
CS97 Project Proposal – Reverse Engineering

Android Malware using Static and Dynamic

analysis tools

Luis Ramirez and Gabriel Khaselev

1 Abstract

The goal of this project is to reverse engineer the prevalent android malware
NotCompatible. We attained samples of this malware from researchers at vari-
ous universities. The malware was first noticed in the spring of 2012 but made
a recurrence resently in 2013. The samples we are trying to reverse engineer are
from the second round of malicious activity. By Using static and dynamic anal-
ysis to deconstruct the malware we hope to determine its method of action and
how it maintains minimal noticablity on the infected android device. Addition-
ally we hope to determine how the application determines whether it has been
installed on a physical device or emulator. We suspect that the detectability of
the malware is directly linked to which android OS permissions and processes
NotCompatible uses.

2 Motivation

A wider selection of devices and cheaper entry points contribute to the Android
operating system dominating the consumer smartphone market. Smartphones
are used as collection bins for personal information, clearly users do not want
this information shared over the internet. With 79.3% of the smart phone
market share dominated by android, this malware has the potential to infect
a very high number of users. Recent statistics show that NotCompatible has
already infected upwards of 300,000 devices. We predict that android malware
will become more and more prevalent as the computing paradigm shifts towards
mobile devices.

3 Background

NotCompatible is known as Drive-By malware, it infects devices when the user
visits a web page that is hosting it. The web page informs the user that their
current device is not compatible with the site, and that they have the update to

1



fix the problem. If the user has side-loading enabled (an option that allows users
to install applications from sources other than the official android market) and
they accept the ”update”, the malware infects their device. Once on the device,
NotCompatible silently overwrites web pages on reputable sites with weight-
loss pill advertisements. The malware also peruses the user’s contact and email
information, most likely uploading the information to the comand and control
(CNC) server. NotCompatible can use this information autonomously as well,
and sends an email with a link to the malicious web site to every contact.

4 Idea

NotCompatible does not display any of these behaviors when run in the Android
Virtual Device. The software package installs, and the service remains dormant
when not run on a physical device. There are a suite of tools for analyzing
and reverse engineering android apps and malware. The official android SDK
has many tools such as adb that provide an debugging interface that can bind
onto a running process and give instruction-level resolution. Android-apktool
will decompile an android apk package into manifest xml files and smali files.
Manifest files describe the permissions that the app will use, while smali files
give an overview of methods defined. Copper Droid is an emulation environment
designed specifically to probe android malware to discover the entire range of
behaviors it can show.

5 Timeline

Because of the nature of reverse engineering malware our milestones will be a
bit fast and loose. Hopefully we make significant progress continuously and
can push our efforts further and further. But we may discover as we begin to
decontruct NotCompatible that it has much more functionality than expected
and may be more challenging to reverse engineer than expected. The following
milestones are general goals but will most certainly need to be reevaulated as
we go about the project and discover more or less than we expected.

• MileStone 1: Unpack the .apk and extract relevant information from the
android manifest file. We will use this information to run the malware in
the Copper Droid emulation infrastructure. Additionally we will try to
infect a physical device and observe the effects that NotCompatible has
on the device.

• MileStone 2: Mostly TBD. If the application can run in Copper Droid or
other dynamic analysis frameworks we can try to determine the system
calls made by the malware, how it determines whether it is being run in
an emulator, and how it maintains operation when the user tries to delete
it.

2



• MileStone 3: Completely TBD. If reverse engineering of the application
goes well we will try to determine the effectiveness of this kind of malware
and analyse its prevalence on devices and how effective it really is. This
final stage is basically a reflection on the state of android malware and in
particular the role that NotCompatible plays in the android world.

6 References

6.1 Frameworks

• android-apktool A program to decompile .apks

• Stack Overflow Guide on getting a source code from an apk file

• Copper Droid Android Dynamic analysis framework

• DroidBox Another Android dynamic analysis framework

6.2 Articles

• Felix Matenaar on reverse engineering Android Apps

• So You want to reverse engineer an APK

• Infosec Android malware analysis resources

• Remnux and Mobisec Behavioral android analysis

3

https://code.google.com/p/android-apktool/
http://stackoverflow.com/questions/3593420/android-getting-source-code-from-an-apk-file
http://copperdroid.isg.rhul.ac.uk/copperdroid/about.php
https://code.google.com/p/droidbox/
https://mocana.com/blog/2013/09/13/deviceline-radio-felix-matenaar-reverse-engineering-apks/
https://kkinder.com/2011/11/27/so-you-want-to-reverse-engineer-an-android-app-apk/
http://resources.infosecinstitute.com/android-malware-analysis/
http://countuponsecurity.com/2013/04/21/behavioral-android-malware-analysis-with-remnux-and-mobisec/

	Abstract
	Motivation
	Background
	Idea
	Timeline
	References
	Frameworks
	Articles


