Project Proposal: Visualizing strace

Cynthia Ma - cmal, Sola Park - sparkl
October 3, 2013

1 Abstract

The list of system calls that strace outputs is useful information that is difficult
to grasp because the language and syntax is unfamiliar for programmers who
visualize the computer system from a higher level. Coming from this perspective
ourselves, our goal for this project is to parse this information and display it
visually in a manner that will be more intuitive to understand. Specifically, we
will start by displaying the behavior of a single system call, then expanding to
include multiple calls in a trace to grasp a bigger picture. In the process, we
hope to find a visualization method that best conveys information about the
computer system as a whole.

2 Motivation

When programs crash, or computers run out of memory, or simply run slower,
there is a desire to understand why. What goes on underneath code and the
interface of a program, however, is easy to neglect and hard to understand be-
cause it is not as tangible and the information abstract. strace is an example
that demonstrates this problem. It is a tool used to see what happens between
a program and an operating system’s kernel, but its output is simply a list of
system calls. As people who are interested in computer science but unfamil-
iar with operating systems, we find it meaningful to try different visualization
schemes in search for a method that would help users better digest this infor-
mation. We expect our project to be mostly used by those who are experienced
with software programming in general but not so much experts on computer
systems.

3 Background

We haven’t found a previous attempt at making strace output easier to under-
stand through visualization, although there is code named vistrace that creates
a circular graph of strace output in a manner that appears to emphasize aesthet-
ics over comprehension. Researching the broader topic of software visualization



gave us references to previous efforts in visualizing traces in general. Specifically,
we found two papers that discuss visualizing traces of events and provide in-
spiration for different visualization schemes that can be applied for our project.
First, Zinsight [1] visualized large event traces in multiple displays, two of which
seem usable for our project. The first is a two dimensional graph where time
is mapped along the y-axis, event-associated information is mapped along the
x-axis, and events are organized by color. The second is displaying the events
in a tree-like structure. In the first, it is easier to see patterns like loops, while
in the second, it is easier to see paths leading from one event to the next. A
third possible display was found in the second paper about visualizing Windows
system traces [2] using a binary DotPlot display to visualize event similarity
between two traces.

4 Idea

Our main idea is to parse the output data returned by strace and display it
visually in a comprehensive manner for our users. We will start out by first
visualizing strace in a narrow scope by displaying information about a single
trace, such as its path or general statistics. We hope to then expand into a
wider scope of viewing these system calls as events in a larger context of the
program and kernal, and also compare multiple traces.

5 Goals

Milestone 1: In general, we will read papers to better understand strace and
the syntax of its output. By the first milestone meeting, we hope to have
implemented a basic visualization of a single system call, with code that can
take a file of an strace output and parse the information into seperate system
calls.

Milestone 2: By this milestone meeting, we hope to demonstrate a visualiza-
tion of a single strace, likely by using the tree method or some user-interactive
step-through graph between program and kernel.

Milestone 3: By the third milestone meeting, we will expand our visualiza-
tion to display the kernel architecture in more detail that will hopefully provide
a wider context in which the system calls are made, whereas the previous effort
would have been about analyzing each system call individually.

References

[1] W. De Pauw and Steve Heisig. Zinsight: A visual and analytic environment
for exploring large event traces. SOFTVIS’10, pages 143-152, 2010.

[2] Y. Wu, Roland H.C. Yap, and Felix Halim. Visualizing windows system
traces. SOFTVIS’10, pages 123-132, 2010.



