
Generalizing a Probabilistic Auto-Tuning Method
for Increased Compatibility

Alex Cannon
Swarthmore College

Brian Nadel
Swarthmore College

Aashish Srinivas
Swarthmore College

Abstract—Shortcomings of conventional compiler optimiza-
tion, due in large part to computer architectures growing in-
creasingly more complex, has inspired an interest in tuning
algorithm-level parameters to optimize the performance of an
application. While such tuning continues to be done manually,
automatic tuning (auto-tuning) methods are being explored as
a more efficient and effective way of configuring applications
optimally. Such systems are useful for ensuring that performance-
critical code can be tuned to run near-optimally on different
system environments. The goal of our present project is to
port a probabilistic auto-tuning system into the C programming
language so that it can more easily be implemented in various
software projects. We will first implement a general, lightweight
auto-tuning framework which will allow users to define tuning
knobs in their application and a search strategy that optimizes
those tuning parameters through repeated recompilations and
runs. Next, we will implement the specific probabilistic search
strategy described in [2] as a plugin to this framework. If time
allows, we will also test this system on an auto-tunable application
and compare results from different search strategies and auto-
tuning frameworks.

I. BACKGROUND

Auto-tuning is the process of tuning program parameters
to optimize some measure (often performance) on a given
computer architecture. In general, the goal of an auto-tuning
algorithm is to maximize the value of an objective function
subject to some constraints. A naive method of auto-tuning is
the hill-climbing or gradient-ascent approach. In this method,
we can find a local optimum by repeatedly finding the slope of
the objective function at particular points, then moving in the
direction of greatest increase. The algorithm terminates upon
reaching a local maximum.

However, algorithms like gradient-ascent are highly de-
pendent on the starting set of parameters, and they generally
do not make use of all the information available to them
at any point. In addition, the search space for many auto-
tuning problems are highly irregular and jagged. This makes
gradient-ascent particularly ineffective, as there are many sub-
optimal local maxima. Moreover, high-performing parameter
configurations are often close to low-performing or crash-
inducing configurations, as the best configurations occur when
system resource utilization is pushed to its limit. The intuition
of [2] is that we can use a probabilistic method to make
better predictions about the performance of untested parameter
configurations. Particularly, for any untested configuration c,
we try to find the k-nearest neighbors n1 , , nk (where distance
is the manhattan distance between ni and c in the space of

tuning parameters). Then, we use these nearest neighbors to
extrapolate how the system will perform under the untested
configuration c. Using this method allows for a more informed
search of the complex space than is possible under gradient-
ascent.

II. MOTIVATION

One implementation of this probabalistic auto-tuning frame-
work has yielded promising results [2] . However, its current
implementation is designed within a very specific com- puter
infrastructure, and its compatability is severely limited. A
large part of this limitation stems from the fact that the
whole package is written in Java. Not only does this limit
performance, but it requires the entire Java Virtual Machine
to be distributed along with the software. Other specific design
choices, like storing auto-tuning output in Xcel files, also
limits portability.

By rectifying some of these compatability limitations men-
tioned previously, we hope to create a new auto-tuning
framework that draws heavily from the system outlined in
[2], but that is more modular, lightweight, and generalizable.
Ultimately, our hope is that this bare-bones framework will
become a new standard in lightweight auto-tuning, much like
SQLite has become the standard for lightweight databases.

III. OUR IDEA

A large part of our project will be translating large parts of
the system in [2] from Java into C. Though a fairly straigh-
forward undertaking, this process is by no means trivial. One
source of difficulty may be removing large parts of the original
package from their web of Java-related dependencies. In doing
so, however, a majority of the compatability restrictions will
be resolved. This will allow our framework to be applied to
the vast universe of C code, and also make the tool more
light-weight. Another important point is that some features
are much easier to measure in C as opposed to Java. For
example, the source code for perf and ps are written in C.
The first can be used to measure the cache hit/miss rate
and other importance processor-level performance statistics
while the second can be used to measure memory usage.
We can bundle the source code for these applications with
our software and use them to measure different performance
characteristics. This will allow users to define more complex
and specialized objective functions and constraints for auto-
tuning. In addition, a C implementation will make significant



performance improvements as compared to its original Java
implementation.

The second main part of the project will making the existing
design more modular. By allowing search strategies to be
easily interchanged, not only will the framework be customiz-
able according to the wishes of future users, but we will be
able to compare the performance of the probabilistic search
strategy to other more naive strategies. This will allow us to
better understand the relative merits and flaws of each search
strategy, and to expand off of the evaluation performed in [2].
On a similar note, we will attempt to generalize smaller ad-hoc
design decisions in the original implementation. Rather than
directing output to Xcel spreadsheets, for example, we intend
to use an SQLite database. Library of STuneLite parameters?
Environment Variables? ”Forking” a new process?

IV. RELATED WORK AND POSSIBLE DIRECTIONS FOR
FUTURE WORK

A relatively flexible auto-tuning framework already exists.
ActiveHarmony, the 4.5 version of which was released as
recently as September 30, is an autotuning framework that
supports the use of interchangeable search strategy plugins,
an implementation of the same kind of modularity we hope
for in our design [1]. Admittedly,the differences between
Active- Harmony and the framework we seek to design our
unknown, though our intuition is that our design will be
more lightweight. Though time will likely not allow us a full
comparison between our system and ActiveHarmony, such a
comparison may be useful direction for future work.

V. GOALS FOR MILESTONES

The first goal of our project will be to developing a skeleton
auto-tuning framework. For some program with a simple
search space, we intend to first get a trivial search strategy
working (most likely a ”try every candidate” point strategy).
In order to properly test, we will also need to identify such a
program we can use. We may split up these tasks such that one
person focuses on identifying a test program and interfacing it
with our framework, (this will likely involve writing a suitable
application wrapper), while the other two focus on developing
the autotuning program itself. Ideally for Milestone 1, we hope
to put together an autotuner that produces some tangible result.
If we are unable to accomplish this, we will at least be able to
present a greater understanding of the code, and some partial
progress toward a working program.

For milestone 2, we hope to develop a more complete and
interesting program that uses a non-trivial search strategy. This
will also require a test application with a more complex search
space. We will likely split up the work in the same way as for
Milestone 1, as we will be familiar with our respective. Again,
this task may prove too big to accomplish by Milestone 2, in
which case it will carry over into Milestone 3.

Our goals for Milestone 3 will be largely dependant on
our progress in previous Milestones 1 and 2. In any case,
we hope to produce an interesting and non-trivial auto-tuning
program. Depending on time, we may also do further analysis

on this program, including comparisons of different search
strategies and of results of our auto-tuner to related work such
as ActiveHarmony.

REFERENCES

[1] Jeffrey K. Hollingsworth and Ananta Tiwari. Performance Tuning of
Scientific Applications. CRC Press, University of Maryland, College Park,
2010.

[2] Benjamin Ylvisaker and Scott Hauck. Probabalistic auto-tuning for
architectures with complex constraints. EXADAPT ’11, pages 22–33,
2011.


