, we propose defense mechanisms that could thwart some of these attacks.
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3 Background

3.1 Covert Channels

Much work has been done related to malicious extraction of sensitive data from a smartphone. Some
of these techniques are very subtle and work by reading information into seemingly innocuous data.
Two papers show how to use accelerometer data to infer keyboard strokes and pin entries simply
from the motion of the phone [2, 3]. These applications have permission to access accelerometer
data, however the user is not expecting the data to be used in such a compromising way.

Similarly, Gasior and Yang show that one way to send this sensitive data to an outside party
without being detected is to mask the transfer of this data with a steady stream of unrelated, non
sensitive data to a server [7]. Specifically, they send a live video stream from the smartphone to the
server, a process the user had approved, but they send each frame with a long or short delay. These
delays are used to encode a list of contacts in binary form, with two short delays representing a
zero and two long delays representing a one. The smartphone does not detect any unapproved data
being sent anywhere, but the contact list is sent nevertheless.

Marforio, Francillon, and Capkun present a different way to send sensitive data: an “Application
Collusion Attack” [9]. In essence, they launch two seemingly unrelated applications, one of which
has permission to access sensitive data, one of which has permission to access the network. They use
a covert channel to then transmit the sensitive data from the app that has that permission to the
app that can access the network, which then sends it to the external server. Like the idea given in
the above paper, the Android OS does not detect this breach of security. Furthermore, the authors
argue that they can evade detection from information flow tracking software, such as TaintDroid.

3.2 Information Flow Tracking

Tracking an application’s use of sensitive data to detect misuse of said data is a common tactic
employed by researchers looking to report malicious applications. This is generally accomplished
by putting a taint on a piece of relevant data which then propagates across the application. If an
application tries to send out a piece of tainted data, the tracking software registers this.

This kind of information flow tracking has been done on desktops through the use of a whole-
system emulation. TaintBochs works at the hardware level, tagging individual bytes that are deemed
sensitive [4]. Panorama uses Google Desktop as a case study to accomplish a similar task. The au-
thors write that their system yields higher accuracy due to the fact that their taint tracking is
whole-system and finely grained [11].

TaintDroid applies these information flow techniques to a mobile platform, although without
providing a whole-system emulation of Android due to performance concerns [6]. Instead, Enck et al
make use of Android’s virtualized architecture to “integrate four granularities of taint propagation:
variable-level, method-level, message-level, and file-level.” The novelty of their approach stems from
the integration of these four techniques, as well as treating real-life performance concerns. The cre-
ators of TaintDroid argue that it can detect many instances of personal information being misused
by even relatively popular applications. However, they concede that TaintDroid has limitations in
terms of how much wrongdoing it can detect. In particular, they write that TaintDroid is ineffective
at detecting implicit flow and the use of covert channels. We are investigating these claims with our
project.
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Another application that builds off TaintDroid is AppFence. AppFence uses TaintDroid as a base
to track information flow within the Android OS, but also supplies “shadow data” to applications
it suspects are attempting to extract sensitive information.[8] This shadow data can be a dummy
variable or an empty file, and its purpose is to prevent the user’s real data from being compromised.

4 Methodology

In order to test the limitations of taint-tracking software, we implemented numerous attacks which
attempt to steal phone numbers from an Android phone. Specifically, we tested the ability of appli-
cation collusion and covert data transmission to successfully transmit phone numbers to an external
server without being detected by TaintDroid’s taint-tracking framework.

Our tests were run on an Android emulator downloaded according to the instructions at Android’s
source code webpage [1]. The Android source code was compiled with the TaintDroid application
built in, downloaded from the TaintDroid project’s official website [5].

5 Evaluation

Each of these attacks was tested using an emulator running TaintDroid. To test each attack, we
initialized the emulator, ran an application to automatically populate the contact list with randomly
generated names and phone numbers, and loaded each attack into the emulator. For the attacks
which did not employ collusion, we simply ran the application and determined whether or not its
activity was detected by observing whether TaintDroid presented a notification. For the attacks em-
ploying collusion, we ran the principle application and ran the helper application after the principle
application terminated. Again, we determined whether TaintDroid was able to catch the theft of
sensitive information by observing whether or not TaintDroid presented a notification.

5.1 Control Attack

We began our experimentation by implementing a program which uses neither collusion nor covert
data transmission to export contact information. The application uses permissions that allow it ac-
cess to the wireless network and the user’s contact information. When the application is downloaded,
it reads all phone numbers from the contact list and packages them as a single stream, separated by
new-line characters. This string is passed into a JSON package, which is then sent to an external
server. As expected, TaintDroid detected this leak of sensitive information.

5.2 Covert Data Transmission Attack

This attack is contained within a single Android application, but uses a form of covert data trans-
mission to elude taint-tracking software. As in our control attack, the application uses permissions
which allow it to access both the networks and the user’s contact information. The application reads
in each phone number and covertly transmits each digit of the phone number to itself by changing
the phone’s volume and then immediately reading back the volume setting it just set. After reading
each digit of a phone number from the volume settings in this way, the app bundles these phone
numbers into a single string and exports this string to an external server via a JSON package. Due
to the relatively unconventional method of transmitting data presented by this attack, we had an-
ticipated that it would be able to decieve TaintDroid. Contrary to our hypotheses, TaintDroid was
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able to detect this attack.

5.3 Implicit Flow Attack

In the paper explaining the implementation of TaintDroid, the authors admitted that a technique
called implicit flow has the potential to foil their taint-tracking system. To test this hypothesis,
we implemented an attack that uses implicit flow in an attempt to obfuscate its theft of contact
information. The application uses permissions that allow it to read contact information and access
the wireless network. The application reads in each phone number and implicitly assigns a value to
a seemingly unrelated string variable based on the value of the phone number. The application then
sends these phone numbers to our server. Despite the expectation of the authors that this technique
would decieve TaintDroid, Taintdroid successfully detected this attack.

5.4 External Memory Attack

The external memory attack was designed to test TaintDroid’s ability to maintain persistent taint
tracking throughout the process of reading from and writing to external memory. The attack, con-
tained within a single application, uses permissions that allow it to read contact information and
access the wireless network, as well as read and write external memory. This application reads in
all phone numbers from the contact list and writes them to a location in external memory. The
application then immediately reads this data back in from external memory and sends it to our
server. Despite the relative simplicity of this attack, TaintDroid was unable to detect the leak of
sensitive information.

5.5 Collusion Attack

This attack uses collusion between two applications which share the necessary permissions for ex-
tracting and exporting sensitive data. The first of these applications uses permissions which allow
it to read contact information and to write to the phone’s external memory. This application reads
in all the user’s phone numbers, combines them into a single string, and writes this string to the
phone’s external memory. The second of these applications uses permissions which allow it to read
from external memory and access the wireless network. This application accesses the file written
by the first application and reads in the string containing the phone numbers before exporting this
information to an external server using a JSON package. TaintDroid was unable to detect this attack.

5.6 Collusion and Covert Transmission Attack

The final, and most complicated, attack that we implemented uses both covert data transmission
and collusion between applications to attempt to decieve TaintDroid. The primary application uses
permissions that allow it to read contact information, change volume settings, and write to the
phone’s external memory. This application reads in the all of the user’s phone numbers and re-reads
them into memory using the same volume modulating pattern used in the covert data transmission
attack. The application then writes the phone numbers to the phone’s external memory. The sec-
ond application reads the phone numbers in from external memory and exports them to an external
server using a JSON package. As hypothesized, this attack was able to avoid detection by TaintDroid.
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5.7 False Positive Attack

After observing TaintDroid’s ability to detect out implicit flow attack, we hypothesized that we
could easily induce false positives in TaintDroid. This attack, contained within a single application,
used permissions to read in contact information and access the network. This program reads in all
phone numbers from the contact list and branches depending upon the value of each phone number.
However, this branching does not affect the final outcome of the program, which is simply a ran-
domly generated string of integers which is sent by the application to our server. Despite the fact
that we do not transmit the user’s data, covertly or otherwise, to an outside party, TaintDroid still
flagged this application as leaking personal information.

5.8 Results Summary

Attack Strategy Apps Permissions Beat TaintDroid?
Simple 1 Contacts, Network No

Volume Modulation 1 Contacts, Network No
Implicit Flow 1 Contacts, Network No

External Memory 1 Contacts, Network, External Memory Read/Write Yes
Collusion, Simple 2 Contacts, Network, External Memory Read/Write Yes
Collusion, Volume 2 Contacts, Network, External Memory Read/Write Yes

TaintDroid was unable to detect data extraction techniques which made use of application collu-
sion, a result we had expected. However within the context of one application, TaintDroid success-
fully registered data extraction even when obfuscated by volume modulation and implicit flow. This
implies that TaintDroid’s tracking is more zealous than we had thought, although the existence of
false positives shows that this propagation is not completely accurate.

6 Future Work

In the course of testing our covert channels, we exposed some major weaknesses both in the Android
OS and in TaintDroid’s taint tracking implementation. Future work could work more closely with
the source code of both the Android OS and TaintDroid to determine other lower-level ways to
extract data, and could perhaps highlight other serious security flaws. Furthermore, we could test
whether static analysis tools can detect that our applications are malicious. Based on the research
we have accomplished, we now propose certain defense mechanisms that could potentially thwart
attacks that use similar techniques to the ones we have implemented.

6.1 External Memory Protection

For our collusion attack, we write contact information to a file in external memory, which is then read
in by another application. There are many ways for two applications to collude with one another,
but to prevent this kind of attack, we propose more security permissions for applications trying to
access external memory. For example, we can imagine a system where applications can only access
files in external memory that they create, or one where applications are forbidden from accessing
files created by other applications. There are certainly legitimate reasons for applications to create
and write to files in external memory, but two applications accessing the same file seems like a flaw
ripe for exploitation from colluding applications.
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For taint tracking in particular, one possible way to better track sensitive data when it is writ-
ten to a file in external memory would be to taint the file we are writing to. Maintaining a taint
on the external file would allow TaintDroid to detect application collusion which makes use of this file.

6.2 Verifying External Network Accesses

Similar to more malicious malware, all of our attacks access an external server that receives the
sensitive data we are stealing. One way for the Android OS to prevent data leakage of this sort is
to verify that the server is not malicious. This is less relevant for our project as the server we set
up is innocuous, however it is possible that by checking this website beforehand the OS could avoid
interacting with a malicious server.

6.3 Permission Improvements

The fundamental problem driving this work is one inherent in Android’s permission system. We
believe that a more secure implementation of application permissions would make the kind of data
extraction we performed much more difficult and obvious. For example, instead of having a blanket
permission which allows access to a user’s contact data, a permission that explicitly allows contact
information to be sent over a network would better inform the user as to how the application is
using their data. Similarly, Android could flag certain combinations of permissions as being high
risk, such as personal information and any network permissions.

7 Conclusion

We had two main motivations driving our research. We wanted to determine which techniques are
capable of extracting sensitive information from an Android phone without detection from taint
tracking software and what specific factors determine whether taint tracking can detect our trans-
mission. We were also interested in highlighting flaws in the Android OS itself, specifically related
to misuse of application permissions. We demonstrated that taint tracking (as implemented by
TaintDroid) has success catching cases of data extraction within a single application. Even with
obfuscation techniques such as implicit flow and masking data within the physical features of a
phone (specifically volume level), TaintDroid accurately identifies data theft. However, it fails to
register attacks that make use of collusion between two applications and ones that hide sensitive
data in external memory. Furthermore, we showed that TaintDroid may be overzealous in its taint
propagation, as it is possible to trigger false positives within the system. Given TaintDroid’s failure
to catch several of our relatively simple covert channel implementations, it is apparent that any
successful approach to combating this style of attacks must combine improved taint-tracking with
improvements to Android’s operating system.

References

[1] Android. Android source code, December 2013.

[2] Adam J Aviv, Michael E Locasto, Shaya Potter, and Angelos D Keromytis. Ssares: Secure
searchable automated remote email storage. In Computer Security Applications Conference,
2007. ACSAC 2007. Twenty-Third Annual, pages 129–139. IEEE, 2007.

6 121



REFERENCES REFERENCES

[3] Liang Cai and Hao Chen. Touchlogger: inferring keystrokes on touch screen from smartphone
motion. In Proceedings of the 6th USENIX conference on Hot topics in security, pages 9–9.
USENIX Association, 2011.

[4] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher, and Mendel Rosenblum. Understanding
data lifetime via whole system simulation. In USENIX Security Symposium, pages 321–336,
2004.

[5] Enck. Taintdroid, December 2013.

[6] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P Cox, Jaeyeon Jung, Patrick Mc-
Daniel, and Anmol Sheth. Taintdroid: An information-flow tracking system for realtime privacy
monitoring on smartphones. In OSDI, volume 10, pages 255–270, 2010.

[7] Wade Gasior and Li Yang. Network covert channels on the android platform. In Proceedings
of the Seventh Annual Workshop on Cyber Security and Information Intelligence Research,
CSIIRW ’11, pages 61:1–61:1, New York, NY, USA, 2011. ACM.

[8] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, and David Wetherall. These
arent the droids youre looking for. Retrofitting Android to Protect Data from Imperious Appli-
cations. In: CCS, 2011.
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0.1 Abstract

Shortcomings of conventional compiler optimization,
due in large part to computer architectures growing in-
creasingly more complex, has inspired an interest in tun-
ing an application’s algorithm-level parameters to opti-
mize its performance. While such tuning continues to
be done manually, automatic tuning (auto-tuning) meth-
ods are being explored as a more efficient and effective
way of configuring applications. Such systems are use-
ful for ensuring that performance-critical code can run
at near-optimal efficiency on different system environ-
ments. Despite the potential benefit of autotuning, how-
ever, most current autotuning systems are restricted to
specific applications or are difficult to use. Here we
present STuneLite, an easy-to-use, universal framework
for automatically tuning a generic piece of software.

1 Introduction

1.1 Background

Tuning is the process of modifying program parameters
to optimize some measure (often runtime) on a given
computer architecture. Many applications can gain sig-
nificant performance boosts through tuning. Applica-
tions that use large buffer sizes, for example, often have
an optimal buffer size that is dependent on hardware.
Slightly decreasing this value can allow the buffer to
fit into a cache, drastically improving memory access
speed. More generally, tunable applications are dis-
tributed with parameters that work reasonably well on
many platforms, but are less than optimal for any par-
ticular one. When performance is critical, as is the case
with most scientific and numerical computing to name
just one example, it is essential to find parameters values
that are better than the out-of-the-box ones.

One example of software that can benefit autotuning
is the GNU Multiprecision Library. This library contains

approximately eighty tunable parameters that affect per-
formance in varying ways, depending on hardware. The
default values may be chosen such that they work rea-
sonably well for a wide range of hardwares, and perhaps
optimally for some particular machine. However, it’s im-
possible for a single set of parameters to work optimally
or near-optimally for all machines that run the applica-
tion. Thus, to find optimal parameter values, one must
somehow incorporate information about the hardware of
the target machine. Much of today’s software is still
tuned manually, if tuned at all [4]. However, due to the
complexity of many search spaces, tuning manually is
generally time intensive, and the programmer can’t find
solutions as quickly or as well as an autotuner can.

Despite the possible benefits, a universal auto-tuning
framework has yet to be developed and widely used.
Easy access to such a framework could drastically lower
performance, memory and other computing costs by
closing what has been referred to as the widening gap
between true peak performance and what is typically
achieved by conventional compiler optimization [2].
Here, we contribute to closing that gap by creating a
tuning framework that reduces the unnecessary cost of
repeatedly observing, tweaking, compiling, and running
an application by hand.

1.2 Motivation

Given the potential performance gains of tuning a piece
of software, there have been several more-or-less suc-
cessful research projects that have explored the automa-
tion of the tuning process: tweaking an applications con-
figuration, compiling, running, measuring resource use,
developing a new configuration to test and repeating over
and over again. However, despite this research interest
and the obvious potential for automatic software tuning,
tuning continues to be done largely by hand. Even worse,
many libraries come pre-loaded with arbitrary constants
that have nothing to do with the systems they are running
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on, and are not easily exposed for tuning (for example,
zlib sets its buffer size to the arbitrary number 16384).
We feel that there are two fundamental problems with
existing auto-tuning platforms that has resulted in their
lack of widespread adoption:

• generalizability

• ease of use

Most current auto-tuning frameworks are custom-
made for specific applications. For example, signal pro-
cessing libraries and sorting libraries have both been
auto-tuned. However, these frameworks have almost
no generalizability to applications outside their domain,
and they tend to be difficult to use and configure. A
more general framework could allow users to quickly and
painlessly find near-optimal parameters for new applica-
tions that they create. Our goals for STuneLite were thus
to:

1. allow tuning with very little modification of the
source code

2. allow customization of the tuning process

3. minimize the time taken to adequately tune the pro-
gram

1.3 Some Terminology
In general, there are three pieces of terminology that are
important to understand. First is the concept of search
strategy. In our implementation, a search strategy is
a function that takes information about previous tuning
runs as input, and outputs a new set of points to test
on. Examples of tuning strategies vary in complexity
from the random seletion of points in the domain (ran-
doSearch), to more complex probabilistic methods [5].
The second important concept is the concept of a pa-
rameter. In general, parameters will be constants de-
fined in preprocessor directives that will be declared once
and used throughout the program. Some examples of pa-
rameters that can be tuned are buffer lengths, number of
threads that are spawned, and perhaps even which library
(of a predifined set of libraries) to use for a given task.
The last important concept is a sensor, which is in gen-
eral some measurement made after or while running an
application. Important examples are memory usage and
runtime. However, other conceivable sensors that could
be tunded are processor utilization, cache hit rate, power
utilization, or perhaps something more abstract like the
number of requests handled by a server in a given time
interval. Altogether, the goal of an autotuner is to search
a parameter space for a parametrization (set of param-
eters) that will produce optimal or near optimal sensor
values.

2 STuneLite Overview

The STuneLite library is designed to be highly modular.
The system is broken up into five major components:

1. Application controller

2. Configuration file

3. Ad-hoc IPC

4. Search strategy

5. I/O manager

Parts 2-4 all work somewhat autonomously, and
are tied together by the application controller, which
directs the flow of data through the rest of the system
as depicted in Figure 1. Before we look at each of the
components of the system and how they fit together in
more detail, we will discuss how our design choices help
us achieve the three goals for STuneLite outlined in the
previous section.

Our first design goal is to allow tuning to occur
with minimal modification of the source code. This is
an important goal because it makes the process more
usable. In general, as described in the part about the
Ad-hoc IPC, all communication between the source
code and the tuning framework is done through the
setting of environment variables. So, the user must only
set the value of each variable in his or her source code
to be equal to the value of an environment variable.
For example, if we want to tune a parameter called
BUFLEN, we would only have to replace the following
line of code:

#define BUFLEN 16384

With:

int BUFLEN = atoi(getenv("BUFLEN"));

And then define a knob with name BUFLEN in the
configuration file. No other modificaton to the source
code is needed on the part of the programmer.

The second goal of STuneLite is to make the tun-
ing process highly customizable. Specifically, we want
the user to be able to easily customize the types of
parameters that can be tuned as well, the search strategy
that is used, and the sensors to measure. STuneLite
comes built in with a few simple search strategies, and
provides a simple way of designing new ones. The
configuration file makes it similarly easy to customize
the parameters that are tuned, allowing the user to
define the a the range of values that the tuner should try.
Sensors are generally measured by a shell script that by
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Figure 1: Layout of STuneLite Framework

default just measures the runtime and memory allocation
of the application. However, it is easy to define other
metrics (for example measuring the size of a compressed
file or reading from the /proc filesystem) by creating
another shell script.
The last goal of the tuner is to maximize the speed of
the tuning process. Because we sometimes need to run
the source application under a dynamic analysis tool
like Valgrind (specifically if we want to gather memory
allocation data), then each run can be much slower
under STuneLite than outside of it. In general though,
most of the speed of the tuning process has to do with
how quickly we can get our parameters to converge on
a local minimum. Although some of our methods are
fairly naive (e.g. randoSearch, gridSearch), we have
created a lightweight gradient descent algorithm . In
our experience, this algorithm can be used to find local
minima rather quickly on a variety of search spaces,
leading to a speedy tuning process.

2.1 Configuration File
When using STuneLite, a user specifies information
about the how to autotune an application using a config-
uration file. The configuration file is written in YAML,
a format chosen because it is is both human-readable
and easily parseable. The configuration file allows the
user to define, among other settings, a pre-programmed
tuning strategy to use, an objective function, the source
application to tune, and (perhaps most importantly) the
definition of the tuning knobs. The user must provide

STuneLite with an environment variable that allows in-
terface with the source application, as well as the range
of values that the knob can take on, and its type.

2.2 Search Strategies
A search strategy defines the way an autotuner ex-
plores the search space defined by a set of param-
eters. STuneLite currently supports 4 search strate-
gies: randoSearch, gridSearch, sequentialSearch, and
hillClimber. All search strategies take the same input,
which includes the number of iterations already com-
pleted, data about the knobs, and previous settings and
results. A maximum number of iterations is also pro-
vided, and the main loop will cease calling the search
strategy and return the best value so far if this number
is reached. Some search strategies use all of this input
information, and others use only a subset. All search
strategies return a list of parameter settings for the main
loop to execute before calling the search strategy again.

2.2.1 randoSearch

This simple search algorithm fetches a random value for
each knob (within that knobs range) each time it is called.

2.2.2 gridSearch

This search strategy splits up the range of each variable
into p = k

√
N possible values, where k is the number of

knobs, and N is the maximum number of iterations. We
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then test every possible combination of those values, es-
sentially creating a grid of the search space. Due to the
exponential growth of the search space with the number
of variables, this strategy samples the search space much
more sparsely as the number of variables increases.

2.2.3 sequentialSearch

This search strategy tunes variables one at a time. Given
a maximum number of iterations of N, sequentialSearch
splits up the range of each knob into N

k (k = number
of knobs) values. It first sets all parameter values to
their minimum possible configuration. Then it tests each
of the N

k possible values for the first parameter, while
keeping the second parameter fixed. Next, our program
chooses the value of the first parameter than yielded the
best results, fixes that value, then repeats the process on
the next variable. The strategy terminates when the final
variable is tuned.

2.2.4 hillClimber

This search strategy is best described as pseudo gradi-
ent descent. The main loop finds the best set of pa-
rameters so far, and tests points around it. 2 points are
tested for each variable, one where that variable is incre-
mented and another where that variable is decremented
(other variables remain fixed). As the program runs, step
size decreases based on a linear function of the number
of runs. Initially, parameters are incremented or decre-
mented by 1/5th of their total range, and by the last run
that value decreases to 1/20th of the total range. How-
ever, both these numbers can be easily changed, which
may be useful if the user has some prior knowledge the
search space. Increasing precision as the number of runs
increases allows the program to find a region good solu-
tions, then fine tune its solution afterward. The first point
tested by hillClimber is determined randomly by calling
randoSearch.

2.3 Ad-Hoc IPC

Rather than relying on more conventional methods of
inter-process communication (pipes, signals, sockets,
etc.), we have used a combination of files, database sys-
tems, and environment variables to be able to commu-
nicate between the source code and the tuner. First, en-
vironment variables (which must be consistent in both
the configuration file and the source code) are used to re-
set the values of parameters between runs. Then, sensor
measurements are relayed to the tuner through either the
use of a file or a persistent database. The reason why we
did not use a more conventional IPC to communicate be-
tween the tuner and the children it spawns off to run the

source application is to increas the simplicity of the code,
and to make the system easily portable between different
platforms.

2.4 Input/Output Management

Each auto-tuning run (parameter settings and their cor-
responding sensor settings) is stored in two places: (1)
in an SQLite database in case the autotuning history is
needed for future tuning sessions and (2) on the heap in
an array of arrays that is passed to the search strategy, al-
lowing the search strategy to base its next move on past
tuning results and also saving both the search strategy
and the main tuning loop from having to extract these
past results repeatedly from the SQLite database.

2.5 The Main Tuning Loop

The heart of the STuneLite framework is a lightweight
loop that repeatedly tunes the source application with
different parameters. The main loop handles the inter-
actions between the other components of the system, and
repeatedly tunes the source code with different sets of pa-
rameters. At every iteration, the loop gets a set of param-
eters to test for the user-defined tuning knobs by calling
the search strategy and sets these parameters as environ-
ment variables that can be used by the source code. Fi-
nally, the loop forks off a new child process that runs the
source applications with new parameters, and measures
the values of various sensors after the execution.
The main loop contributes to the modularity of the sys-
tem by allowing the user to easily define their own sen-
sors. The default sensors that are measured are the execu-
tion time, and the amount of allocated memory (through
the use of Valgrind). A new sensor can easily be mea-
sured by creating a shell script to feed into the program.
For example, one could use another utility to measure the
cache hit rate of the program, and use that as a sensor.

3 Evaluation

We ran STuneLite on two non-trivial test programs. The
first program was a toy example defined by Rosenbrock’s
parabolic valley function. This function is interesting be-
cause it is easy to describe analytically, but has histori-
cally been difficult to optimize. We ran our autotuning
methods on a sleeper program that waited for an amount
of time determined by the value of Rosenbrock’s func-
tion. Secondly we tuned a matrix multiplication progam,
a well-known example of an tunable algorithm. can be
assigned any value between 1 and the smallest dimen-
sion of the array, and performance often varies based on
this value in interesting and meaningful ways.
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Figure 2: Rosenbrock’s Parabolic Valley
Figure 3: Rosenbrock’s Parabolic Valley with
three runs of gradient plotted it

With both test problems, we ran our autotuner on an
AMD FX-620 Six Core Machine. The cache sizes and
frequency of ’caper’ are as follows:

L1 data caches: 6 *16 KB 4-way associative
L1 instruction caches: 3 * 64 KB two-way associative
L2 caches: 3 * 2 MB 16-way associative
L3 cache: 1 * 8 MB up to 64-way associative
Frequency: 3800-4100 Mhz

3.1 Rosenbrock’s Parabolic Valley
Rosenbrock’s Parabolic Valley is the function of two
variables defined as:

f (x,y) = (1− x)3 +(y− x2)2 (1)

The region of interest for this function is
x ∈ [−2,2],y ∈ [−1,3], because this is the area im-
mediately around the global minimum. The function is
interesting because it is highly non-convex while also
having a simple analytic form. The function obtains a
maximum value of 2527 in our interval at the point (-2,
-1). The function obtains a global minimum of 0 at the
point (1, 1), but there are other points with very low
value in the valley (1 at the point (0, 0) and 8 at the point
(-1, 1)).

We ran our modified version of gradient descent on
this parameter space (see figure 2). Clearly, the function
converges to the parabolic valley within only 5 iterations.
In fact, the largest of the 3 minima found was approxi-
mately equal to 4, meaning that all three of these runs
found minima that were within .15% of the best value
in the interval relatively quickly. Because each iteration
requires 4 ’checks’ of points in the vicinity, convergence

happened after about 20 total evaluations of the function.
We consider this number to be reasonable, given the dif-
ficult search space and the simple search strategy.

3.2 Matrix Blocking
We also tested STuneLite on a blocked matrix multipli-
cation algorithm. Traditional matrix multiplication can
be very slow, as matrix values that will be used again in
the future are frequently replaced from the cache. Matrix
blocking is an attempt to increase temporal locality by
essentially computing the partial result of a subset of the
matrix (a matrix block), then combining those results at
the end. Theoretically, a well-sized block is barely small
enough to fit in one of the caches, allowing fast retrieval
of elements of the block.

To visualize the search space, we ran an extensive
gridSearch on the blocked multiplication of square arrays
of dimensions 1000, 1500, and 3000 (figures 4-6). We
ran the most tests on 1500 sized matrices, testing about
1 in every 4 possible block size values. About 1 out of
every 50 possible block sizes was tested for the 1000 size
matrix, while only every 250th value was tested for the
3000 matrix. Interestingly, the best block sizes were al-
ways those that had large remainders when divided into
the total size of the array. With the 1500 array, for in-
stance, points sligthly greater than 300, 375, and 500 all
yielded good results, while points slightly less than those
values were much worse. While the reason for this is not
obvious, the results are meaninful. Changing the block
size from 497 to 501 resulted in a 2.2x speedup.

We performed three runs of our hillClimber search
strategy on the blocked multiplication of 1000x1000 ma-
trices. We varied the parameters of the gradient descent
algorithm from run to run, such that some runs had larger
step sizes than others. The program ran for 20 iterations
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Figure 4: Tuning 1000 x 1000 blocked matrix
multiplication on Linux Ubuntu

Figure 5: Tuning 1500 x 1500 blocked matrix
multiplication on Linux Ubuntu

Figure 6: Tuning 3000 x 3000 blocked matrix
multiplication on Linux Ubuntu

Figure 7: Tuning 1500 x 1500 blocked matrix
multiplication on Mac OS X

Figure 8: Tuning the zlib compression library
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on all 3 runs. The first run had the largest step size, and
returned a block size of 532. This value lies relatively
close to the global optimum of approximately 500. The
second run had a smaller step size, and returned a block
size of 334, a local optimum and the second best global
point. The last run had the smallest step size, and never
reached on a local optimum. It returned a value of 634,
though it was moving in the direction of the global opti-
mum when the iteration limit was reached.

This is the kind of behavior we might expect from
varying step size. Large step size finds the area of the
global minimum, but hones in on the exact point poorly.
A smaller step size is good at finding local minima, but
not necessarily the global one. A very small step size
may even move too slowly, and not reach any minima
before iteration limit is reached. However, it’s impor-
tant to note that the observed results are due partially to
chance (because of the random starting point), and typi-
cal behavior may differ than that observed in these tests.

3.3 Zlib Compression Library

To further demonstrate that STuneLite can be easily in-
terfaced with a variety of applications, we attempted
to tune the Zlib compression tool with it. Specifically,
STuneLite was set up to tune the buffer length of the
compression algorithm to optimize for runtime. The ac-
tual tuning results (see Figure 8) are more or less just
noise, but indicate more the lack of sensitivity of the
runtime of the compression to changes in buffer length
(at least for the one file we were compressing) than any
shortcomings of STuneLite. STuneLite, after all, can
only tune the parameters its given against the perfor-
mance metric its given to the extent that this metric can
be tuned with these parameters. In some cases, as it
appears in this one, there may not be any e STuneLite
framework to Zlib was straightforward. Interfacing Zlib
with STuneLite, on the other hand, was straightforward.
Only minimal changes to Zlib’s source code were re-
quired, and are nearly identical to those outline in section
2. The only other accomodation that needed to be made
was a shell wrapper to be run in the main tuning loop that
invoked the Zlib compression tool on a particular file.

3.4 Tuning Efficacy

The focus of our work was not the performance of the
tuning itself, which has been explored to great length,
but rather the ease-of-use and generalizability of the
framework we developed. Nevertheless, we present re-
sults from several tuning sessions using relatively simple
search strategies we implemented from scratch to prove
the functionality of our framework, with the idea that the

efficacy of the tuning itself will improve as more com-
plex search strategies our developed for STuneLite.

To reiterate, the results here are shown simply to prove
that the framework works, and are entirely dependent on
the search strategies used, which as explained previously
we designed to be entirely modular with the idea that
users will develop more complex strategies afterwhich
the tuning performance of STuneLite will rival those of
other adhoc tuning programs.

3.5 Cross-Platform Compatibility
To demonstrate the cross-platform compatiblity of our
system, we tested it within both Linux Ubuntu and Mac
OS X machines. Specifically, Figures 2-6 are the results
of trials performed on a machine running Ubuntu 4.6.3
on top of Linux 3.2, while the trial summarized in Figure
7 was performed on a machine running Mac OS X
10.8.5. The only modification needed to port STuneLite
from Linux to Mac OS X was to change one line of
code that measured run time, since the command line
shells of each system handle time measurement slightly
differently. This was a relatively easy fix, but in making
it the resolution of the time measurement was reduced
to a whole second, rather than microseconds, due to
compatibility issues of the Unix date command on Mac
OS X. This highlights difficulties in supporting multiple
tuning ”sensors” across different architectures, which
we will adress again in the “Directions for Future Work
section”.

4 Related Work

Though a universal auto-tuning framework has yet to be
developed, there has been other work towards this end.
The closest effort to ours is the OpenTuner project, ini-
tiated by Ansel et Al. This project has a similar goal of
creating an extensible, customizable auto-tuning frame-
work [1]. The major difference between our strategy and
theirs comes in ease-of-use. In general, their implemen-
tation offers added functionality at the cost of more ef-
fort on the part of the user to get their source code ready
for auto-tuning. STuneLite attempts to be a much more
lightweight framework that requires almost no modifi-
cation of the source code and only a simple configura-
tion file. We hope that this will make it easier to allow
users to perform quick coarse-grained tuning on their
applications. But beyond this, it is interesting to note
that our system and theirs are incredibly similar in their
high-level design, even though we were unaware of their
implementation during the design phase of STuneLite.
A particularly useful feature of their implemtation that
would be very useful in STuneLite is what the authors
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refer to as the ’configuration manipulator’, which allows
the set of parameters to be dynamic, so different parame-
ters can be included and excluded from the system in the
middle of the tuning process.

The other major work in this field, and one of the orig-
inal motivations for this project, is ActiveHarmony, the
framework designed by Hollingsworth et. al. at the Uni-
versity of Maryland [4]. This is a framework that, like
STuneLite, is designed for “automated performance tun-
ing” as Hollingsworth describes it, but with several key
distinctions.

STuneLite and ActiveHarmony occupy distinct phyla
within the Auto-tuning Kingdom. ActiveHarmony, in
contrast with STuneLite, is an online tuning frame-
work that continuously tunes an application as it runs.
STuneLite, on the other hand and as we’ve described, is
an offline tuning system that is meant to be run once to
identify the optimal configuration for the application in
its current environment that will be used for all subse-
quent runs of that application. Though several test runs
of the application are executed within STuneLite’s opti-
mization loop, STuneLite is designed to ultimately “un-
hook” from its target application which will then run in-
dependently of any performance monitoring or configu-
ration adjusting. ActiveHarmony on the other hand runs
non-stop alongside its target application, never “unhook-
ing” from it. The tradeoff here is flexibility vs. per-
formance: while ActiveHarmony, by running constantly
alongside its target application, is able to adapt the appli-
cation to changes in its environment, it incurs a perfor-
mance overhead in doing so. STuneLite, by contrast, as-
sumes a more stable computing environment for its target
application, avoiding any permanent performance over-
head by ultimately unhooking from it after a sufficiently
optimized configuration is found.

Lastly, it is important to compare our system with
much more domain-specific systems such as SPIRAL
[3]. Systems like SPIRAL are incredibly efficient at
creating highly-performance optimized software in very
specific realms (in SPIRAL’s case DSP transforms). We
believe that SPIRAL is in some sense a much more in-
telligent version of the sort of tuning system included
with the GNU MP library, because it mostly relies on a
massive amount of prior knowledge about its specific do-
main. We hope that STuneLite or systems like it will al-
low users to approach the tuning capabilities of a system
like SPIRAL without having to actually develop such a
system from scratch.

5 Directions for Future Work

Initial results for STuneLite are promising, though here
we identify several additional steps to be taken towards
the ultimate goal of an entirely generalizable framework.

Since the focus of our work was to produce a proof-of-
concept for a lightweight auto-tuning system, we did not
focus on some of the usability issues. We hope that in
future iterations, some of these issues will be solved.

The first area for improvement is the way in which
STuneLite currently requires the user to modify their
source code to replace parameters it wishes to tune with
environment variables. Dynamic analyses could be per-
formed on the source application to identify these pa-
rameters and replace them automatically. Though imple-
menting such a solution was not within the scope of this
initial project, it would prevent the user from having to
modify the tuning applications source code, auto-tune,
and then change the source code back, greatly streamlin-
ing the auto-tuning process.

Secondly, support for additional sensors needs to be
added. Though runtime and memory allocation are
surely two of the most import metrics users would want
to tune for, there are certainly many others, like file size,
cache hit rate, processor utilization, etc. While the user
has the ability to create such sensors in the current imple-
mentation, it would be useful to have the more common
ones built in. Moreover, methods for collecting a given
sensor value may vary from system to system (as was
the case with UNIX’s date command across LINUX and
Mac OS machines). Instead of collecting sensor values
via command line shell utilities, for example, these val-
ues could be measured using other more universal third
party libraries that we would then require the user to in-
stall prior to STuneLite to avoid these cross-system dis-
crepancies.

There are limitless possibilities for the addition of
new search strategies and the customization of supported
ones. A simplex method could reduce the number of test
points necessary to search many dimension spaces, while
still producing gradient descent-like behavior. Probabal-
istic methods have produced promising results in the past
[5], and are likely worth exploring. Modifying sequen-
tialSearch may also yield interesting results. One could,
for instance, perform many cycles of tuning parameters
one by one, perhaps until a stable state is reached. Also,
one could run sequentialSearch on more than one order-
ing of the parameters, and take the best result.

Our current implementation of hillClimber could also
be expanded. Within a cycle (i.e. while testing 2× num-
Variable points around a central one), our program is
limited to testing points parallel to the dimensions of the
search space. In other words, it can only change the value
of one parameter at a time. When it reached the valley of
good values in the Rosenbrock function, it was not able
to parallel to it to find the global minimum farther along
the valley. This may have been because the valley was
not parallel to either of the two parameters. Future work
may benefit from allowing hillClimber to test points that
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change more than one parameter at once. This could be
done to some extent while adding one more test point
per cycle. One could use the first 2*numVariables test
points to estimate partial derivatives, and then test one
more point according to the relative values of those esti-
mates. Adding more test points per cycle allows for more
accurate prediction of the direction of greatest decrease,
but has the downside of requiring more runs of the appli-
cation. Other improvements to hillClimber might include
random restarts and varying the step size or how quickly
step size decreases.

6 Conclusion

STuneLite was designed to be a proof-of-concept to
show that a small, lightweight system could be created
to provide a general auto-tuning framework. The system
we created was able to, with limited modification of the
source code and the inclusion of a minimal configuration
file, tune any piece of software. More importantly, we
wanted it to be easy to add new sensors and search strate-
gies to our system. Therefore, we created standardized
interfaces to allow users to customize their own ways
of measuring application performance and traversing the
search space.

Our eventual goal for STuneLite is to make it a library
that can ship with applications that have tunable parame-
ters. Perhaps end users who have downloaded some soft-
ware can have the option of either having a ’fast’ install
that just uses pre-defined parameters, or a ’tuned’ install
that runs STuneLite on the application for a small num-
ber of iterations. This would help to make the practice
of auto-tuning programs a lot more widespread, and help
decrease the gap between peak and realized performance.
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Mobile devices follow users everywhere, and so do third-party advertisers.
Whether users know it or not, by downloading mobile applications they become
advertising targets. Popular applications take sensitive information about users
from their devices, including their device ID and location, and send that infor-
mation to advertising and analytics servers. More often than not users are not
informed of this, or if they are, then it is hidden away in vague and jargon-heavy
Terms and Agreements. Our work gives users the ability to control the flow of data
from their devices. Current systems have already made great strides, including
TaintDroid, which labels instances of data misuse, and AppFence, which blocks
access to sensitive, “tainted” data. We build off the AppFence model and improve
some of its basic functionality to send out false information whenever possible.

1 INTRODUCTION

Consider an advertising agency seeking to identify a user’s interests for targeted
advertisements from data collected by the apps on the user’s phone. Such an orga-
nization, upon obtaining the data from advertising and analytics (A&A) servers,
stores user information and various pieces of metadata. Though this use is legit-
imate, it is very easy to identify a unique digital fingerprint from location data
or social network data [3, 6]. Of course, the smartphone user can simply put the
phone in a drawer and never turn it on, and it will consequently send no data.

However, we live in a world where this is rarely a viable option. And yet by
using phones and other mobile devices, and by downloading apps, users risk their
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privacy and security to exploitative applications and malware. An application
might communicate with an A&A server in order to collect private data from a
device and then build a profile of where the user goes, identified by their phone
number and device ID (IMEI), and so on. But by faking sensitive data at the source,
the servers will have obtained the wrong coordinates, phone number, and IMEI;
the real information is out of reach. By consistently providing false information to
A&A servers, we lessen the privacy risks of smartphone use.

We looked into TaintDroid and AppFence, two models that examine privacy,
which we will detail more in Section 2. TaintDroid labels all sensitive data with
a ‘taint’ to detect when the data is being sent away, whether maliciously or not.
AppFence builds upon this platform by adding two techniques in particular–
exfiltration blocking (preventing tainted data from being sent away to A&A servers)
and faked data. AppFence will also blacklist servers that are known to be A&A
servers.

Our policy modifies AppFence with a “guilty until proven innocent” model,
so that apps receive false information by default. This is an improvement on
AppFence, because applications may employ workarounds to evade taint de-
tection. It is also beneficial because our system does not incur the slowdown
created by TaintDroid and AppFence. Furthermore, if an application does need
permissions for legitimate reasons (e.g. a maps app requesting location), then the
application can be “whitelisted.” This whitelisting model allows users to maintain
functionality of the mobile device and still take control of personal privacy, by
making such fine-grained decisions for themselves.

2 BACKGROUND

As Android grows in popularity, it has seen a blossoming of malware development
and adaptation to new protections [13]. Malware frequently disguises itself as
legitimate software so that users will install it, or employs other dubious methods.
It puts a lot of effort into avoiding detection; in the best case, detectors only
notice about 80% of malware [13]. Once on the phone, malware may subscribe
to premium-rate services by sending SMS messages in the background and then
blocking incoming SMS messages requesting confirmation [13]. Many aggressively
seek users’ data. But many non-malware apps, even top-of-the-market apps, also
seek user data through sometimes questionably-legal channels, and that is what
our research focuses on [4].

Grayware is substantially different from malware. First, these apps are less
outright malicious–they do not financially drain their victim or disable the device.
Second, they usually preserve some plausible deniability: if they collect user data
and send it to remote A&A servers, they are simply following through on the
end-user license agreement that the average user never reads. In many cases,
information harvesting is how apps stay free. It is a common assumption and
possibly implicit agreement that users are willing to give away some data so long
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Figure 2.1: TaintDroid architecture within Android [4].

as they have access to the latest developed games. However, not every user wants
to participate, and this is what we will focus on in our improvements to AppFence.

2.1 TAINTDROID

Dynamic information flow tracking is a general term for tracking whether and how
sensitive information is leaked during program execution [12]. The TaintDroid
system is one example of information flow tracking specific to Android. TaintDroid
detects when sensitive mobile data (e.g. phone number or location) is sent off the
phone during application execution by applying a “taint” to sensitive data and
tracking the taint [4]. At a high level, TaintDroid modifies Dalvik, the Android VM,
to tag data as tainted when it is retrieved from a sensitive source. For example,
accessing camera data returns camera data with a bit of extra metadata indicating
the presence of a taint that the app does not know about.

TaintDroid tracks this tag from the source to a suspicious sink–usually when it
is sent over the network–as seen in Figure 2.1. In its regular operation, TaintDroid
then notifies the user that their information has been leaked, and logs the leak
as well. All of this dynamic analysis occurs during runtime, and incurs a 14%
slowdown. This slowdown factor is of course a hindrance, but the user only
experiences slowdown on the order of milliseconds [4].

Several types of information are particularly desirable, especially phone infor-
mation, the phone’s unique identifying IMEI, and location data [4]. But TaintDroid
merely identifies and logs breaches of privacy without attempting to combat them,
and indeed is not adequate for protecting a phone against attacks [10].

2.2 MOCKDROID

The application MockDroid works to protect the user’s information, using no
taint-tracking at all [1]. MockDroid also modifies the Dalvik VM, and does so
to wall off the phone’s resources. Instead of real access to some phone resource
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Figure 2.2: AppFence system architecture [7].

like the camera, an app will be told it is empty or unavailable. A smartphone
user can allow an app to access the real resource, such as location data, internet
connectivity, IMEI, and phone information like contacts. Many apps, though they
may robustly handle loss of a resource, perform at reduced functionality when the
information they receive is mocked [1]. As MockDroid was developed for Android
2.2.1, it is likely that more modern apps running on modern Android would suffer
even more from loss of internet connectivity, for instance.

2.3 APPFENCE

AppFence concentrates more on app functionality. Implemented on top of Taint-
Droid, AppFence watches tainted data and prevents apps from accessing real
resources if the use might be suspicious. AppFence works in two ways: exfiltration
blocking and shadow data. When exfiltration blocking is enabled, if an app is
trying to send away sensitive data over the network, AppFence will prevent the
app from sending data, either by telling the app that the data was sent but ac-
tually dropping the packets, or by sending back a realistic error indicating that
the network is inaccessible, similar to what the app would receive if the device
were in airplane mode. When shadow data is enabled, AppFence will return en-
tirely fake data to the app. For simple data, such as location or phone number,
AppFence returns a hard-coded fake value. For example, when an app requests the
device’s location when shadow data is enabled, AppFence returns the coordinates
of Google’s Mountain View headquarters [7]. For more complex data types, such
as contacts or calendar, AppFence returns an empty database cursor. Figure 2.2
shows how exfiltration blocking and shadow data are implemented inside Dalvik.

Testing AppFence depended on judgments of reduced functionality: in testing
several apps, the authors examined the GUIs to determine if ads were present
and if any normal functionality had changed. They also performed a few tasks
with the apps to test for reduced functionality. The results were fairly good; most
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apps performed up to par, but disabling network access still induced loss of
functionality. [7]

Along with the slowdown, AppFence faces some problems because it is almost
entirely inaccessible. Foremost, it is written for the now extremely outdated
Android 2.1; second, installation requires rooting the phone. The latter prob-
lem exacerbates the former: since AppFence doesn’t lie on top of the OS but
directly modifies it, it becomes difficult or impossible to port and make forward-
compatible. Even if AppFence were available for in-use Android versions, the root-
ing requirements are prohibitive for those who want to preserve their warranties.
Using taint-tracing means that rooting is necessary, but updating AppFence and
making it actually available is possible.

3 OUR IDEA

We present our project as evidence in our proposal that AppFence can and should
be improved, first and foremost to work with current Android devices. The sub-
stance of our intended AppFence improvements would change its structure. The
modifications fall into three areas: minimizing reliance on blocking network traffic
(exfiltration blocking), improving fake data flow, and implementing a whitelisting
policy to allow only approved apps to access real data.

3.1 MINIMIZING EXFILTRATION BLOCKING

With taint-tracking, AppFence currently identifies a suspicious use of tainted
data and takes action. It may simulate lack of network access in order to block
data transmission (exfiltration blocking) or replace real data with fake. The end
modification would make this policy simpler and stricter. Taint-tracking has
several weaknesses: an app may appear to legitimately acquire data, and then
send it to an A&A server later on, or an app may work around taint tracking
by assigning variables through control flow. This is alongside the danger from
malware that can easily beat it [10], and the slowdown it incurs.

The decreased use of exfiltration blocking will allow some apps to have increased
functionality when compared to the previous version of AppFence, as increased
network access by apps, even with false data, will prevent apps from hanging or
crashing due to poor handling of network failure.

3.2 IMPROVED FAKE DATA

Eliminating exfiltration blocking puts the burden on fake data to prevent apps
from acquiring sensitive data. While AppFence makes use of fake data, it uses a
very simple implementation of hard-coded data; the authors admit that this is
the bare minimum of plausible data. There are two main issues with this imple-
mentation. First, oversimplified fake data may not offer a realistic and invisible
user experience. For example, if a user doesn’t want to share their contacts list,
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AppFence returns an empty database. Without having at least the illusion of con-
tacts, the user may not be able to experience the full functionality of the app (or
some preview of it). Second, such simple shadow data makes it easier for apps to
attempt to determine if a user is running AppFence (or something similar) and
then react by denying access to the user or otherwise undermining AppFence,
similar to how many websites respond to adblockers [8].

We seek to improve the quality and plausibility of shadow data to counteract
both of these issues. More intelligent shadow data will offer the user a better
approximation of apps’ full functionality, both for testing out an app before giving
it real data and for using an app anonymously. For example, improved shadow
location data can make use of the user’s actual location to provide a random, false
location within a reasonable radius of the true location. This would give full or
near-full functionality to some apps that only really need an approximation of
user data but request a fine-grained data. Additionally, if a user is comfortable
sharing their approximate location with an app but not other information, this
kind of improved shadow data offers the user protection when using apps that
require more permissions for installation.

3.3 WHITELISTING POLICY

Ideally, AppFence would work on a whitelist paradigm. By default, apps would
receive full network access, but would only receive shadow data. In a guilty until
proven innocent model, the user could decide whether an app should be allowed
access to real data, like location or phone information. This forms a secondary
permissions system that is modifiable at runtime and will not disable a running
app. With these modifications, taint-tracking becomes far less necessary. This
paranoid system reasons that all information sinks are at least a little bit suspicious,
so why distinguish any of them? Better to not need to track, speed up operation,
and protect all data at the source by only releasing it with explicit permission.

Naturally, these modifications can’t fully address the issue of privacy versus
functionality. Inevitably, some apps will fail to work as expected in small or large
ways due to a lack of data. At this point, it remains the user’s responsibility to
determine whether remaining anonymous or attaining full functionality of an app
is more important when the two inevitably come into conflict.

4 EVALUATION

At the end of our project, due to several technical roadblocks, we determined that
it would be best to simulate the results of updating and improving AppFence as
we described.

First we can address the speed of operation. Though TaintDroid’s reports do pro-
vide useful information, we decided to remove the taint-tracking from AppFence,
leaving only the fake data. As we mentioned taint-tracking incurs a slowdown of
14% [4]. Though it may not seem like a hindrance, the slowdown negatively impact
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performance in intense computing situations–especially on a low-powered device
like a smartphone. Removing taint-tracking would simply remove that slowdown:
if the system isn’t doing the work, it will not slow down.

Removing exfiltration blocking also, as mentioned above, would improve apps’
regular function. AppFence caused several apps to break, when it used exfiltration
blocking [7]. Without the exfiltration blocking, AppFence would run more invisibly.
If a tool like AppFence is less obtrusive to the user, then the user is less likely to
unwisely turn it off. An important element of privacy is the user behavior, and
AppFence should promote good, private user behaviors.

The whitelisting model makes user behavior a priority. The defaults, in such
a model, are set to “very private,” and the user is informed that changing the
defaults will make their device and information less private. Thus they must make
an active choice to reduce the privacy protections on their device.

The fake data sent away would also be improved, although the necessity of
this particular improvement would have to be illustrated with further research.
Location, for instance, is a pseudo-randomly generated set of GPS coordinates,
not a static location or offset from the user’s real location. Since it is unclear what
the more malicious apps and A&A servers might do with the user’s data, we aim to
generate data for the worst case.

Our work modifying AppFence and Android source indicates that porting AppFence
features to Android 4.1 or later would mean many subtle changes, and would still
require rooting the phone and flashing AppFence onto it. Further work in updat-
ing AppFence would take this into account and try to make it easier for the user to
acquire.

While that further work is still very much necessary, in our project we made
good exploratory progress into AppFence, CyanogenMod, and the Android source.
In continuing this project, we would expand the exploratory work into extensive
development and implementation.

5 CONCLUSION

The work of AppFence and our improvements are an important to the lives and
privacy of all mobile phone users. Though the thought of advertisers having
information about our whereabouts is not immediately distressing for all, it is
clear that the potential ramifications of such available data on every phone-toting
American is problematic. Though advertisers themselves are not necessarily direct
threats, our data is being poured into servers where it can be revisited at will. This
means that our data is not only accessible by data-churning computers, but by
other people as well, and this is where the potential deception can occur. Consider
the recent revelation of the governments procedural wire-tapping and spying.
On a corporate level, advertisers know an enormous amount about us, where
we go, where we work, who we call, etc. This can be equated to what the NSA
captured about the lives of “potential terrorists”; however, some members were
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not as interested in national security, but rather used their government clearance
to track the location and internet history of love interests [5]. When using mobile
devices we are equally susceptible to the malicious consequences of the people
behind the servers. And while the threat does not seem immediately pressing, it is
very real. AppFence and the improvements we have made would allow us to take
privacy into our own hands.
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Abstract

This paper presents automated testing frameworks for various popular
applications on Firefox and Chrome. Music streaming app, Spotify, and
Google’s email application, Gmail will be examined. For each application,
we write an automated series of actions using Selenium that navigate
through the app’s different features. Statistics such as speed and network
calls are collected during these test runs. Though Chrome does seem to
perform slightly faster than Firefox, it is difficult to make a confident
statement about the performance differences between browsers.

1 Introduction

In recent years, web applications have become an increasingly popular platform
for new products. Services such as music, data management, and image editing
have popular implementations on the web that have both made it convenient
and easy to perform fairly complex tasks. Thus, it is necessary to examine
closely how we can effectively test web applications and analyze our results.

From a developer’s perspective, testing and analyzing the different compo-
nents of a web application can be time-consuming and tedious. Though there
do exist built-in browser tools that help developers analyze the functionality of
their application, they still require the developer to manually perform actions
and navigate through the app to get results. To avoid these cumbersome tasks,
we present an automated testing framework that automatically performs a pre-
defined series of actions on a particular web application and collects statistics af-
ter the test run. This process is both essential to effective software development
and can potentially provide some novel insight into the underlying workings of
a given application.

In addition, the market of web browsers has increasingly become more diver-
sified. Google Chrome, Mozilla Firefox, Safari, and Internet Explorer represent
the four most popular and well-known browsers. However, even out of these
four, it is still unclear as to which browser captures most users. The perfor-
mance differences between these browsers has consistenly been a heated topic of
discussion. Visualizations such as in [3] seem to merit lots of attention, as users
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are constantly in search of finding the most efficient browser for their needs.
A cross-browser testing framework such as ours could prove useful in future
discussions of browser comparisons.

2 Background

Many frameworks exist that test browser functionality, automate tasks, or test
a particular web app. We looked at different frameworks like Selenium, built by
its creators for the purpose of running tests on specific applications [4]. Another
framework, Koala, was designed specifically to automate business processes that
needed to be done in web apps every day [2]. Firebug/Netexport allows users
to export all of the logging that Firefox development tools normally do to be
analyzed later [1].

Yet for all the diversity of frameworks we found, one noticeable omission was
a tool for specifically comparing the performance of a web application across
different browsers. As we read more about the increasingly fragmented browser
landscape, in which no browser can claim a majority of users, we realized that
such a tool would be of great use. We then set out to build a framework to test
this idea, by piecing together many of the existing tools.

3 Concept

The original inspiration for our project came from exploring with different de-
veloper tools available in the Chrome and Firefox browsers and identifying dif-
ferences in how an application behaved depending on the particular browser.
Using these tools, we were able to glean fairly interesting insights about how
modern web applications work. For example, we could see a timeline of events
that the application went through to load the page, view network calls, and
assess the different Javascript calls. However, playing around with these tools
required a fair amount of manual work (i.e. clicking through buttons, recording
the whole process), and a natural extension would be to automate the tasks of
navigating through the web application. After that automated test is written, it
would also be desirable to have the test export some statistics (e.g. the timeline,
network calls) so that we could examine how the application performed after
the fact.

Ultimately, we are hoping to identify interesting implementation details
about these applications that were not immediately obvious upon first usage.
Finally, we would like to compare the performance differences of these tests on
the different browser platforms.

4 Methods

We decided to analyze two different applications using this process: Spotify, the
popular music-streaming application, and Gmail, Google’s email management
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system. Spotify is a Sweden-based company that provides a service for people
to stream music on-demand. It currently has more than 24 million active users,
and we will be examining the increasingly popular web version of Spotify. Gmail
is the most popular web-based email service, claiming over 425 million users.
Because of the massive popularity of these applications, we felt that some testing
and analysis of these apps would be informative and beneficial to an especially
large number of users. Additionally, we use these applications on a daily basis
and had a personal interest to learn more about their intricacies.

Custom tests were written for each application using the Selenium Webdriver
for python (integrated with the unittest module framework). These tests were
then run on both Firefox and Chrome. Statistics for Firefox were collected using
the Firebug extension. Statistics for Chrome were collected by tweaking options
in the Chrome webdriver.

In this section, we will discuss the details of how these tests were written. All
experiments start out by logging into the application with a uniform password
and login. Additionally, most of our testing frameworks incorporate the usage
of explicit waits. This ensures that most asynchronous data elements have
fully loaded and also serves as a way to naively mimic the non-instantaneous
movements of a real-life user.

4.1 Gmail

Gmail has over 425 million active users worldwide, and has become the standard
for personal webmail. Testing it and understanding how it works is therefore
to the benefit of many. Two Gmail tests were performed after login: One
calculating how long it took to open a compose message window (open msg),
and another on how long it takes to compose a message and then send it (com-
pose msg). These two tests are particularly interesting because they test Gmail’s
AJAX capabilities, media rendering (displaying the compose window and alerts)
and network calls to send a message using HTTP.

4.1.1 open msg

open msg waits for the inbox to load, retrieves messages, loads links, and waits
for the Gchat window to populate. Once all these elements are loaded, the
test opens a compose window, which pops up in the lower right corner as a
new iframe and is called via Javascript. Several of these functions are handled
using AJAX calls, and continue to run even after the test is complete. Some
examples include timers that fire every once in a while and seem to be scanning
for something.

4.1.2 compose msg

compose msg acts once the compose window is loaded. It navigates through
the compose window, initially having to focus on the “send to” field. After
typing in the recipient email, it must focus on the subject field, skipping out
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of focus for other recipients, before focusing on the message field and then the
send button. After activating send, the application waits for a fixed amount of
time for the message to send. It is important to note that messages may not
send in a fixed amount of time, but examining the network calls later on might
give us a sense of this. This test is implemented using ActionChains, which
queue up key presses, and has Selenium perform them in one continuous call
upon calling perform(). This is analagous to storing all our actions in a buffer
and executing the entire buffer. The user can also observe that the message is
sent asynchronously in a thread, and that the user can keep navigating the app
while the message is being sent.

4.2 Spotify

Spotify is one of the premier music streaming services that offers a wide library
of songs and helps users organize and share their music on the cloud. After care-
fully inspecting the source code, we can see that Spotify is generally organized
by different iframes, where each iframe is generally responsible for a different
feature (e.g. Spotify radio, Spotify search). In addition, most data is handled in
an asynchronous fashion, where images, messages, and other data populate the
data non-deterministically. While this allows for smoother and more natural
user interactivity, this model may prove to be a hurdle as we implement our
tests, as it is very difficult to detect when a page or a particular element has
“fully loaded”.

Within the SpotifyTest class, we decided to write three smaller unittests
that tested three different iframes: test discover, test follow, and test radio.

4.2.1 test discover

test discover simply waits for the home page to load, which currently happens
to be the Discover application. This is a relatively new feature that suggests
different artists or songs that the user should listen to based on previous listening
history. This test simply waits for a given period of time for the data to load.
It also provides the application some time to load the different navigation icons
that will allow us to move to the different iframes.

4.2.2 test follow

test follow clicks on the Follow navigation button and loads the corresponding
Follow feature. This feature is the primary social component of the Spotify ap-
plication and allows users to track their friends, artists, or organizations/labels
on the service. Therefore, we felt that at least ensuring the social driver of the
service loaded properly was an important component to our test. While this
feature specifically tests the follow feature, one can very easily tweak the source
to test any other feature in the service.
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4.2.3 test radio

test radio loads the Radio feature and plays a song from the default radio sta-
tion. The Radio feature allows users to craft a “radio station” based on a par-
ticular seed (artist, track, album, or genre) that then continues to play music
similar to the seed.

This test was the most difficult to implement because of the way that Spotify
encodes its different iframes. Each iframe id was generated uniquely at runtime,
so it was impossible to switch to an iframe based solely on id. This made it
difficult to actually find the play button we needed to click. Thus, we ended up
searching for this radio play button by iterating through all available iframes.
Despite this brute force approach, we were successfully able to play a song from
Spotify Radio for a few seconds.

4.3 Data Collection Tools

We used the Firebug and NetExport extensions to collect data in Firefox. The
NetExport extension is an extension of Firebug that allows network data to
be exported automatically. This allowed us to run tests written in Selenium
while measuring first response, overall network times, and latency between items
downloaded. In our evaluation, we discuss overall network times, which was
derived by summing the blocking, waiting, connecting, and receiving sub-times
given by NetExport.

In Chrome, we spoofed the header so that the browser presented itself
identically as in the Firefox condition, and we toggled the DesiredCapabili-
ties flag in the Chrome WebDriver to turn on performance logging. This flag
was unfortunately unavailable in the Firefox version. The performance logs
contained more diverse data than the NetExport logs. It included rendering
times, Javascript execution times, and also network times. For the purposes
of comparison, we filtered through this data to extract the network call times.
These network call times were derived by subtracting the time that specific
browser objects raised a Network.loadingFinished event with when they raised
their Network.requestWillBeSent event. This bracket should contain all the sub-
times given by NetExport, such as time spent blocking, waiting, connecting, and
receiving data. Intermediate events (Network.dataReceived) were dropped be-
cause they lacked a comparison in Firefox.

5 Evaluation

We will be evaluating our testing frameworks using two fairly coarse-grained
metrics: Selenium unittest runtimes and network times. Table 1 and Table 2
break down the Selenium runtimes for Gmail and Spotify, respectively, which
is the amount of time the test took to finish. As with all our tables, average
times will be reported in bold face. The network times metric will be further
analyzed using two finer-grained interpretations of what network times actually
mean.
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The first network time evaluation will directly compare overall network times
across browsers with the results from the Selenium unittest times. Overall
network times are derived by summing up the time it takes to request and
receive each individual element in the browser. This effectively “unrolls” the
asynchronicity of the browser list, and we hoped to examine how effectively
browsers compress data into asynchronous calls. The Selenium unittest runtime
is provided as a way to normalize these network times, since their respective
scripts sometimes required subtly different timing mechanisms.

The second metric is the comparison of specific network call times across
browsers. By looking at how long it took for Chrome vs. Firefox to download
individual items, we could determine how much variance there was with down-
loading each individual item, and determine the relationship between download
time variance and file size. This provides us with information on 1) whether
Chrome or Firefox is more consistent with providing steady download times
and whether either is inherently faster, and 2) whether the unpredictability in
download speeds occurs more with heavy, high-filesize media objects or small
asynchronous calls. In other words, are the fluctuations in download speeds
mainly caused by browser or network latency, and how are they handled differ-
ently by browser?

Because the network analysis did not give incredibly promising results, we
decided to only discuss the network analysis in the context of the Gmail testing
framework.

5.1 Selenium Unittest Runtimes

Table 1 and Table 2 display the unittest runtimes for the Gmail and Spotify
unittests, respectively. Three trials were taken for each individual test and then
averaged. At first glance, it seems that Chrome passes through the unittests
more efficiently than Firefox does.

While these times do suggest a small speedup in the unittest runtimes for
Chrome, it is slightly more difficult to make the logical leap from automated
testing runtimes to real-time user runtimes. The actual actions of a user are
fairly unpredictable, while the actions in our testing framework are completely
deterministic. Though we do include some basic sleep functions to mimic the
non-instantaneous actions of a user, one should still interpret the numbers and
evaluation with caution.

5.2 Network Experiment 1: How tightly are asynchronous
calls packed across Chrome and Firefox?

This experiment was set up to test whether asynchronous calls were performed
more efficiently in Chrome vs. Firefox for Gmail. Looking at raw Selenium
data is unreliable because the two browsers required different amounts of built-
in timing/explicit waits. The asterisk in the title of Table 3 reflects the fact that
the presented Selenium data has been offset by the different timing constants.
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The Chrome test time was subtracted by 5 seconds and the Firefox version was
subtracted by 20 seconds, reflecting the sum of timing events built into the tests.

If we look at the ratio between network times/unittest times provided in
Table 3, we can get a rough idea of how efficiently a particular browser packs
network calls into a given time unit. From this metric, it seems that Chrome
is more efficient in its network calls, since it has a higher ratio. However, our
results are likely a quirk of Firebug and the extra overhead it produces. A low-
level performance logging flag as that built into Chrome invariably incurs less
overhead than dynamically loaded extensions such as Firebug and NetExport.
Because of these timing differences, it is hard to analyze the data directly.
In order to determine the exact nature of this variation in measurement, we
performed a second experiment.

5.3 Network Experiment 2: How reliable and valid is browser
network call data?

This experiment was performed to understand the possible confounds in ex-
periment 1. In order to test the performance differences across browser, we
had to make sure that the performance metrics were equal. This was done by
comparing elements that were downloaded by both Firefox and Chrome dur-
ing their experiments, as logged by Firebug/NetExport in the case of Firefox,
and the WebDriver performance logs in the case of Chrome. The trials varied
in the number of elements that were downloaded, and the number of elements
that were downloaded in common between the two browsers. However, Table
4 shows that Chrome tended to have more downloads than Firefox during the
test period. Since the Firefox test ran nearly 60% longer, it is unlikely that this
is due to background asynchronous calls occuring after the browser has idled.

Only certain elements were common across trials. This is likely due to
changes in session data embedded into the URL of GET requests. In gen-
eral, elements with the word “static” somewhere in the URL were consistent.
Even though the second URL contained a lot of “gibberish” data, it was still
consistent across trials.

Our comparative data also did not provide conclusive results. As Table 5
shows, the mean download time for what was presumably Javascript associated
with Google Talk was much higher in Chrome than in Firefox. This seems to be
in direct contrast with our conclusion in the first network analysis experiment,
where Chrome appeared to be more efficient. Unfortunately, this may suggest
that the data collected by summing up Firebug data was not directly comparable
to data gleaned from the Chrome performance logs.

6 Challenges/Future Work

Perhaps the most obvious continuation of our project would be to extend our
testing and analysis frameworks to more web applications. Spotify and Gmail
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Table 1: Gmail Unittest Runtime Results

Firefox Chrome
open msg compose msg open msg compose msg

11.902 23.199 9.237 18.330
11.720 20.759 10.451 19.513
10.532 20.820 10.125 19.264
11.385 21.593 9.938 19.036

Table 2: Spotify Unittest Runtime Results

Firefox Chrome
test discover test follow test radio test discover test follow test radio

12.194 6.944 15.341 11.040 5.330 13.682
12.400 7.018 14.339 11.000 5.513 13.155
12.285 5.820 14.639 10.987 5.264 12.507
12.293 6.594 14.773 11.009 5.369 13.115

Table 3: Selenium Runtimes vs. Total Network Call Times on Gmail*

Firefox Chrome
Selenium Network Calls Ratio Selenium Network Calls Ratio

14.224 20.896 1.469 16.112 29.482 1.83
11.354 15.950 1.405 18.609 30.698 1.65
13.751 29.101 2.116 17.698 38.245 2.161
13.11 21.982 1.663 17.473 33.110 1.88

Table 4: Number of Network Calls on Gmail Tests

Chrome Firefox Both
154 124 54
155 112 46
171 137 58
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Table 5: Number of milliseconds logged for downloading Google Talk JavaScript’

Chrome Firefox
563 144
59 42
127 20
245 69

were selected as our case study applications particularly because of their popu-
larity. However, it might also be interesting to examine other less popular ap-
plications, especially ones that make more intense CPU calls (e.g. image/video
editing apps, games). These more CPU-intensive apps might log more signifi-
cant changes across browser than what we had observed for Spotify and Gmail.

Unfortunately, much of these kinds of applications would be difficult to im-
plement using Selenium. The Selenium Webdriver primarily drives action by
finding particular HTML elements and interacting with them (e.g. sending a
mouse click event, sending text). Thus, it was particularly difficult to meaning-
fully interact with an application whose actions were mostly driven by Javascript
or Flash. Perhaps using a different testing framework more suited to these kinds
of applications would yield us more in-depth tests. For example, CrawlJax was
suggested as another possibile framework to use for AJAX-based applications.

Lastly, it might have been interesting to examine additional performance
comparison metrics, such as the time it took for Javascript to render. Differ-
ent browsers have different Javascript rendering engines, and considering how
much scripting is used in the web applications we examined, there might have
been some more noticeable performance differences with regard to this metric.
Other interesting extensions could include how well the different browser caches
improve performance, or timing how fast the different CSS elements take to
render.

The challenges that we faced throughout this project also raise an interesting
discussion point about the lack of standardization of web development testing
tools. The main difficulty in comparing performance metrics across browsers was
that Firefox and Chrome each had their own logging/debugging tools and would
report data that initially seemed very different. Oftentimes, we would even
encounter some interesting data in the Chrome logging that just did not exist in
the Firefox logging. This suggests there is a gap in the currently available testing
tools, and the presence of a more standardized data collection tool for web
applications across browsers could greatly aid in the process of understanding
cross-browser functionality. This concept is well suited enough to be its own
research project that could have a positive impact on the web testing community.
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7 Conclusion

We present a framework for testing and analyzing modern web applications.
These tests could allow developers to ensure the functionality of their applica-
tions as well as understand more of what is happening under-the-hood. Overall,
the applications performed pretty similarly across browser, though we did notice
a brief speedup in the runtime of an application’s unittest when it was running
under Chrome. However, this speedup wasn’t incredibly significant, and it was
difficult to reconcile whether this speedup was truly due to specific aspects of
the Chrome browser. On the network level, the lack of standardization of web
development tools also made it difficult to come to conclusive results. Over-
all, understanding these kinds of testing and analyzing procedures is and will
continue to become an essential piece to correct and make consistent software
projects.
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1 Abstract

Trace data can be used for finding errors in processes,
locating inefficiencies in software, and understanding
the background interactions of executed code. How-
ever, the large and complex output returned from
a trace can be difficult to analyze and understand.
We propose Cstrace, a prototype of a trace visualiza-
tion tool that visualizes output from strace, a system
call tracing utility for Linux. Our technique focuses
on reorganizing output by system calls, highlighting
possible sources of errors, and suggesting relations be-
tween system call instances by using different display
options that users can navigate through. Evaluation
by user study supports our future goal of creating a
visual learning tool for strace.

2 Introduction

Trace records information about program execu-
tion. Since a trace can include complex interaction
with other software and the operating system, de-
velopers use different tools to understand and an-
alyze the program’s behavior. A software visual-
ization is one of these tools. Software visualiza-
tion is defined by Koschke [3] “as the mapping from
software artifacts—including programs—to graphical
representations”. Some of the graphical representa-
tions include illustrations, diagrams, or graphs. Vi-
sualization for the purpose of conveying information
gained from a trace has grown as a popular strategy
for helping software engineers to grasp the behavior of
large-scale programs and to gain insight into the pos-
sible problems of complex software. By using trace
visualization, it is easier to communicate information

about program behavior, like concurrent timing of
methods in different threads, the distribution of pro-
cessor time during exectution, or the memory use.

Among different kinds of utilities related to system
trace, strace is a lightweight tool that traces system
calls and signals. Run on the Linux platform, it al-
lows the users to view a process and its interaction
with the operating system. Although it is both com-
monly used and easily accessed, mainly for debugging
purposes, its output requires that the users have a ba-
sic understanding of its syntax and commands to use
the tool. Even for experienced users of strace, navi-
gating the output to locate the source of error or the
patterns between different interactions can be time-
consuming. Put differently, this means that once the
output can be organized in a way that can represent
a pattern or path within the output, the users may
find it easier to use strace regardless of their experi-
ence level with strace. We concluded that visualiza-
tion would provide the means to do this. While there
has been research in the visualization of trace out-
puts, there isn’t yet a tool developed for navigating
strace output. Therefore, we developed Cstrace, a
prototype of an strace visualization tool. Our target
audience are people familiar with some of the con-
cepts in Computer Science but not necessarily with
computer systems or trace tools.

Since Cstrace is a preliminary effort towards an
application that can be distributed, we conduct a user
study to analyze the efficiency and to recognize the
potential of the program. The data collected from
the study will guide our future work in improving
our prototype to fit its purpose.
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Figure 1: A screenshot of the thread overview and
sequence view displays in the multithreaded software
system visualization tool proposed by Trumper et al
[4]. The two parts compare linear and logarithmic
scaling of the sequence view.

3 Related Work

Traces can be used to serve various purposes such
as performance analysis and optimization, debug-
ging, and troubleshooting, with the sheer volume of
data being its main limitation. In the process of map-
ping the original information gained from trace to
graphical representation, it is possible that a visual-
ization can become specialized for one of these pur-
poses more than the others. For example, a multi-
threaded software system visualization tool proposed
by Trumper et al [4] chooses this path (Figure 1).
It is a tool with two windows of three organiza-
tional schemes that is aimed at enabling user com-
prehension of multithreaded software and its per-
formance optimization. The first window, textual
thread overview, allows textual searching through the
trace for relevant threads. The other window con-
tains visual thread overview(s) and sequence view(s).
The visual thread overview is a general mapping of
the events, and the sequence view is a more detailed
display using call stack organization to highlight con-
currency between threads. The sequence view can be
adjusted on a linear-to-logarithmic scaling to allow
real-time views of subsections within the program as
well as an overview of the entire program organiza-

Figure 2: A screenshot of the Event Flow view (left),
the Event Statistics view (upper right), and the Se-
quence Context view (lower right) of Zinsight [2].

tion. As such, this tool guides users to explore and
navigate the interactions between multiple threads.
However, by focusing on the performance optimiza-
tion issue, it lacks the information needed for debug-
ging.

Zinsight [2], on the other hand, provides users ac-
cess to information needed for different uses of trace.
Its three windows of different visualization schemes
each display flow within the trace, event statistics,
and sequence context, respectively (Figure 2). Its
Sequence Context view in particular, contrasts with
call stack representation, a method commonly used to
represent calling hiearchies in previous existing Java
program visualization tools and other tools like the
above. Our tool was similarly developed to serve the
multiple uses of trace such as program comprehen-
sion, debugging, and performance optimization, al-
though the approach is more simplistic. Instead of
three seperate windows, we chose to use a single view
that can display different visualizations on user de-
mand, with certain information conservable between
display options such as our Error Highlight (Section
4.4).

VDP of lviz [5] is a tool proposed by Wu, Yap,
and Halim for visualizing traces using an extended
DotPlot visualization scheme. Applicable problems
include software failure diagnosis, performance opti-
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Figure 3: A screenshot of an extended DotPlot dis-
play created by VDP of lviz. Areas that indicated
diversion between the two plotted traces are high-
lighted with numbers and arrows [5].

mization, and event comprehension. The basic idea
is to set two traces along the x- and y-axis of a binary
DotPlot to highlight regions of interest with result-
ing color mixes, large groupings of events, or a lack of
symmetry (Figure 3). Unlike the previous examples
of related work, this tool’s graphical representation
doesn’t include any textual or numerical information
from the trace. While this concept allows for more
space efficiency in displaying the information on a
single window, it creates a need for users to learn the
possible implications of the components of the graph
(histograms, colors, matching) back towards the ac-
tual properties of events from the original trace. Be-
cause our tool is designed to be accessible to new
users of strace, we mostly chose to keep as much of
the original textual output as we could in the differ-
ent organization displays of our tool.

Previous support for visualizing strace includes vis-
trace [6] (Figure 4), which visualizes the output pro-
duced by strace -ttt cmd as a circular graph. We
don’t consider this a tool for navigating strace out-
put, as with Cstrace. Vistrace focuses on presenting

Figure 4: A graph output of vistrace on the command
cp test test2 [6].

an image, rather than providing interactive features
to analyze strace output.

4 Visualization

Based on our observations of how strace users gen-
erally organize or catagorize strace output informa-
tion, we created several functionalities. With a dis-
play window on the right, these functionalities are
listed as buttons or input boxes on the the left of our
graphical user interface. In section 5, we will present
an example to illustrate how these functionalities can
be applied.

4.1 Command to strace

To start, our tool asks for a command to run strace
on. (Figure 5-(A)) The normal strace output is stored
and then parsed for use by the functionalities we de-
fine in the following subsections.
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Figure 5: A screenshot of the opening screen for Cstrace.

4.2 Output File

Clicking the button labeled Output File (Figure 5-
(B)) lists in the display window the same output that
would result from the following terminal command:

strace -command-

On the left of each line is a boxed number that
counts individual system calls. These numbers,
unique to each system call instance, will remain
throughout the use of different functionalities.

While this display doesn’t change the organization
of the original information, we included this function-
ality for contextual referencing.

4.3 System Calls

Clicking on the System Calls button (Figure 5-(C))
lists in the display window, the strace output sorted
alphabetically by system call and then chronologi-
cally within each system call category. Each individ-
ual instance under a system call category will have its
inputs seperated by commas, followed by a dividing

tab space and its output. On the left of each in-
stance are the same boxed numbers from the Output
File display, though their ordering will likely be shuf-
fled by the alphabetical organization of the system
call instances.

With this display, we can see which system calls
are called repeatedly, maybe significantly more than
others. We can also view all instances of a particular
system call more efficiently and locally.

4.4 Error Highlight

Selecting the Errors button (Figure 5-(D)) high-
lights warning instances in orange. While the Er-
rors button is selected, highlighted warning(s) can be
viewed in either the Output File display or the Sys-
tem Calls display. In this way, errors can be viewed
in context or grouped under different system calls.
This functionality was designed to warn users of er-
ror sources when debugging.
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Figure 6: Screenshots of the Path Highlight function-
ality of Cstrace in use.

4.5 Search

Entering the name of a system call in the input box
(Figure 5-(E)) labeled ”System call or line #:” will
result in the Output File display, with instances of
the searched for name written in dark green instead of
the default black text. In this manner, instances of a
particular system call can not only be easily grouped
but also viewed in context.

Search by line number is the Path Highlight func-
tionality, mainly geared towards program comprehen-
sion (Figure 6). It highlights in yellow the boxed
number of a searched for line and finds other system
call instances that may be related to it. A system call
could be related if it shares input parameters or out-
put results. We chose to represent these two possible
relationships separately; green highlights lines asso-
ciated with the output result of the searched for line
(Figure 6, top), and blue highlights lines associated
with its input parameters (Figure 6, bottom).

In the first category, the tool searches for system

call instances where the output result of the searched
for line is being used as an input parameter. In Fig-
ure 6, the output of line 21 is a file handler “3,” and
the tool highlights the boxed number of any follow-
ing instances that takes a 3 as an input. The use of
this functionality is currently limited by false posi-
tives because of the possibility that the value of an
output result is used for different purposes between
system calls. For example, line 22 and line 27 both
take a “3” as input, but the information referenced
is different. The information referenced by the 3 in-
put to line 27 is from the file opened in line 26. As
such, all green-highlighted instances from line 26 on
are actually not related to the searched for line 21.
We therefore also highlight in green the lines with
the same output result, such as line 26, where the
information referenced by an output result may be
changing.

In the second, the tool searches for system call in-
stances where the input parameters of the searched
for line is being used as an input parameter, or given
as an output result. The figure shows an example,
where the “3” input of line 26 is found as input or
output in other lines. Again, there is the probabil-
ity that the parameter references different data in
between system call instances, so the user must man-
ually define the relationships between system call in-
stances hinted by this functionality.

Through this color scheme, we hope to convey a
sense of path connections between different system
calls that may be temporally seperated.

4.6 Help/Tutorial

Clicking the Help button (Figure 5-(F)) brings up
a window with a short summary of the functionality
available. Clicking the Tutorial button (Figure 5-(F))
brings up a window with a three-page tutorial that
steps the user through this tool in solving a simple
debugging problem, and introduces Path Highlight
examples.
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Figure 7: Source code for the simple program, Open
MyLinuxBook

Figure 8: The display when “./test strace” is entered
into the Command to strace input box. Also the
Output File Display

5 Example of Use

We present an example that is provided in our
tool’s tutorial, which illustrates how our tool can be
used for debugging.

Figure 7 shows the source code of a simple pro-
gram, “Open MyLinuxBook [1].” When this program
is executed, it returns the simple message, “program
failed.”

This program is provided to users without the
source code. Instead, they must use our tool to find
that the error occurs because the file ”MyLinuxBook”
does not exist.

Figure 9: The Output File display (top) and the Sys-
tem Calls display (bottom) when the Error Highlight
functionality is turned on.

Typing “./test strace” in the input box of the pro-
gram where it asks for “Command to strace” results
in many lines of system calls in the display window
to the right (Figure 8). Turning on the Error High-
light functionality by clicking the Errors button, we
can navigate between the Output File display and the
System Calls display to find possible sources of error
(Figure 9).

Since the program’s purpose is to open a file, we
look at all warning instances of Open system calls by
scrolling to the Open category listed in the System
Calls display with the Error Highlight functionality
turned on (Figure 10). There are nine instances of
the Open system calls to examine. The last instance
has the input ”MyLinuxBook” and an error output
that says “No such file or directory.” At this point,
we know that the reason why the program failed is
that the file it is trying to open doesn’t exist.

Another way to find warning instances of the Open
system call is to search by system call name with the
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Figure 10: The open system call instances with Error
Highlight on. Notice the last instance takes the file
name “MyLinuxBook” as input.

Figure 11: The error of interest written in dark green
and highlighted orange.

Error Highlight functionality on. Typing “Open” in
the input box labeled “System call or line #:” results
in the Output File display with instances of the Open
system call written in dark green. In this manner,
the Open calls can be viewed in context (Figure 11).
Again, at line 44, there’s a clear explanation for the
program failure.

6 Evaluation by User Study

Our primary goal was to build a visualization soft-
ware for strace output, targeted towards people with
little experience with strace. To evaluate our progress
and guide our future work, we conducted a simple
user study. Four undergraduate seniors, majoring

in Computer Science, volunteered to use our tool
for approximately 20 minutes and provided feedback.
When asked, all four claimed to have had little expe-
rience using strace.

A difficulty most volunteers had was confusion over
the Path Highlight functionality. This was expected
since this is currently our least developed function-
ality and might not be intuitive for new users of
strace. Suggestions for improving this functionality
included the use of more graphical features, like ar-
rows between related lines and the highlighting of ac-
tual inputs and outputs shared between system call
instances.

Another suggestion was to “add a description of
what each system call is doing” including a definition
and the syntax for each system call (volunteer 2).
This would be done in the System Call display to
help new users unfamiliar with system call names,
parameters, and behavior.

Other criticism was mainly limited to the tool’s
presentation, rather than the tool’s functionalities.
Examples include the scrollbar not responding to the
mouse scroll wheel and the Enter button not respond-
ing to the keyboard’s Enter key. While these issues
are important to fix, we will not be listing them all
here, as they are not specific to understanding the
strace output our tool visualizes.

All volunteers agreed that our tool had the poten-
tial to be a useful tool for introducing strace to new
users.

7 Future Work

From the user study evalution, the main improve-
ment for our tool’s immediate future would be to add
a library of information on system call names, use,
behavior, and output syntax. With this information,
we can not only add the suggested descriptions to the
System Call display, but also more accurately link re-
lated system call instances for Path Highlight. The
Path Highlight functionality should be improved to
be more intuitive without explicit instruction from
the tutorial. We will explore different possibilities of
visualizing Path Highlight, including a seperate dis-
play with extracted instances of system calls, which
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are then linked with arrows with their shared infor-
mation highlighted.

Other improvements for our tool would be geared
towards overcoming our limitations with analyzing
large traces, such as a trace of the python interpreter.
When a large output file is generated for our tool, the
visual display begins to break down as the graphic li-
brary used to generate our user interface cannot han-
dle creating a text display for over 1500 lines. We
plan on using a different graphics library to solve this
problem. Another issue is the slow down of System
Call display and Path Highlight as these function-
alities currently require iterating through all system
call instances and sorting them. We plan on solving
this by changing the data structures used to store the
lines of strace output or the parsing algorithm.

8 Conclusions

Cstrace, a prototype for an strace visualization
tool, was developed for an audience who have lim-
ited background knowledge in system call interac-
tions, but with a basic understanding of Computer
Science or programming. Although strace itself does
not require extensive understanding of system calls, it
is difficult for new users to know where to start look-
ing for sources of errors or program inefficiency with-
out reading documentation on strace use. There is
also little functionality in the way of helping users to
better comprehend the program in its entirety. Thus,
by using Cstrace, even users with limited knowledge
of a system’s implementation can understand a pro-
cess’s meaning and interactions. Cstrace is currently
a prototype under development, but this and simi-
lar projects motivate further research into the use of
visualization as a learning tool.

This paper summarizes Cstrace functionality, an
example of use, and the user study conducted to eval-
uate its limitations and potential.
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Analyzing Android Malware and Current

Detection Systems

Adrien Guerard and Danny Park

Abstract

Android security is a growing concern in the mobile industry as the
number of devices in circulation continues to increase. Researchers and
anti-virus companies continue to discover new malicious software (mal-
ware) on Android devices that strive to steal sensitive information and
harm the device-owner in various ways. While most anti-virus softwares
operate at the system level, recent research shows promising results for
taking a network-level approach instead. Based on these promising results,
we investigated a network-level detection system to gain a stronger under-
standing of the potential benefits and pitfalls. Additionally, we examined
and reverse-engineered a recently discovered piece of malware called Bad-
News to see how the latest malware operates on the surface and at the
implementation level.

Originally we had planned to perform clustering and signature analy-
sis on an Android malware dataset we had received, but due to significant
deviations from the model’s assumptions and difficulties in trying to elicit
malicious behavior, we decided to return to our original goal of improv-
ing and experimenting with our own version of BadNews: WorseNews.
We created our own piece of malware for the purpose of investigating the
capabilities and limitations of Android malware authors and anti-virus
detection. Our malware is capable of penetrating the Android market in
something called a “zero-day attack”, in which one takes advantage of
the fact that anti-virus systems utilize code signature methods for detect-
ing suspicious apps, that are only effective at classifying known malware.
Given the growing number of Android malware being released to the pub-
lic each day, as well as our own experience developing and testing malware,
it is safe to say that the Android platform is perfect for authors wishing
to trick Android users into giving away their information and money.

1 Introduction

The Android operating system is growing in its share of the mobile market ever
since its release in 2008. It currently owns 81% of the smartphone market while
iOS only accounts for 12.9% [9]. Owning such a large portion of the market
makes it a more lucrative target for malware developers. Android system APIs
allow for a significant amount of access to sensitive data and user information,
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as well as the ability to execute downloaded files at runtime. The Android OS
uses a permissions system for handling which applications are allowed to use
which resources. Upon installation, the user is asked to allow the application
in question to be granted certain permissions. Studies show that many widely-
used apps are over privileged, and that most individuals do not pay attention
to what permissions they grant [1].

Many permissions are relatively harmless, but some allow for the application
to act maliciously without being obvious or asking the user for any information
directly. The simplest form of malware reads a user’s sensitive information and
transmits it over the network. Apps granted with permissions for the network
and reading device information can transmit a user’s IMEI number (specific to a
device) as well as their phone number. Just these two pieces of information can
be incentive enough for someone considering developing a malicious Android
app when sold in bulk on the black market.

However, Google has taken steps to detect malware, and with the app need-
ing to be pre-approved before going onto the Play Store, it is not easy to publish
an obviously malicious app. There are certain permission patterns that look sus-
picious given certain types of applications, and applications that have sensitive
permissions raise the most red flags. Recently a family of malware titled ‘Bad-
News’ was able to make it to the Play Store. It infected 32 applications and
was downloaded up to 9 million times [8].

Detecting BadNews on a per app basis would be difficult given the fact that
each app is different but contains the same ad network library. Desktop malware
also tries to disguise itself as different programs and applications with some
common malicious instructions. As Android malware becomes more prevalent,
it will be necessary for their developers to start to obfuscate the malicious
functionalities of their application. Android malware will most likely mirror
desktop malware in the future, by constantly getting reused so as to continue
publishing malicious content even after a previous app has been identified as
being malicious.

Researchers have tried to get around this problem by developing techniques
for extracting malicious network signatures from pools of malicious network
traces organized into clusters by similarity of how they interact with the network.
Any malware that steals users’ information will most likely send the information
over HTTP in a simple GET or POST. It allows the server to control whether
or not the device should be actively malicious or not, which makes discovering
all of an application’s behaviors without looking at the source code much more
difficult. However, by using network signatures, one could detect future or even
other similar malware activity and stop the information leak at a network level.

Especially given the rising prevalence of smartphones, this technique could be
used to detect malware once it has been identified. It also means that malware
that simply reuses the same network communication will also be identified as
malware, even if it is ”unknown” as being malware. Although the device is still
infected, one can at least hinder the collection of data on the user as well as
render the device unable to receive instructions from the server.

We hope to further explore the argument that network-level analysis should
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have a larger role in anti-virus detection and prevention. By cutting off the
connection between host and client, much of the malware is rendered useless.
Smartphones could therefore theoretically self-verify the safety of any HTTP
request they make by inspecting it. Monitoring could also be performed by
internet service providers, which would have the greatest impact in curbing the
continued communication with command-and-control (C&C) servers, if done
correctly.

2 BadNews

Lookout, a mobile security firm, discovered a new family of malware called
BadNews in April 2013. The effects of the malware were widespread as it was
downloaded up to 9 million times across 32 different applications on the Google
Play Store [8]. We reached out to security researchers [6] and acquired an
infected application (.apk) that serves as a live wallpaper to unsuspecting users.
The list of permissions that the live wallpaper application requests should be a
red flag to any individual. Ordinary live wallpaper applications do not require
any permissions, but this application requests the following permissions:

• SYSTEM ALERT WINDOW

• RECEIVE BOOT COMPLETED

• INTERNET

• ACCESS NETWORK STATE

• READ PHONE STATE

• INSTALL SHORTCUT

• VIBRATE

• ACCESS WIFI STATE

• WRITE EXTERNAL STORAGE

In order to analyze the infected app, we took a series of steps to decode
the .apk into its Java source code. Upon examining the source code, we deter-
mined that the decoding process did not work flawlessly as there were blocks
of code that did not make sense. For example, there were multiple instances of
unreachable code below return statements.

Despite the decoding errors, we were able to parse the code and gain a de-
tailed understanding of how BadNews operates. There are two classes that make
up the majority of the BadNews codebase. The first class extends Broadcas-
tReceiver and is triggered every time the device boots up or receives/sends a
phone call. The class is tasked with determining if the main malware service is
running. It starts the service if it is not running and does nothing otherwise.
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All of the malicious activity takes place in the service. The service communi-
cates with a command-and-control server located in Russia. The URL of the
server, www.androways.com, is hardcoded as a static variable in the service.
This particular server is located in Russia, but researchers have discovered that
BadNews also has active servers in Germany and Ukraine [8]. When the service
starts up, it registers an alarm (e.g. a function that emits a signal at regular
time intervals) to go off every four hours. Every time the alarm goes off, the
service sends a request containing device information to the server. The infor-
mation includes device ID (IMEI, MEID, or ESN), phone number, phone model,
and network operator.

The server responds to the device’s request by sending a key which corre-
sponds to a specific instruction the service should execute. For instance, when
the service receives the ‘stop’ key, it cancels the alarm and discontinues itself.
The service is responsible for executing the following ten instructions sent from
the server:

• ”news” - downloads a file from a location specified by the server and
prompts the user to install it

• ”showpage” - launches the browser and loads a URL

• ”install” - downloads a file from a location specified by the server

• ”showinstall” - seemingly similar to ”news” but could be an error from
decompilation

• ”iconpage” - sets an icon on the device’s homescreen that launches the
browser and loads a URL

• ”iconinstall” - sets an icon on the device’s homescreen that prompts the
user to install a downloaded file

• ”newdomen” - changes the central server URL

• ”seconddomen” - changes the secondary server URL

• ”stop” - cancels the alarm and stops the service

• ”testpost” - instructs the service to send another request to the server

BadNews behaves in a manner that makes it difficult to detect. It manages
to avoid attention by performing activities for short periods of time in four hour
intervals. This is to avoid detection systems that scan network activity intermit-
tently. Additionally, the authors of BadNews obfuscate the service’s activities
by using response variables sent by the server as inputs to other functions. This
makes it difficult to know what other servers the service is contacting through
code examination.
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3 Nework-level Detection

Perdisci, Lee, and Feamster [7] developed and tested a multi-step clustering of
malicious internet traffic for the purposes of extracting a representative set of
network signatures. Their first step is referred to as coarse-grained clustering,
and is done by comparing simple statistics calculated about each malware sam-
ple’s internet traffic: “the total number of HTTP requests, the number of GET
vs. POST requests, the average length of URL’s, etc.” [7]. The second step is
fine-grained clustering, which takes a closer look and applies string comparison
algorithms such as normalized Levenshtein distance and the Jaccard distance
of two sets of strings i.e. calculating the difference in parameter keys and val-
ues. Fine-grained clustering is only done between network traces of the same
coarse-grained cluster. This is done to reduce the number of string comparisons
performed, which are computationally expensive compared to the initial, coarse-
grained clustering. They finally perform a cluster merging step in which they
merge some of the fine clusters based on computed distances between cluster
centroids.

A signature is formed by first creating a set of pools from which to perform
the Token-Subsequences algorithm on. Initially selecting one of the malware
samples to be the seed for that cluster (chosen at random), each pool is ini-
tialized with the one of the requests from the seed malware sample’s network
trace. For each pool, the closest (using the same string distance function as in
fine-grained clustering) request from each unique malware sample in that cluster
is added to that pool. Once all the pools are filled, a signature can be extracted
from each pool using the Token-Subsequences algorithm which is described here
[3]. It is a simple alteration of the Smith-Waterman algorithm used for find-
ing the largest substring between two different strings. Once the signatures are
formed, they are merged by measuring the distance between them and combin-
ing the two closest ones. Once a signature reaches a minimum signature length
threshold, it stops participating in this iterative process. Signature merging
stops when all signatures are either at this threshold, or merging would result
in a trivial signature (e.g. “HTTP 1.1 GET /”). Once the final set of signatures
is generated, it is pruned using a set of legitimate HTTP traffic in order to filter
out any signatures that match the legitimate traffic. In their experiment, they
were able to get 554 signatures from the data, 446 of which they kept.

Their final results for June’s data (which contained all of the data they had
been collecting) were encouraging, with the final detection rate being 65.1%.
Their false positive rate (frequency a signature was incorrectly matched to le-
gitimate internet traffic) was low at .0001% (18 instances) of 12M HTTP queries.
However, false positives for these systems can be very hard measure, since the
legitimate data is chosen due to its perceived cleanliness. In other words, there
can be a great amount of bias if you choose legitimate traffic from a well mon-
itored organization to test the false positive rates for malware signatures that
primarily target users behind weak or non-existent internet defenses. Another
drawback of their model was noise, which they mention would significantly re-
duce the quality of the network signatures generated.
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Although we had ambitiously attempted to recreate their results after reverse-
engineering BadNews and studying the malware samples given to us, it became
very clear from human analysis of the data that their method could not be di-
rectly applied onto Android malware. There were two main factors that led to
our decision to abandon applying their model to Android malware: difficulties
in observing malicious behavior from the malware and data noise due to number
of legitimate HTTP requests. We inspected the internet data we were collect-
ing by installing and opening the malicious apps, and saw that nearly all the
malware included a vast majority of legitimate internet traffic. Furthermore,
difficulties in even getting the malicious internet behavior to trigger made it im-
possible for a fast, automated data-collection system such as the one presented
to be used. The authors briefly mention the effect of noise on the model, but
the assumption that they make is that the vast majority of the network traces
collected are malicious. At the finer levels of clustering, such noise would most
likely not be an issue, since only highly similar traces are matched. However,
due to cluster and signature merging, legitimate traffic signatures and malicious
ones would get merged to form very poor signatures with high false positive
rates. We also noticed that their initial coarse-grained clustering would profile
the Android malware’s HTTP traffic based more on their legitimate or innocu-
ous behavior rather than their malicious behavior. This is a problem since two
different malware samples might use the same app for repackaging, which then
leads to the malware samples being poorly clustered by the app that the author
has hijacked, and not the underlying malicious behavior.

We also took a look at the evasion of such systems, and whether it was possi-
ble. Researchers who had developed a system for detecting polymorphic worms
in HTTP traffic [3] (which is actually an easier variant of the general malicious
traffic problem since most worms use highly specific exploits) were thwarted
when Gundy and Vigna managed to beat their system using a self-replicating
PHP worm [5]. Their method relied on the insertion of noisy comment blocks,
randomization of variable names, trivial instruction insertion and shuffling, and
different types of encryption schemes. Since the payload was encrypted, only
the decrypting module was subject to detection. However, they were able to
bypass even the best signatures that Polygraph generated for the 200 variants of
their worm, showing that enough noise can render current web-based detection
methods useless once they are taken into account by malware authors.

4 WorseNews

Based on our newfound understanding of malware, we wanted to explore the
tools that Android provides malware developers. We created an application
that acted as a simple Tic-Tac-Toe game but performed malicious activities
in a background service. We used a linux web server as our command-and-
control server which hosted MySQL databases and PHP scripts to interact with
our application. Once the application is installed on the device, turning on the
phone or unlocking the lock screen initiates the malware service. On startup, the
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service contacts our non-malicious blogspot and parses the page for a non-visible
HTML element that contains the name of our command-and-control server.
This system has the advantage of never exposing the name of the real server in
the codebase. Once the service parses the blogspot it sends the device id, phone
number, and voicemail number to the server. With the READ PHONE STATE
permission, developers have access to all the meta-information about the device
through simple method calls.

After the service posts the device information to the server it proceeds to
download an .apk from the same server and store it in the external storage
(SD card) of the device if it exists, otherwise saving it to internal storage.
Fortunately, developers are not allowed to install any applications without the
explicit consent of the user (rooted devices do not have this safety measure). If
the download is successful, the user will be prompted to install the application
when the phone restarts. The downloaded application contains a sophisticated
trojan belonging to the Geinimi malware family. It shares many of the same
instructions as BadNews, but it additionally takes all of the user’s contacts and
sends SMS messages and places phone calls without the user’s knowledge. What
separates Geinimi from most malware families is that it encrypts the messages
exchanged with the server. Without the encryption key, it is impossible to
determine what types of information are being exchanged over the network.

In addition to taking the device id, phone number, and voicemail num-
ber, the service actively records all incoming SMS messages and incoming and
outgoing phone calls. For incoming SMS messages, the phone number, mes-
sage body, and time are recorded in our database. For incoming and outgo-
ing calls, the number and time are recorded. READ PHONE STATE, PRO-
CESS OUTGOING CALLS, RECEIVE SMS, and READ SMS are the permis-
sions needed to accomplish these actions. Classes can be programmed to respond
to any of the events listed above.

We later added an additional functionality to our app whereby a Dalvik exe-
cutable could be dynamically loaded and run. It was loaded from storage (after
being download from our main server) and then using Java’s Reflection API
we can discover the contents, instantiate classes, and call methods on the data.
This allowed us to silently update the Java code in our application, bypassing
the Google Play Store’s typical update procedures. Having an ability such as
this waiting patiently on a smartphone means that a Java exploit tomorrow
could be downloaded and then loaded dynamically into an app made today.

5 Evaluation and Results

To prove that our app was a viable candidate as a successful zero-day virus (a
virus that goes unnoticed due to its novelty/uniqueness), we installed our app
onto a phone along with the top anti-virus software available for download on
Android: AVG AntiVirus Free, Lookout, avast! Mobile Security, and Norton
Mobile Security. None of the anti-virus systems were able to identify WorseNews
as suspicious or malicious. Only two (Norton and Lookout) identified the Gein-
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imi sample we download onto the phone, however no link between WorseNews
and the malicious .apk was drawn.

Zhou and Xiang note the poor job that Android anti-virus software as a
whole is doing to protect against attacks of known samples, showing that in the
worst cases only 20% of the malware in their dataset was identified [10]. Given
that anti-virus software’s sole purpose is for the discovery of previously known
malware, it is disappointing to see that even a two year old malware sample can
bypass some Android anti-virus software.

The main reason our novel malware cannot be detected is that it does not
take advantage of an exploit that need be activated in a very specific manner.
Instead, users give us permission to take their information. So from a tech-
nological point of view, we are not doing anything that the Android SDK did
not intend i.e. it was never really an exploit to begin with from an engineer’s
perspective.

The Android SDK equips developers with a wide range of tools that make
it easy to manipulate the device. While this freedom is typically praised in the
mobile development and Android communities alike, one must consider the im-
plications of such freedoms. From a malware developer’s perspective, Android
provides all of the tools to implement malicious behavior easily. Once a permis-
sion has been granted, the developer has full access to that specific functionality
on the device. In other words, the permissions system is entirely dichotomous -
you are either granted full permission or none at all. Malware authors are only
limited by their imagination when it comes to implementation. Given that most
individuals do not pay attention to the permissions they grant, malware devel-
opers only face one obstacle to infect devices: the Google Play Store [1]. Note:
Some countries do not have access to the Google Play Store, and so they use
third-party app markets, which are often poorly regulated. These marketplaces
are easily penetrated, and can be used for fairly widespread infections.

However, even Google Bouncer (Google’s proprietary testing environment to
detect malicious apps on the official app market) has come under fire recently for
being ineffective at preventing malware from reaching the Play Store. Two web
articles [2] [4] recently released suggest that Google Bouncer is not doing enough
to prevent the proliferation of malware on the Play Store. They touch upon two
major issues with Google Bouncer: the limited time spent with apps and the
ability for a developer to fingerprint the Bouncer. The former is obvious, and
represents an issue that plagued us as well; malware can often delay its behavior,
hence making it more tedious to extract and observe all the possible behaviors
dynamically. Google Bouncer supposedly only spends five minutes with each
app [2]. The people who discovered this wrote a shell script that executed in
the background, profiling the Bouncer session. They also discovered that Google
Bouncer could be fingerprinted, which means that if a malware developer knows
it is being examined by the Bouncer, it could just deactivate any malicious
behavior. Lastly, loading libraries at runtime via the network means that the
truly malicious bits of code can wait to hit devices until after release to the
public i.e. one waits until after the vetting process to start pushing malicious
content.
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6 Conclusion

Android malware is no longer the mild annoyance it was once, and should be
taken seriously as the threat grows. Despite what many people might think
malware is, most Android malware is actually not that technologically sophis-
ticated. Instead, it relies on the ignorance and naivety of the user, who blindly
accepts and presses “Yes, Install” to any popup with the words “facebook”
and “update” in them. Although anti-virus software is useful for keeping one’s
phone safe from past threats, the real danger of malware is still present. The
current threat of Android malware is that as soon as an undiscovered exploit
is uncovered, it can be inserted into the codebase and adversely impact devices
immediately.

Android malware is just beginning to take shape, and in the next couple years
we predict that more seemingly legitimate apps will turn out to be malware that
were dormant for weeks or months at a time. Some believe that BadNews’ true
value to malware authors was not its SMS fraud capabilities, but rather a proof-
of-concept by the malware community as to the possibility of taking advantage
of users’ naivety and Google’s rather permissive platform via the impersonation
of a widely used, third-party API (in this case an ad network) [8].

The bad news for Android users is that the BadNews experiment was a huge
success. We expect Android malware of the future to exhibit little to no mali-
cious behavior aside from an initialization into the C&C’s database and regular
pinging for instructions. Once an exploit is released, code to take advantage of
it can be dynamically and silently loaded and executed by the malicious app.
Most dangerous of all exploits, root exploits, would then provide the C&C with
complete control over infected smartphones. A well coordinated attack could
easily steal millions of dollars worth of information (credit cards, phone num-
bers, emails, bank accounts, etc.) within seconds. Detecting these dormant
apps would be difficult, especially since their system behavior would appear to
be benign.

Although anti-virus companies would be able to respond with signatures for
detecting root exploit binaries, there is seemingly nothing stopping malware au-
thors from writing genuinely new Trojan apps, thus bypassing current anti-virus
techniques. This just motivates malware authors to be all the more stealthy in
their approach, while then executing massive heists of information quickly so as
to maximize the benefits prior to getting caught.

However, society is not entirely powerless to the will of malware authors and
their financial beneficiaries. More granular permissions could allow for certain
domain names and pages to be accessed by certain apps, thus allowing users
to more finely control what internet connections are being made. Secondly,
with proper education and information, most malware authors would switch to
more lucrative careers. By teaching users to be smart about their permissions
and knowing when an app is suspiciously overprivileged, the main tactic of the
Android malware author is compromised. For instance, one common sense in-
dicator that an app is probably malicious is having lots of fake four and five
star reviews. These are usually done by an attacker gaining access to someone’s

9

167



Google account, and then posting on their behalf. We noticed this potential in-
dicator during our research when one of our phones was infected with a malware
masquerading as anti-virus software (common due to the overlap in permissions)
on the Google Play Store. We then read the reviews, most of which were clearly
stitched together fragments of sentences that had no specific details pertaining
to the app (all in broken English of course). It had managed to sneak into the
number three spot, all due to a high volume of reviews and downloads. By gam-
ing the review system, it increases the app’s visibility thus leading to further
infections while also appearing more legitimate.

In fact, education is the only real way to prevent future malware that preys
on the ignorant, since it will always try as hard as possible to appear legitimate.
Although previous malicious software can have its signatures extracted and
utilized by anti-virus software, zero-day attacks are unpreventable. As long as
the money is there, the malware developers will be too, and you can be sure
they will test each new prototype against the current anti-virus systems to make
sure it goes undetected for as long as it needs to.

Although network level detection is possible and perhaps useful in some par-
ticular cases, encryption and noisy polymorphism would most likely render it
ineffective against stopping all (or enough to be useful) traffic. Larger transfers
such as downloads would be encrypted and their keys recovered from publicly
accessible blogs and social media. Additionally authors would be constantly
changing the schema, form names, encryption algorithms, and encryption keys;
all of which could be facilitated using dynamically executed libraries that are
remotely downloaded at runtime. Prevention is the only real solution to mal-
ware, and detection is merely for the sake of anti-virus companies and the lay
Android users who pay them.
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Abstract

With the increased affordability and
power of microprocessors, common ap-
pliances are increasingly being embedded
with computing power and new ones are
being developed. While significant data
exists for comparative cache replacement
performance for general purpose proces-
sors, there has been less research into
cache replacement algorithms for embed-
ded systems. In this paper we gather cache
miss rates with varying associativity from
a large set of cache replacement policies–
LRU, PLRU, Random, FIFO (First In First
Out), SLRU (Segmented LRU), LIRS
(Low Inter-reference Recency Set), and
ARC (Adaptive Replacement Cache). We
use SimpleScalar, version 3.0, to simu-
late the cache replacement policies on the
MiBench benchmark suite.

1 Introduction

The development of modern processors has in-
creased the potential speed at which computers can
accomplish tasks. According to Moore’s law, the
number of transistors on integrated circuits doubles
approximately every two years, which allows more
space for transistors on a core. However, the ex-
ponential growth in processor transistors does not
translate into exponentially greater practical CPU
performance because of the existence of bottlenecks
such as power consumption and memory latency.

As the speed of memory access slows the overall
CPU speed, it becomes increasingly important for
researchers to investigate methods (Cache Replace-
ment Policies) to reduce the memory reference time.

Caches are employed by CPUs to reduce the aver-
age time to access memory. They hold less data, but
are quicker to access than main memory. Modern
cache structures are often hierarchical, with multiple
levels of different sizes, and separate caches for in-
structions and data. Caches store data that is likely to
be accessed again in order to improve performance.
Cache replacement policies are algorithms that de-
cide which items will be maintained in the cache,
based on which items are determined to be mostly
likely to be referenced again.

While significant data exists for comparative
cache replacement performance for general purpose
processors, there has been less research into cache
replacement algorithms for embedded systems. Em-
bedded systems are comprised of microprocessors
built in to a mechanical or electrical system with a
specialized function. Examples include cars, print-
ers, and microwaves. Common appliances are in-
creasingly being embedded with microprocessors
and new ones are being developed.

Some embedded systems deliberately do not uti-
lize caches. Theses systems are those where preci-
sion timing and consistency is the paramount con-
cern, and safety is an issue. Caches introduce vari-
ability in the time necessary to execute actions, be-
cause reading from disk is slower than reading from
the cache. However, many embedded systems do not
require absolute precision timing in their operations
to be useful. With the increase in affordability and
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prevalence of high powered microprocessors in ev-
eryday appliances, cache performance has become
relevant for these embedded systems (Jacob, 1999).

Cache replacement policies decide which blocks
of memory to evict from the cache when the cache
is full. OPT replacement policy, the optimal replace-
ment policy for any process, would evict the mem-
ory block that will be accessed farthest into the fu-
ture. Since OPT requires a perfect knowledge of fu-
ture references of a process, it is impossible to im-
plement. Thus, cache replacement policies try to
mimic OPT behavior as best as possible to reduce
the cache miss rate. The average memory reference
time is denoted as

T = m · Tm + Th + E,

where m denotes the cache miss rate, Tm = time to
make a main memory access when there is a miss,
Th = the time to reference the cache when there
is a hit and E accounts for various secondary ef-
fects, such as queuing effects in multiprocessor sys-
tems. By best approximating OPT, the cache miss
rate decreases which effectively decreases the over-
all memory access time. Given that for any pro-
cess an OPT policy doesn’t exist, modern proces-
sors utilize various policies such as Random, Least
Recently Used (LRU), Round-Robin, and PLRU
(Pseudo LRU).

Though researchers have investigated several
novel cache replacement policies and evaluated their
performance against the most common policies on
general purpose processors, there is insufficient
data in comparing performances of different poli-
cies under benchmarks relevant to the workloads
and instruction patterns representative of embed-
ded systems. In this paper we gather cache miss
rates with varying associativity from a large set
of cache replacement policies–LRU, PLRU, Ran-
dom, FIFO (First In First Out), SLRU (Segmented
LRU), LIRS (Low Inter-reference Recency Set), and
ARC (Adaptive Replacement Cache). We use Sim-
pleScalar, version 3.0, to simulate the cache replace-
ment policies on the MiBench benchmark suite.

2 Related Work

In 2003 Megiddo et al. published a paper describing
Adaptive Replacement Cache, which offered sev-

eral advantages over other algorithms. It outper-
formed all other online algorithms and came close to
the performance of manually tuned offline replace-
ment policies. This paper describes their implemen-
tation, which used to create our model of ARC in
SimpleScalar. They present data for hit rates and
overhead costs comparing ARC to other common
replacement algorithms for a variety of cache sizes
(Megiddo and Modha, 2003). Our measurements
encompass a wider range of cache structures and
statistics.

In 2004, Al-Zhoubi et al. discussed the relative
performance of many common replacement policies
tested using SimpleScalar and the SPEC CPU2000
benchmark suite. They described the algorithms be-
hind LRU, FIFO, random, PLRUt and PLRUm re-
placement policies. They discuss their relative ad-
vantages and disadvantages. They present average
hit rates across multiple benchmarks for different al-
gorithms for dL1 caches of different associativities
(Al-Zoubi et al., 2004). In addition to the algorithms
tested in this paper, we implemented LIRS and ARC
using the SimpleScalar framework. We test all these
algorithms with the sim-cache tool using the more
recent SPEC CPU2006 benchmark suite.

In 2002, Song et. al. developed Low Inter-
reference Recency Set (LIRS) (Jiang and Zhang,
2002) which improved on LRUs performance in
cases that exposed LRU’s inability to cope with ac-
cess patterns with weak locality. The authors men-
tion three instances where LRU performs poorly:
file scanning, cyclical pattern of accesses that are
slightly larger than the cache size, and a multi-
user database application that stores index entries
and data blocks. In their performance evaluation of
LIRS, their tests comprised of the observations listed
above. They compare the hit rates of LIRS with
common cache replacement policies. Additionally,
they look at the performance of LIRS with respects
to the size of the LIR and HIR sets. We intend to ex-
pand their study of LIRS by gathering statistics on
test sets that comprise of programs that don’t expe-
rience the specific problems the authors observed.

in 1999, Jacob discussed the increasing impor-
tance of software implemented cache replacement
policies for real time embedded systems. While tra-
ditionally many embedded systems do not employ
caches because probabilistic speed increases can af-
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fect precision and safety, embedded system are see-
ing a rapid increase in computing power. This leads
to higher percentage of these systems having the po-
tential for gains in performance if caches are imple-
mented (Jacob, 1999).

3 Background

3.1 Common CRPs

Common cache replacement policies include LRU
(least recently used), FIFO (First In First Out) and
Random replacement policy.

3.2 PLRU

The Pseudo-LRU algorithms are devised to model
LRU’s behavior but are much more feasible than
LRU in terms of implementation in hardware. For
associativities higher than 4, a PLRU is much more
efficient and less expensive than LRU to implement.
This algorithm requires less complex update logic
and fewer state bits as well. However, it is just an
approximation of the LRU algorithm. It is possible
for a least recently used block to never get replaced
if it is in the same branch as a frequently accessed
block. PLRU algorithms are found in the CPU cache
of the Intel 486 as well as in several processors in the
Power Architecture/PowerPC family.

There are two types of PLRU: Tree-PLRU and
Bit-PLRU. The Tree-PLRU is modeled using a bi-
nary tree. Each node in the PLRU binary tree has a
left child and a right child. When traversing the bi-
nary tree, we represent following the edge that leads
to the left child as a 0 and following the edge that
leads to the right child as a 1. The nodes of the tree
store a direction bit that refers to either the left child
or the right child and the leaves of the tree store the
actual cache blocks. On a cache hit or update, we
traverse the tree to find the element we want to ac-
cess. For each node we visit on the path from the
root to the leaf, we update the direction bit stored in
the node with the opposite value of the direction we
actually follow to access the particular block. On a
cache miss, the victim block is found by following
the direction bits stored in each of the nodes.

Bit-PLRU is also called MRU based PLRU. Each
entry in the cache maintains an MRU bit. These bits
are initialized to 0. When the item is referenced the
bit is set to 1, indicating that it was referenced re-

cently. When looking for a block to replace, the al-
gorithm selects blocks with MRU bits equal to 0.
When there is only one 0 left in the cache, the bits
are al flipped. All the ones are set to 0, and the last
zero block is replaced and set to a 1.

3.3 SLRU

Segmented LRU combines aspects of LRU and
LFU. The cache is divided into a protected and a
probationary segment. Elements that are referenced
one time are inserted into the probationary segment.
When there is a hit on an item in that segment, it is
moved to the head of the protected segment. This
way item referenced frequently will not be flushed
out of the cache by scanning. When an item is
evicted from the protected segment it is inserted at
the head of the probationary segment. The segment
size is fixed.

3.4 ARC

Adaptive Replacement Cache is a cache replace-
ment policy developed at the IBM Almaden Re-
search Center that outperforms LRU (Megiddo and
Modha, 2003). ARC combines qualities of the LRU
and LFU algorithms in a dynamic system that can
adapt to different patterns of data access. It improves
on the structure of SLRU to all for online changing
of the partition determining the segment sizes. ARC
divides the cache into two sections, which hold re-
cently and frequently referenced entries. Ghost list
contain entries that have recently been evicted from
either cache section. Hits in the ghost lists give in-
formation about which type of entry is being ref-
erenced more, and the algorithm changes the rela-
tive sizes of the frequently and recently referenced
portions. This way ARC can adapt to better handle
differing program behaviors. The basic structure of
ARC is illustrated in Figure 1.

One sections holds the most recently referenced
entries (T1), and the other holds frequently refer-
enced entries (T2). When there is a hit on an item
in T1 it is moved to T2. There are two ghost lists for
entries that have been removed from T1 and T2 (B1,
B2). When an entry is evicted from T1 or T2 an en-
try containing just the metadata is inserted into B1 or
B2 respectively. Upon a cache miss, the ghost lists
are scanned. A ghost hit will increase the target size
of the corresponding cache partition (a hit in B1 will
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increase the target size of T1). When entries are in-
serted into T1 or T2, the partition will adjust so they
are closer to their target sizes. The relation of the
target sizes to the current sizes determines whether
T1 or T2 will evict an entry to make room for a new
one. This algorithm is laid out in Figure 14.

Figure 1: Structure of ARC1

3.5 LIRS

LIRS, developed by Song et. al., is another cache re-
placement policy that improves on LRU (Jiang and
Zhang, 2002). LIRS uses IRR (Inter-Reference Re-
cency) as the method for recording history informa-
tion of each block. The IRR of a block refers to
the number of other blocks accessed between the
last reference of the block to the current time. The
referenced blocks are divided into two sets: a ma-
jor part containing High Inter-Reference Recency
(HIR) blocks and a minor part containing Low Inter-
Reference Recency (LIR) blocks. Each block with
history information in the cache has the status LIR
or HIR. Some HIR blocks may not reside in the
cache, but the HIR major part may have entries in
the cache that record their status as HIR of non-
residence. When a miss occurs, an HIR block from
the minor set will be evicted. A block within the
LIRS set will always be in the cache and thus will
always have a cache hit.

In the event of a cache hit of an HIR block, a new
IRR is given to the block which is equal to its re-
cency. Then the HIR block’s new IRR gets com-
pared with the recency of the LIR blocks. If the
HIR block’s IRR is lower than the LIR blocks re-
cency, then the blocks and the HIR/LIR statuses are
swapped. The logic behind this is that if an HIR
block’s IRR is smaller than the LIR blocks recency,
then the HIR block’s IRR will also be smaller than
next IRR of that LIR block. This is because the re-

1image from http://www.c0t0d0s0.org/archives/5329-Some-
insight-into-the-read-cache-of-ZFS-or-The-ARC.html

cency of the next IRR block is a portion of its IRR,
and thus can’t be greater.

3.6 SimplesScalar

The SimpleScalar tool set is a system software in-
frastructure used to build modeling applications for
program performance analysis. It can be used to
build modeling applications that simulate real pro-
grams running on a range of modern processors and
systems. Specifically, sim-cache provides simula-
tion statistics for all levels of cache (an instruction l1
cache, data l1 cache, a unified l2 cache, etc) with re-
spect to different parameter values for the number of
sets, block size, associativity and replacement pol-
icy. The original package supports LRU, FIFO and
Random, and we implemented six additional cache
replacement policies (PLRU m, PLRU t, SLRU,
ARC and LIRS) to compare their performance.

3.7 MiBench

Mibench, developed by Guthaus et. al, is a bench-
mark suite targeted towards microprocessors in em-
bedded systems (Guthaus et al., 2001). The suite
contains a variety of benchmark categories intended
to represent embedded processor functions in in-
dustries including–automotive/industrial, office au-
tomation, network, and security. Each benchmark
contains small and large input files, but we chose to
run our experiments only on the small input files.
In the automotive/industrial category we measured
cache replacement policies on the q-sort and susan
benchmarks. The q-sort test uses the well-known
quick-sort algorithm to sort an array of strings
into increasing order. The small-input data con-
tains a list of words. The susan test is an image-
recognition software developed for recognizing cor-
ners and edges in Magnetic Resonance images of the
brain. The small-input data is an image file of black
and white rectangle.

For the office automation category, we tested
cache replacement policies on the stringsearch test.
Given phrases, the stringsearch test identifies words
with a case-insensitive algorithm.

In the network category, we ran cache replace-
ment policies on the dijkstra and patricia tests. Us-
ing the input file, the dijkstra test constructs a large
graph in an adjacency matrix representation and
then performs the well-known Dijkstras algorithm
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to compute the shortest path between every pair of
nodes. The patricia test consists of a Patricia trie
data structure that is often used within routing tables
in network applications. The input data is a list of IP
traffic from an active web server for a 2 hour period.

In the security section, we evaluated cache re-
placement policies on the sha test. The sha test is
a secure hash algorithm that outputs a 160-bit mes-
sage digest for a given input. It is used in the well-
known MD4 and MD5 hashing functions. It is also a
commonly used algorithm in the exchange of cryp-
tographic keys for generating digital signatures. The
input data is a small ASCII text file of an article
found online.

In order to run the MiBench benchmarks with
SimpleScalar, it was necessary to modify gcc to
compile for Alpha-OSF based systems. We obtained
the source code for gcc, and followed documented
instructions to create a cross-compiler to generate
the proper binaries.

4 Our Idea

We present a study of comparative cache perfor-
mance on benchmarks representative of commercial
embedded systems. We used benchmarks from the
MiBench suite, which includes a variety of programs
and functionality typically found in microprocessors
in embedded systems.

We modified SimpleScalar’s source code to im-
plement the PLRUt, PLRUm, SLRU, LIRS and
ARC algorithms. SimpleScalar comes with LRU,
FIFO, and random implemented already. With these
algorithm all implemented on the same platform we
ran extensive tests to gain comparative miss rates
across different associativities, for different cache
levels.

This paper examines the performance of ARC and
LIRS, two of the best cache replacement policies in
the context of typical embedded system workloads.
We also examine PLRU, a less complex, but very
effective and widely used replacement policy. These
algorithms have been shown to outperform common
cache replacement policies like LRU (Megiddo and
Modha, 2003) (Jiang and Zhang, 2002). However
these studies have largely been done on general pur-
pose processors. We show how these algorithms
compare to the best common algorithms on pro-

grams and data access patterns found in embedded
systems.

5 Software Implementation

To implement additional cache replacement poli-
cies other than the three already provided by Sim-
pleScalar, we modified the cache.c file in the
SimpleScalar Simulator code. cache create and
cache access are the two functions we modified. In
the original cache.c file, blocks were kept in a linked
list within each set. Whenever a cache hit or miss
happens, respective actions for the specified replace-
ment policy are taken. For instance, if the replace-
ment policy is LRU, the referenced block is moved
to the head of the linked list when there is a cache
hit. However, for FIFO, the referenced block re-
mains at the same position in the linked list when a
cache hit occurs. We adopt the linked list data struc-
ture, in our implementations for other cache replace-
ment policies.

For PLRU, we implemented two versions that
vary in their approximation of LRU. For PLRU- T,
we declared a control array within the set struct that
contains the control bits of the binary tree (top to
bottom, left to right) and initialized it to be all zero.
The size of the control array equals the set asso-
ciativity minus one. Inside cache access, we wrote
helper functions to simulate the cache behavior un-
der PLRU policy in the case of a cache hit or a cache
miss.

For PLRU-M, instead of maintaining an array of
control bits, each block contains a control bit vari-
able initialized to zero. When a cache miss occurs,
PLRU-M chooses a victim block based on the first
block it encounters with a control bit of zero. On a
cache hit, if there is only one block with a control bit
of zero, the algorithm iterates through all blocks and
flips the control bits to zero. Then the control bit of
the referenced block is set to one.

To implement SLRU, the cache had to be di-
vided into two smaller linked lists. One of the
lists contains probationary blocks while the other
list contains safe blocks. Additionally, we imple-
mented helper functions that: 1) inserted and re-
moved blocks from their respective lists 2) trans-
ferred a block from one list to another. These func-
tions are called during cache hits and cache misses.
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We also used these helper functions to implement
ARC which shares the core features of SLRU. ARC
used the same cache structure of dual linked lists,
which we referred to as safe (frequent, or T2) and
out (recent, or T1). We further modified the cache
struct to include two linked lists of ghost blocks. We
created the ghost block struct based on the standard
SimpleScalar cache blk t struct, but only containing
the tag for comparison, and previous and next point-
ers.

We based the structure of our implementation off
of the pseudo code description provided by Megiddo
et al. (Megiddo and Modha, 2003) Figure 14.
Case 1 is implemented in the cache hit portion of
SimpleScalar’s code, with redirection for the safe
and out caches. Many parts of our implementa-
tion closely mirrored original SimpleScalar func-
tions, with duplication to handle the two cache seg-
ments. Cases 2 through 4 were checked for and han-
dled in the cache miss section.

Replace was implemented as a function, which
took the set and chose which block to evict based
on the target size. Replace would call the removal
function for the chosen cache segment. We made a
make ghost block function to generate a ghost blk t
struct with the tag from an input cache blk t, when-
ever a block was evicted from the cache. We built a
checker function for keeping the ghost lists limited
to the number of block allowed by the ARC algo-
rithm.

Like SLRU and ARC, LIRS divides each set into
two lists–the LIR partition and the HIR partition. We
represented these two partitions as queues. The HIR
partition is only 1% of the total cache size. Since
we represented the LIRS cache directory in each set,
only one block was allocated towards the HIR parti-
tion in each set.

6 Results

We ran six benchmarks (Dijkstra, Patricia, Qsort,
Sha, Stringsearch and Susan) of the MiBench set
on SimpleScalar. We measured the miss rates of
the level-1 data cache as well as the unified level-2
cache with respect to eight different cache replace-
ment policies. The results are shown in appendix
A and B. Note that each letter on the right of the
figures corresponds to one cache replacement policy

(f-FIFO, i-LIRS, l-LRU, m-PLRU m, r-Random, s-
SLRU, t-PLRU t, a-ARC).

Our results show that out of the three most com-
mon replacement policies, LRU performs the best
in most cases, whereas Random generally has the
highest miss rates. PLRU t and PLRU m closely
model the behavior of LRU, with PLRU m perform-
ing slightly better than PLRU t.

Many of the DL1 cache benchmark results rein-
force the generally accepted rankings for these algo-
rithms. ARC exhibits lower miss rates than any of
the other policies, with LIRS not far behind. Some
notable results include DL1 miss rates for the Qsort
benchmark, where LRU, ARC, and LIRS perform
worse than any of the other policies, see Figure 4. In
the L2 tests, LIRS performed particularly well, fre-
quently having the lowest miss rate. This was most
pronounced in the run on the Dijkstra benchmark,
see Figure 8.

For any given cache replacement policy, the cache
miss rates tend to converge after associativity of
eight. For some benchmarks, the miss rate of a cache
replacement policy reaches its maximum/minimum
at a certain number of associativity. This trend is
best illustrated in Figure 6 and Figure 7, where the
cache miss rate is the highest at associativity of four
across all replacement policies.

7 Future Work

Continuing this project we would conduct further
analysis on the unexpected results we encountered.
We would also implement some of the other best of-
fline cache replacement policies, such as MQ, 2Q
and FBR. These poilicies require parameters to be
set manually for optimal performance, in contrast to
ARC. Because embedded systems often deal with a
more limited range of functions, programmer tuned
offline policies counld have an advantage over self
tuning algorithms with greater overhead. We would
need to research what configurations lead the policiy
to perform best for a given benchmark. While ARC
frequently outperforms these policies (Megiddo and
Modha, 2003) on general purpose processors, it
would be valuable to gather data on how ARC stacks
up against optimally configured offline policies in
embedded systems.
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8 Conclusion

We have generated statistics for the performance of
several cache replacement policies, namely LRU,
PLRU, Random, FIFO, SLRU, LIRS, and ARC on
the MiBench suite. Our findings largely reflected
those of other research on cache replacement poli-
cies, but with a few interesting results, namely the
poor performance of the top algorithms on Qsort at
DL1, and the notably superior performance of LIRS
on DL2.

These findings are indicative of the relative effec-
tiveness of these policies for typical embedded sys-
tem workloads. The gathering of information on this
subject is becoming more important as the preva-
lence of high powered embedded systems increases.
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APPENDIX A. Dl1 Cache Miss Rates

Figure 2: Dl1 Cache Miss Rates on Dijkstra

Figure 3: Dl1 Cache Miss Rates on Patricia

Figure 4: Dl1 Cache Miss Rates on Qsort

Dl1 cache size:16kB; block size:16B

Figure 5: Dl1 Cache Miss Rates on Sha

Figure 6: Dl1 Cache Miss Rates on Stringsearch

Figure 7: Dl1 Cache Miss Rates on Susan
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APPENDIX B. L2 Cache Miss Rates

Figure 8: Unified L2 Cache Miss Rates on Dijkstra

Figure 9: Unified L2 Cache Miss Rates on Patricia

Figure 10: Unified L2 Cache Miss Rates on Qsort

L2 cache size:32kb; block size:16b; 16kb 4-way dl1
and il1 cache with block size 16b

Figure 11: Unified L2 Cache Miss Rates on Sha

Figure 12: Unified L2 Cache Miss Rates on
Stringsearch

Figure 13: Unified L2 Cache Miss Rates on Susan
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Appendix C. Algorithm for Adapative
Replacement Cache

Figure 14: ARC Pseudo Code from (Megiddo and
Modha, 2003)
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Appendix D. Bit and Tree based PLRU

Figure 15: Diagram of PLRUm (Al-Zoubi et al.,
2004)

Figure 16: Diagram of PLRUt (Al-Zoubi et al.,
2004)
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Reverse Engineering NotCompatible

Gabriel Khaselev and Luis Ramirez

December 20, 2013

1 Abstract

The goal of this project is to reverse engineer
the prevalent android malware NotCompat-
ible. We obtained samples of NotCompat-
ible from researchers at various universities.
The malware was first noticed in the spring of
2012 but made a recurrence recently in 2013.
The samples we are trying to reverse engi-
neer are from the second round of malicious
activity. By Using static and dynamic analy-
sis to deconstruct the malware we attempted
to determine its purpose, method of action,
and stealth when present on an infected an-
droid device. Based on data examined after
reverse engineering NotCompatible we make
generalizations about the world of mobile se-
curity and in particular the process of under-
standing android malware and its interaction
with command and control servers.

2 Introduction

A wider selection of devices and cheaper en-
try points contribute to the Android operat-
ing system dominating the consumer smart-
phone market. Smartphones are used as col-

lection bins for personal information, clearly
users do not want this information shared
over the internet. With 79.3

One event that supports this prediction
is the recent resurgence of the android mal-
ware NotCompatible. Its first detection was
around may 2012 after which there was al-
most no activity on NotCompatible infected
devices. In 2013 this malware once again
spread throughout the android community
collecting potentially sensitive data on a large
number of infected devices. NotCompatible
is just one example of the increased number
of available android malware on the internet
and in circulation. After completely reverse
engineering NotCompatible it became clear
that it is infact a very sophisticated program,
using obfuscation techniques and inherently
complex program structure. The complexity
of NotCompatible makes it increasingly inter-
esting to examine.

3 Background

NotCompatible is known as Drive-By mal-
ware, it infects devices when the user vis-
its a web page that is hosting it or infected.

1
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<iframe style="visibility:hidden;

display:none;"

src="...websiteURL..."><iframe>

Figure 1: An example iframe

Normally, a spam email is opened and inside
of the email a link is clicked that redirects
the victim to an infected site. Distribution
of NotCompatible depends on compromised
websites that have a hidden iframe at the bot-
tom of each page such as the iframe shown in
Figure ??. This iframe is present in the fake
Fox News website shown in Figure ??.

If a user visits a compromised website
from an Android device, their mobile web
browser will automatically begin download-
ing the NotCompatible application, named
SecurityUpdate.apk. The web page informs
the user that their current device is not com-
patible with the site, and that they have
the update to fix the problem. If the user
has sideloading enabled (an option that al-
lows users to install applications from sources
other than the official android market) and
they accept the “update”, the malware in-
fects their device. Once on the device, Not-
Compatible may be connecting to private
networks by proxying through Android de-
vices connected to the network over wi-fi, this
poses an interesting threat and looks much
like a botnet.

We obtained two samples of the NotCom-
patible Malware from Professor Damon Mc-
coy at George Mason University. One sample
comes from the malware’s first release around
May of 2012, the second is from a resurgence

of NotCompatible that occured in the spring
of 2013. Both samples seemed very similar
if not identical however one was named Up-
date.apk while the other was named Securi-
tyUpdate.apk. The samples connected to dif-
ferent command and control servers. The ear-
lier sample attempts to connect to notcom-
patibleapp.eu, the domain for which the mal-
ware was first named. However, this server is
no longer running. Throughout the following
sections most procedures were applied to the
more recent sample.

4 Reverse Engineering

Neither dynamic or static analysis can be
used independently to reverse-engineer a
piece of malware. For Android malware, a
lack of sufficiently advanced dynamic analy-
sis tools and a large codebase compounds the
problem. While static analysis produced the
majority of our findings, the dynamic analy-
sis tools that we were able to use provided us
clues as to where to focus source code audit-
ing. These two methods in conjuction were
effective in the reverse engineering process.

4.1 Tools

There is no standard set of reverse engineer-
ing tools for android applications. Through a
number of steps we were able to combine sev-
eral tools namely: Java Debugger, Android
Apktool, Dex2Jar, and JDgui. These tools
were used to decompile the malware in several
steps to obtain resource files, dalvik bytecode,
and finally java source code. Lastly we used

2
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Figure 2: The spam page created by NotCompatible.
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a dynamic analysis tool called CopperDroid
to analyze our sample for network activity, as
as a method of running the application in a
constant environment.

4.1.1 JDB

Java Debugger was the first tool that we at-
tempted to use on the sample. The process
of attaching a JDB session to an android ap-
plication requires the application to already
be running. This prevented us from using
JDB to inspect the startup procedure of the
malware. Since this included decrypting the
data.bin file, we could not observe the unen-
crypted contents of the file.

Once the debugger was attached, JDB was
able to provide a useful thread dump, shown
here in Figure ??. Thread 10 (AsyncTask 1)
was of interest, because it was where the net-
work communication most likely resided. Un-
fortunately, JDB is a very limited tool with-
out access to source code. Setting a break-
point is entirely guesswork without access to
the source code. Even when stopped, JDB
does not allow the user to step through in-
structions at a bytecode level. This prevented
us from using the tool further.

Traditional tools used on x86 architectures
(GDB, Ida Pro, etc.) do not translate well to
the arm architecture or java stack. While it
is possible to attach a GDB stub underneath
the Dalvik VM, the view provided is too fine-
grained to be of real use. While JDB can-
not produce enough information, GDB cre-
ates too much.

Group main:

(java.lang.Thread)0xc14001f1a8

<1> main running

(java.lang.Thread)0xc1405ac760

<11> Binder Thread 3 running

(java.lang.Thread)0xc1405a0670

<10> AsyncTask 1 cond. waiting

(android.os.HandlerThread)0xc140591f28

<9> launcher-loader running

(java.lang.Thread)0xc14050f208

<8> Binder Thread 2 running

(java.lang.Thread)0xc14050f140

<7> Binder Thread 1 running

Figure 3: Thread dump from JDB.

4.1.2 Apktool

Apktool was used to decompile and recom-
pile dalvik vm bytecode. At the bytecode
level, we could instrument functions and data
structures of interest, and extract the infor-
mation via a side channel often just writing
data to a file. Apktool creates text files in the
smali format. It is a relatively new file format
used to write dalvik VM bytecode. While ac-
cess to bytecode was essential in reverse en-
gineering NotCompatible, apktool was par-
ticularly useful because it gave us access to
the AndroidManifest.xml for the application
as well as an encrypted data file. An an-
droid manifest details the permissions and
intents that the program requires for oper-
ation. Throughout the android community
there is a stigma against allowing applica-
tions with a multitude of permissions, inter-
estingly enough NotCompatible only requires
three permissions Internet, Network State,

4
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and Boot Completion. The permissions are
seen by the user as detailed in figure 3, notice
that there are only three permissions which
makes the malware appear less threatening.

Overall apktool was essential in the re-
verse engineering process because it allowed
us to statically modify bytecode to change
the malware for testing and provided us with
the complete AndroidManifest.xml that de-
tails the applications permissions and intent
receivers.

4.1.3 Dex2Jar and JDgui

After using Apktool to unpack the .apk and
retrieve smali bytecode it became possible to
determine what the malware is doing however
it is incredibly difficult to follow smali byte-
code in a way that sheds light on the pro-
grams structure. Thus it became neccesary
to convert the bytecode into something more
readable, ideally java source code.

Dex2Jar is a decompiling tool used for con-
verting bytecode in the smali format (ending
with .dex or .odex) to java class files. This
step did not reveal a significant amount of
information about NotCompatible but pro-
vided the java class files that would later
be used as input for JDgui. JDgui is an-
other decompiling tool, it took as input the
java class files produced by Dex2Jar and con-
verted them to java source files. It is impor-
tant to note that these source files are not
completely accurate to the java code written
by the malware author. Often decompilation
causes changes in the source code due to com-
piler optimizations. One interesting aspect
of the source files is the main Run method

Figure 4: The install dialoug only appears if
the users has sideloading available.
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of the ThreadServer class (both are discussed
in section 5), the Run method could not be
decompiled into java instead the decompiler
returns an error and prints the function in its
original bytecode. It is possible that the Run
method was originally written in bytecode by
the author of NotCompatible or that some
obfuscation techniques were used to prevent
decompilation.

At this point we were able to analyze and
study the java source files to determine the
relationship between several classes in the ap-
plication. Doing so allowed us to better un-
derstand the bytecode with respect to the de-
compiled java source files we obtained.

4.1.4 CopperDroid

CopperDroid is a tool that automatically
performs out-of-the-box dynamic behavioral
analysis of Android malware. CopperDroid
presents a unified analysis to characterize
low-level OS-specific and high-level Android-
specific behaviors. Based on the observation
that behaviors are enacted through the invo-
cation of system calls, CopperDroid’s VMI-
based dynamic system call-centric analysis is
able to describe the behavior of Android mal-
ware. In addition, CopperDroid features a
stimulation technique to improve code cov-
erage, aimed at triggerring additional behav-
iors of interest. CopperDroid uses random-
ized and targeted stimuli to effectively unveil
most aspects of android malware.

We used CopperDroid on a number of
occassions, often we would seek to obtain
results about network communication Not-
Compatible is making. Our first run through

CopperDroid allowed us to see several impor-
tant system calls NotCompatible was mak-
ing. Among these system calls were DNS and
HTTP requests to several different servers,
most of the requests were communication
with NotCompatibles command and control
servers. We also noticed that the application
was probing mail.live.com and login.live.com,
clearly these are proxy connections issued by
the command and control server and exe-
cuted by the infected device. Additionally
CopperDroid’s results disclosed several file
read and write operations on the data.bin file
that we obtained using Apktool.

We became curious as to the contents of
data.bin. By using the data we received from
CopperDroid we were able to determine a
method for decrypting NotCompatibles pri-
mary data file. Inspection of the source files
allowed us to pinpoint the methods used for
writing to data.bin, this is show in Figure
??. We found the appropriate bytecode that
executes the save function when writing to
data.bin and deleted the encryption, we also
deleted the parts of the bytecode that try to
decrypt data.bin. Figure ?? shows the por-
tion of the bytecode responsible for encryp-
tion, we removed the second and third line
and resubmitted the modified sample of Not-
Compatible to CopperDroid. This technique
was fruitful in decrypting data.bin, we dis-
covered the command and control servers are:
244777988244.su and berriesko.ru both using
port 443.
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public void Save()

{

String str = this.Server1 + "|" + this.Server2 + "|" + this.Port1 + "|" +

this.Port2;

try

{

DataOutputStream localDataOutputStream = new DataOutputStream(new

FileOutputStream(this.Owner.getFilesDir().getAbsolutePath() +

"/data.bin"));

localDataOutputStream.write(Encrypt(str.getBytes()));

localDataOutputStream.flush();

localDataOutputStream.close();

return;

}

catch (IOException localIOException)

{

localIOException.printStackTrace();

}

}

Figure 5: Save function. This encrypts and stores the current Command and Control servers
to the data.bin file.

invoke-virtual {v2}, Ljava/lang/String;->getBytes()[B

move-result-object v3

invoke-virtual {p0, v3}, Lcom/android/fixed/update/Config;->Encrypt([B)[B

move-result-object v3

invoke-virtual {v1, v3}, Ljava/io/DataOutputStream;->write([B)V

Figure 6: This is the portion of the bytecode responsible for encrypting and saving the
servers to the file.
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5 Analysis

Through reverse engineering of NotCompati-
ble we were able to obtain decompiled source
code detailing methods, inheritance, and con-
trol flow. Figure ?? shows a high level block
diagram of the malware. Using an onBootRe-
ceiver the malware starts as soon as the de-
vice is powered on. The initialization class
is called FixedUpdate, it sets up many of the
initialization parameters and creates a Config
class that handles reading, writing, and en-
crypting server names and ports in data.bin.
FixedUpdate also launches the main Thread-
Server whose Run method is used to setup
and maintain the communication channel be-
tween an infected device and the command
and control servers. The ThreadServer starts
an instance of NIO Server, the NIO Server
class maintains a list o selectors which are
used in conjuction with selection keys to con-
nect to server addresses stored in each selec-
tor. ThreadServer creates the first instance
of a MixerSocket, a class that communicates
back and forth with the command and con-
trol server using MuxPackets instead of stan-
dard network packets. MuxPackets are an
obfuscation technique to make packet sniff-
ing more difficult. MixerSockets receive com-
mands such as changes in server names as
well as commands to create a proxy connec-
tion through the infected device. When the
command is sent to establish a proxy connec-
tion the address sent from the command and
control server to the MixerSocket is used to
start a ProxyConnect class. The proxy con-
nect class makes an HTTP request to the ad-
dress specified by the server. Both proxycon-

nect and MixerSocket inherit from Custom-
Socket, a class that implements basic sending
and receiving of network packets.

The following is a more detailed analysis of
important classes in NotCompatible.

5.1 Config

The config class is instantiated in several
places in NotCompatible. Its first instance is
created by FixedUpdate. Within config there
are plain text strings that define the encyp-
tion methods used and even the passkey.

• Ciper: AES ECB NoPadding

• Key Algorithm: AES

• PassKey: ZTY4MGE5YQo

Even with this information it was not triv-
ial to decrypt data.bin, instead we opted to
modify the bytecode as mentioned in section
4.2.4. Config is capable of loading data.bin or
creating it if it does not already exist and en-
crypting and decrypting the file during read
and write processes. Figure ?? shows the call
to load data.bin. All other calls to Config
are made in MixerSockets when they receive
the command to change the server address or
port.

5.2 MixerSocket

MixerSocket is the most important class in
NotCompatible because it executes all of
the communication that occurs between the
servers and an infected device. When the
malwarre first starts the MixerSocket estab-
lishes a handshake with the command and

8

188



control server. The first step is to exe-
cute the onConnect method shown in ??.
The input parameter is a selectionkey used
to access a particular selector in the NIO
Server and connect to the appropriate com-
mand and control server. We can see that
there is some obfuscation happening, the
author of NotCompatible is sending a spe-
cific array of bytes in a MuxPacket, the
onConnect data being sent from the mal-
ware is 04000001050000000007000000. Next
the server reads this data, if it is incor-
rect the connection is immediately termi-
nated. We discovered this through prob-
ing the command and control servers in a
browser. Finally the server sends back a con-
firmation in the form of a ping and the Mix-
erSocket responds with a pong as shown in
??. The array of bytes sent in the pong is
040000010100000005. At this point the Mix-
erSocket can now openly communicate with
the server, this means it has two main func-
tions. The first is to change the servers and
ports in data.bin by calling config. The sec-
ond is to pass a parameter sent from the
server to a proxy connection to make the
HTTP request.

5.3 proxyConnect

The main purpose of proxyConnect is to send
an HTTP request from the infected device
to an address specified by the command and
control server. As previously stated, the com-
mand and control server sends this address to
a MixerSocket which passes it to the proxy-
Connect class. The proxyConnect class then
makes the HTTP request and upon receiving

public void onConnect(SelectionKey

paramSelectionKey)

throws IOException

{

super.onConnect(paramSelectionKey);

this.Status = "Connect";

int i = (byte)(0xFF &

this.ConnectType);

int j = (byte)(0xFF &

this.ConnectType >> 8);

byte[] arrayOfByte = new byte[5];

arrayOfByte[1] = 7;

arrayOfByte[3] = i;

arrayOfByte[4] = j;

MuxPacket localMuxPacket = new

MuxPacket();

localMuxPacket.dataType = 1;

localMuxPacket.Data.put(arrayOfByte);

Send(localMuxPacket.pack());

}

Figure 9: onConnect. This function starts
the handshake with the server.

public void sendPong()

throws IOException

{

MuxPacket localMuxPacket = new

MuxPacket();

localMuxPacket.dataType = 1;

localMuxPacket.Data.put((byte)5);

Send(localMuxPacket.pack());

}

Figure 10: SendPong, this function handles
the 3rd part of the handshaking procedure.
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data from the request it forwards this data
back to the command and control server by
calling its parent MixerSocket and telling it
to send MuxPackets containing the new in-
formation.

5.4 MuxPacket

The MuxPacket is used when communicating
between a MixerSocket and a Command and
Control server. The MuxPackets are clearly
an obfuscation technique to make it more dif-
ficult to unmarshall packets being sent be-
tween the malware and the servers. The
code below shown in Figure ?? is the decom-
piled source code for the pack method which
scrambles packet data. The use of MuxPack-
ets by NotCompatible makes it significantly
more stealthy and much harder to reverse en-
gineer. CopperDroid was unable to deter-
mine the contents of packet data sent between
the malware and the server, in the results we
obtained when running our variant of Not-
Compatible packet data was incomprehensi-
ble.

6 Ramifications and Im-

plications

6.1 Botnets

Moore’s law has not overlooked mobile de-
vices. They are quickly becoming almost as
powerful as traditional x86 computing sys-
tems. Coupled with the fact that mobile de-
vices are ususally run continuously with a
constant internet connection, this is an as

of yet mostly untapped resource for the elec-
tronic crime community. NotCompatible has
a plethora of untapped potential, and with
the growing power and market penetration
of mobile devices, it will certainly not be the
last android botnet.

Botnets have traditionally been used to
send spam, store stolen information, and
DDOS web servers. The author of Not-
Compatible simply uses the victim’s phone
as a proxy, presumably to make future at-
tacks more difficult to trace. With the grow-
ing popularity of hidden networks such as
TOR and I2P, it is not surprising that mal-
ware authors might want another method to
anonymize themselves. This does not mean
that it is incapable of fulfilling more tradi-
tional botnet roles. In the current state, Not-
Compatible could easily be used to DDOS a
web service. It can also be used to proxy into
private networks that are not normally acces-
sible from the internet. Only slight modifica-
tions would be necessary to make it a vehicle
for discovering exploits on these and internet-
facing hosts. SQL injections, port sniffing,
and buffer overflow attacks are all accessible
with the current state of mobile platforms.
There are numerous other methods that mal-
contents can monetize malware. For instance,
a similar trojan can be used to offload pass-
word cracking computations or other highly
parallelizable tasks to a large group of com-
promised mobile devices. Clearly NotCom-
patible has the potential to be very danger-
ous.
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6.2 Android

Despite how dangerous NotCompatible and
other mobile botnets seem to be, the primary
focus in mobile security today is in regulat-
ing permissions to protect sensitive user data.
NotCompatible bypasses this, because it does
not target user data. The broader implication
however, is that the current system of permis-
sions can be bypassed by ignoring sensitive
data on the devices. The permissions sys-
tem in its current implementation cannot pre-
vent attacks like this from happening. Not-
Compatible only uses 3 permissions: network
state, system tools (to turn on at boot), and
internet. Internet permissions is one of the
most common on Google Play, and it is not
uncommon for an application to ask for 6 or
even more permissions. Even to an astute
android user, NotCompatible does not seem
malicious at the surface level. Although this
malware can still incur data and energy costs
to the phone users, as well as giving the bot
herder a computational leg up.

Another problem with the current android
security paradigm is that applications can
start a background process without the user’s
knowledge or permission. NotCompatible
does not even have any visible pages. When
observed in the runnning processes list, it ap-
pears to be a system process.

7 Conclusions

We were able to successfully reverse engineer
samples of NotCompatible. The samples we
reverse engineered are from the second round

of malicious activity. By Using static and
dynamic analysis to deconstruct the malware
we determined its purpose, method of action,
and stealth when present on an infected an-
droid device. NotCompatible is a sophisti-
cated mobile botnet, but it is clear that it is
simply a proof of concept that such a bot-
net can be created. In the current state of
mobile security malware like NotCompatible
is extremely dangerous in that it has many
capabilities and is very difficult to detect, es-
pecially as the owner of an infectd device. We
conclude that the current state of mobile se-
curity is ill-equiped to handle the possibil-
ity of a powerful android botnet and that in
the future steps should be taken to minimize
the threat of botnets to the online community
and protect ordinary citizens from malicious
bot herders.
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Figure 7: Control flow diagram for Not Compatible.

localObject = new FileInputStream(new

File(this.Owner.getFilesDir().getAbsolutePath(), "/data.bin"));

Figure 8: Loading data.bin in Config
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public MyBuffer pack()

{

this.length = this.Data.Size;

MyBuffer localMyBuffer = new MyBuffer();

localMyBuffer.put(this.version);

localMyBuffer.put((byte)(0xFF & this.chanal));

localMyBuffer.put((byte)((0xFF00 & this.chanal) >> 8));

localMyBuffer.put(this.dataType);

localMyBuffer.put((byte)(0xFF & this.length));

localMyBuffer.put((byte)((0xFF00 & this.length) >> 8));

localMyBuffer.put((byte)((0xFF0000 & this.length) >> 16));

localMyBuffer.put((byte)((0xFF000000 & this.length) >> 24));

if (this.length > 0)

localMyBuffer.put(this.Data.array());

return localMyBuffer;

}

Figure 11: pack. This function scrambles the packets sent in order to provide another layer
of obfuscation.
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