
Analysis of Effective Use of
Thread-Level Parallelism in

Mobile Applications

Ethan Bogdan and Hongin Yun

CS97 Project Proposal

10/5/2013

Abstract

We intend to study how software development paradigms have (or have not) evolved to take advantage
of new potential for parallelism on mobile devices. We will be emulating a variety of popular apps for
Android and iOS and tracing their use of threads via the DTrace framework. Our results will offer visual
and mathematical evidence of prevalent inefficiencies and concurrency hazards, which could be avoided
through smarter multi-threading practices.

I. Motivation

In recent years, hardware, even on mobile
devices, has evolved to support parallelism
through muli-threading on one or more cores.
However, software developers are still catching
up. We suspect that many common apps either
make limited use of multi-threading, or else
generate a lot of small, event-based threads.
These threads may be convenient for the de-
veloper, but spend most of their time idle and
risk unnecessary concurrency issues. We are
interested in detecting this phenomenon in mo-
bile devices and studying whether it can be
improved by serialization.

II. Background

We draw inspiration for our work from the orig-
inal study done by Flautner et al. on desktop
applications in 2010. [1] The authors investi-
gate whether software developers for desktop
machines have followed the hardware trends
by creating software for multi-processing. The

authors analyze a range of desktop applica-
tions on Microsoft Windows 7 and Apple’s OS
X Snow Leopard for Thread Level Parallelism
and conclude that the 2-3 cores are more than
sufficient for most applications, and that cur-
rent desktop applications are not fully utilizing
multi-core architectures.

Other studies in a similar vein date back to
2000, when Flautner et al. investigated the
thread-level parallelism and interactive re-
sponse time of desktop applications. [2] This
study was done when multiprocessing was
prevalent mostly in servers and just began to
enter into desktop machines. While servers
were considered to be a natural fit for multi-
processing due to its nature of having multiple
clients, the benefits of multiprocessing for
desktop applications were not obvious. Now
as the multi-processor systems are entering
smartphone market, we believe it is a natural
extension of studies to ask whether the benefits
of multiprocessing are fully reaped on mobile
devices.

1



III. Idea

Rather than instrumenting the mobile devices
themselves, our plan is to emulate their hard-
ware on a Macintosh computer, then use
DTrace to analyze their use of threads on the
host system. We are choosing this approach
because the full power of Sun’s DTrace frame-
work, which supports writing versatile tracing
tools in “D code,” is only available on desktop
systems. Moreover, convenient emulators for
both the Android and iOS operating systems
are freely available in their respective SDKs.
These emulators will be optimal for situations
in which we have direct access to source code.
Compiled binaries, which exist in far greater
supply, present a slightly greater challenge, par-
ticulary on iOS.1 In this case, we will have to
use a combination of the third-party BlueStacks
(for Android emulation)2 and Hopper (for iOS
decompiling).3

Our interest is in running these tools on
some of the most commonly used apps for
both types of phone. These apps will fall into
a representative cross-section of categories (e.g.
games, productivity, networking) with extra
emphasis placed on those with evidently par-
allel structure or event systems. We will use
a combination of statistical analysis and visu-
alization tools to categorize (i.e. computation-
heavy vs. event-based) and characterize (i.e.
efficient, suboptimal, etc.) the thread behavior
of these apps.

IV. Milestones

Our work naturally lends itself to three sep-
arate phases: setup and preparation of tools;
application of tools to research a variety of
apps; visualization and statistical anaylsis of
results. These phases are broken into more
concrete goals below:

I. Goals for Milestone 1 (11/6)

The primary tool we’ll be using is DTrace, with
which neither of us have any experience. By
Milestone 1, we will have:

• Installed and configured DTrace
• Learned and practiced D code syntax
• Written thread tracing tools suited to our

needs, and tested them on sample desk-
top and mobile applications

We will also be using this time to set up
our emulation software and explore the feasi-
bility of reverse compiling for iOS. Hongin will
likely focus more on the Android side, while
Ethan tackles iOS. In the end, we should have
a fairly representative pipeline put together for
our research in Milestone 2.

II. Goals for Milestone 2 (11/20)

The next phase of our work will begin with
selecting which apps (and how many of each
type) to study. We will try to track down as
much source code as we can,4 but most of our
apps will probably come directly from Google
and Apple’s respective app stores. Then the

1 "...existing dynamic analysis techniques available for the x86 architecture are not immediately applicable to mobile
devices executing binaries compiled for the ARM architecture. For example, many dynamic analysis approaches rely
on full system emulation or vitalization to perform their task. For most mobile platforms, however, no such full system
emulator are available. While Apple, for example, includes an emulator with their XCode development enviornment, this
emulator executes x86 instructions, and therefore requires that the application to emulate is recompiled." [3]

2This software is actually still under development, but early versions are available, and a full release is expected before
our project is due. See: http://www.bluestacks.com

3Hopper appears to be a fairly high-functioning program for disassembly and decompiling, but it remains to be seen
whether apps recompiled for Intel processors will actually behave comparably to their original versions. If not, we may
need to limit our research mostly to Android apps, (or iOS apps for which we have the source). I wonder whether any
developers would be willing to provide us with binaries compiled specifically for desktop emulation?

4Ethan may be able to obtain source for some popular apps from his summer internship

2

http://www.bluestacks.com


main task will be to use our pipeline to col-
lect relevant thread data, under a variety of
theoretical use cases for each of these apps.
Once again, Hongin will take the Android
apps, while Ethan takes the iOS ones. Our
reach goals for Milestone 2 may include:

• colllecting data for serialized re-writes of
the apps for which we have source code

• assessing utilization of a phone’s GPU

III. Goals for Milestone 3 (12/4)

If we’ve succeeded in performing the bulk of
our coding and testing by Milestone 2, the re-
mainder of our time should be free for col-
lating our results and making sense of the
data. While our priority is to perform a thor-
ough mathematical analysis (probably involv-
ing some clustering algorithms), we would also
like to present an intuitive visual representa-
tion of threading patterns. Finally, we will
use Milestone 3 to evaluate the implications of
our results, in terms of multi-threading more
broadly and parallelism on mobile devices in

particular, and consider where there is room
for further work.

References

[1] K. Flautner, G. Blake, R. G. Dreslinski, and
T.Mudge. Evolution of thread-level paral-
lelism in desktop applications. SIGARCH
Computer Architecture News, 38:302–313,
2010.

[2] K. Flautner, R. Uhlig, S. Reinhardt, and
T.Mudge. Thread-level parallelism of
desktop applications. Workshop on Multi-
threaded Execution, Architecture, and Compila-
tion, 2000.

[3] Martin Szydlowski, Manuel Egele, Christo-
pher Kruegel, and Giovanni Vigna. Chal-
lenges for dynamic analysis of ios applica-
tions. In Jan Camenisch and Dogan Kesdo-
gan, editors, Open Problems in Network Se-
curity, volume 7039 of Lecture Notes in Com-
puter Science, pages 65–77. Springer Berlin
Heidelberg, 2012.

3


	Motivation
	Background
	Idea
	Milestones
	Goals for Milestone 1 (11/6)
	Goals for Milestone 2 (11/20)
	Goals for Milestone 3 (12/4)


